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Fig. 1. Left: a 5cm × 8cm × 6cm figurine captured with an ƒ/5.6 aperture, (center) reconstructed with instant NGP [Müller et al. 2022], and the proposed
ƒNeRF (right). The reference image on the left was not used for reconstruction. While previous methods bake the defocus blur in to the radiance field, our
method does not and reconstructs sharp details at all depths. It achieves this by successfully aggregating the radiance information from views close to the
focus plane while simultaneously combining radiance values further away from the focus plane using a physically meaningful defocus model.

In recent years, the development of Neural Radiance Fields has enabled a
previously unseen level of photo-realistic 3D reconstruction of scenes and
objects from multi-view camera data. However, previous methods use an
oversimplified pinhole camera model resulting in defocus blur being ‘baked’
into the reconstructed radiance field. We propose a modification to the ray
casting that leverages the optics of lenses to enhance scene reconstruction
in the presence of defocus blur. This allows us to improve the quality of
radiance field reconstructions from the measurements of a practical camera
with finite aperture. We show that the proposed model matches the defocus
blur behavior of practical cameras more closely than pinhole models and
other approximations of defocus blur models, particularly in the presence
of partial occlusions. This allows us to achieve sharper reconstructions,
improving the PSNR on validation of all-in-focus images, on both synthetic
and real datasets, by up to 3 dB.

CCS Concepts: • Computing methodologies→ Rendering; Reconstruc-
tion; Neural networks.

Additional KeyWords and Phrases: Computational Photography, Multi-View
&3D, Differentiable Rendering, Neural Rendering

1 INTRODUCTION
Practical cameras are not pinhole cameras: they use a lens with a
finite aperture to focus light on the sensor, resulting in higher light
throughput and advantages such as faster exposure time and less
vignetting. However, having a finite aperture inevitably results in
defocus blur in the images. This occurs because real camera pix-
els integrate photons coming from different parts of the aperture,
instead of a single infinitesimally small pinhole. Many modern radi-
ance field reconstruction methods, such as Mildenhall et al. [2021],
use such data with traditional pinhole camera models under the
assumption of a pixel-to-ray correspondence. The resulting scene
models have no choice but to ‘absorb’ the blur in erroneous material
or density models.

Since multi-view data includes multiple observations of the same
scene point, the same point may be seen in sharp focus in some
frames and be blurry in others. If the forward imaging model closely
matches the optics of a real camera lens, better scene reconstruc-
tion that preserves the sharp observation is possible. Many existing
methods approximate the physics of light rays and follow the origi-
nal Neural Radiance Field paper [Mildenhall et al. 2021], rendering
pixel values by casting single rays from the pixel center through a
pinhole. MipNeRF [Barron et al. 2021] and ZipNeRF [Barron et al.
2023] both propose sampling methods that are used to model a pix-
els integration of light from a cone; Wu et al. [2022] and Pidhorskyi
et al. [2022] find 2D convolution approximations for defocus. How-
ever, none of these methods account correctly for partial occlusions
(depth discontinuities) and they do not model the lens aperture and
focus plane in a physically meaningful way. The ZipNeRF/MipNeRF
cone aggregation strategies address sample aliasing, but incorrectly
approximate partial occlusion within a pixel (for a visualization of
the sample points on the cone surface, see Fig. 4). 2D convolution
approximations are lacking information that is invisible in the op-
tical center, but would be visible from other parts of the aperture.
Methods for rendering physically-realistic camera measurements
have been previously developed [Pharr et al. 2023]. Most promi-
nently, one can use Monte-Carlo path tracing and trace multiple
rays through the camera lens, refracting at the lens surface, to sim-
ulate the physical aggregation process of light at the sensor level.
Presumably, previous radiance field reconstruction methods have
not adapted it because the volumetric rendering process was al-
ready considered slow and additional samples would further slow
down the reconstruction, making it intractable. Thanks to the recent
progress in accelerating reconstruction and rendering for radiance
fields [Božič et al. 2022; Kerbl et al. 2023; Müller et al. 2022], these



Fig. 2. Synthetic defocus on the MipNeRF360 ‘bicycle’ scene [Barron et al.
2022]. Left rendered with ZipNeRF [Barron et al. 2023] sampling cones
modified to account for a larger aperture; right the proposed ƒNeRF. The
modified ZipNerf forwardmodel doesn’t accurately model partial occlusions
within a pixel, while ƒNeRF does and produces realistic blur and bokeh.

techniques become accessible—even more, we found that the practi-
cal runtime impact remains limited, presumably due to similarities
in rays cast (for example, due to memory access patterns). Hence, we
propose ƒNeRF, a method that leverages the physics of real lenses
and their light aggregation process to enhance scene reconstruction.
Our contribution lies in adapting classical rendering techniques

for volumetric rendering with finite aperture cameras. We show
that this approach not only aligns more closely with optics, but also
proves to be computationally tractable for the reconstruction of
radiance fields. We also demonstrate that, using analytical gradi-
ent for aperture size, both aperture size and focus distance can be
jointly optimized using gradient descent. This makes the proposed
method easy to use in conjunction with many gradient-based 3D re-
construction techniques, such as neural radiance fields [Mildenhall
et al. 2021; Müller et al. 2022], Gaussian splats [Kerbl et al. 2023] or
implicit surfaces [Wang et al. 2021a].

In summary, we present a simple method for modeling lens defo-
cus to significantly improve the sharpness of radiance field recon-
struction from defocus blurred data. We demonstrate the validity of
our approach on synthetic and real data with defocus blur.

2 RELATED WORK

2.1 Defocus blur in differentiable rendering
Several existing methods for gradient-based 3D reconstruction ad-
dress the depth of field effect. [Mildenhall et al. 2021; Müller et al.
2022] render synthetic defocus on radiance fields, but do not model
defocus in the reconstruction process. [Lee et al. 2024, 2023; Ma et al.
2022; Peng and Chellappa 2023] reconstruct radiance fields from
blurred input images by optimizing the ray positions without a phys-
ical lens model. [Pidhorskyi et al. 2022; Wu et al. 2022] approximate
the effect as a convolution with depth-dependent blur kernel, and
show that jointly optimizing the aperture size and focus distance
results in sharper reconstructions than no defocus blur modeling.

One practical consideration of the convolution-based approxima-
tions is that they require rendering of image patches proportional
to blur size, instead of individual pixels, as well as careful handling
of the convolution borders. More importantly, the convolution ap-
proximation is inaccurate along object boundaries and degrades
reconstruction quality. We found that the physically-realistic ap-
proach to modeling defocus blur results in better reconstructions,
while our implementation keeps the reconstruction time within a
reasonable range (Fig. 6.). We show a comparison on defocused data
from [Wu et al. 2022] in 5.2.21.

2.2 Camera modeling
Many papers show that better camera modeling improves the recon-
struction of NeRFs from real data. [Lin et al. 2021; Park et al. 2023;
Wang et al. 2021b] jointly optimize camera intrinsics and extrinsics
while [Jeong et al. 2021; Xian et al. 2023] focus on the optimization
of lens distortion. Since all these methods only cast a single ray
from each pixel, they can all be easily extended with the proposed
method for modeling finite aperture of practical cameras.
Inspired by the success of NeRF, recent camera modeling works

are embracing the use of implicit networks with coordinate inputs.
Some use a network to predict the blur at each pixel and use it to
render the camera measurements [Lin et al. 2023], and demonstrate
improvements on multiple reconstruction problems, including re-
constructing all-in-focus image from image stacks [Huang et al. 2023;
Wang et al. 2023]. These previous works capture a scene with dif-
ferent configurations of the camera, such as changing the exposure
time or focus distance, while we take a camera with fixed configu-
ration and focus on reconstructing a high quality radiance field of
the scene. Additionally, these works are less physically grounded as
they do not explicitly model ray casting from the aperture, so they
can not optimize the aperture radius. In this paper we propose an
efficient method for rendering the gradient of aperture radius.

2.3 Sampling volumes in NeRF
Multiple works [Barron et al. 2021, 2023] address the aliasing prob-
lem in rendering radiance fields. The need for anti-aliasing comes
from the fact that each pixel measurement integrates photons across
the pixel area as well as across the aperture. However, the cone mod-
eling in MipNeRF and ZipNeRF, from which the radiance field is
sampled, only accounts for sampling the pixel area and does not
take into account the camera aperture.

To incorporate aperture sampling two modifications are needed.
First, the apex of the cone should not be the pinhole lens position,
but it should rather lie on the focus plane. Lens optics refract light
passing the same point on the focus plane to the same pixel on the
sensor plane. Second, the width of the cone should also be expanded
so that it matches the aperture size (see Fig. 4). We evaluate the
effectiveness of this modified version of ZipNeRF with correct focus
point location and cone width matching the aperture, and compare
its performance against the other models in Fig. 5, Table 1 and
Table 2. The result shows ZipNeRF with aperture cone modifications
results in sharper details in comparison to the original ZipNeRF.

1We contacted Pidhorskyi et al. but were not able to get access to their data or code for
establishing a comparison.



Fig. 3. Top: The red point on the focus plane results in a sharp image, while
the blue point in front of the focus plane results in a blurry image, or bokeh.
Bottom: to render color at pixel p, we draw samples a from the aperture and
cast modified rays (o(a), d(a) ) from it.

MipNeRF and ZipNeRF assume that all points in their sampled
Gaussian share the same occlusion. This approximation allows for
fast evaluation by allowing them to integrate in encoding space and
therefore limiting the number of queries to the MLP. This is accept-
able for approximating the sampling of the pixel area, however for
larger apertures it is inaccurate for partial occlusions within a pro-
jection cone, which often occur at object boundaries. The difference
is shown in Fig. 2. We show that with a more physically accurate
model we can obtain better reconstructions for large apertures, in
synthetic (Fig. 5) and real data (Fig. 8).

3 METHOD
In this section, we start by reviewing the mathematics of defocus
blur. We then derive our method which extends volumetric render-
ing with aperture modeling, which allows us to reconstruct sharp
radiance fields from defocus blurred measurements. For joint esti-
mation of the defocus blur parameters with the radiance field, we
also derive a method to efficiently render aperture radius gradient
for circular apertures.

3.1 Defocus blur
Pinhole cameras have limited light throughput and suffer from
heavy vignetting effects. In practice, cameras use a lens with a larger
aperture to capture more light [Allen and Triantaphillidou 2011].
This allows either capturing with a shorter exposure time (important
for moving subjects) or in dimly lit environments. However, a larger
aperture creates defocus blur and hence leads to a loss of detail in
areas further away from the focus plane [Potmesil and Chakravarty
1981]. Fig. 3(a) shows how the image of two points is formed on a
camera with a finite aperture. For rays emitted by the red point on
the focus plane, the lens refracts them so that all of them converge
to the same point on the sensor, forming a sharp image of the point.
However, for rays emitted by the the blue point in front of the focus
plane, the lens is unable to focus them and each ray will intersect

the sensor at a slightly different point, spreading out its image, an
effect known as bokeh.

For a camera with aperture radius 𝑎𝑅 , focal length 𝑓 and focused
at distance 𝑧𝑓 , the radius of defocus blur, often known as circle of
confusion, for scene point at depth 𝑧 is,

𝑎𝑅
|𝑧 − 𝑧𝑓 |

𝑧

𝑓

𝑧𝑓 − 𝑓
. (1)

The defocus blur is the same for scene points at the same depth, thus
previous methods [Pidhorskyi et al. 2022; Wu et al. 2022] approx-
imate the defocus blur effect as 2D convolutions between a sharp
image of the scene and a bokeh kernel. However, using 2D convolu-
tion approximations leads to inaccuracies at occlusion boundaries
and requires discretizing a 3D scenes into depth layers. Volumetric
rendering as used by many radiance field rendering methods offers
us an opportunity to render higher fidelity defocus blur avoiding
these problems.

3.2 Volumetric rendering with finite aperture
Most previous volumetric rendering methods model all cameras as
pinhole cameras and only generate rays from the center of a pixel to
the pinhole point. Specifically, the original NeRF [Mildenhall et al.
2021] expects color 𝐶 from ray r from a scene with volume density
𝜎 (x) and emitted color c,

𝐶 (r) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡) 𝜎 (r(𝑡)) c (r(𝑡), d) 𝑑𝑡, (2)

where 𝑇 (𝑡) = exp−
∫ 𝑡

𝑡𝑛
𝜎 (r(𝑠)) 𝑑𝑠 , and 𝑡𝑛 , 𝑡𝑓 are respectively the

near and far depth that bounds the scene. Modeling the lens aperture
expects pixel color 𝐶 (p) integrated over many rays across different
parts of the aperture A. We follow classical rendering [Pharr et al.
2023] and sample rays from the aperture,

𝐶 (p) = 1
area (A)

∫
a∈A

𝐶 (r(a)) 𝑑a, (3)

where r(a) modifies a ray r = (o, d) with origin o at the pinhole and
direction d for finite aperture width. For focus distance of 𝑧𝑓 , the
modified ray r(a) = (o(a)), d(a)) has its origin on the aperture

o(a) = a (4)

and direction d(a) pointing to the focus point,

d(a) =
o + d𝑧𝑓 − a

∥o + d𝑧𝑓 − a∥22
. (5)

See Fig. 3 (b).
Our implementation samples points a from the aperture using a

quasi-Monte Carlo approach using a Sobol Sequence [Sobol 1967].
This improves reconstruction performance, especially at low sample
counts. If each pixel samples multiple rays, we add offsets to the
points sampled during ray matching to reduce z-aliasing. For 𝑖-th
ray among the 𝑛 rays we sample for each pixel, we sample the point
in ray section (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ) at,

𝑡 =
𝑖

𝑛
𝑡𝑠𝑡𝑎𝑟𝑡 +

(
1 − 𝑖

𝑛

)
𝑡𝑒𝑛𝑑 . (6)



3.3 Optimizing aperture and focus depth
Highest quality reconstructions require accurate estimates of the
camera parameters. Structure-from-motion packages together with
EXIF data from recordings or manual recording of the parameters
can provide great starting points. The dense, pixel-wise optimization
of the entire scene provides ample opportunity to improve over these
initializations and leads to better results [Park et al. 2023; Xian et al.
2023].

Our extended model has additional parameters for focus distance
and aperture radius. The focus distance can naturally be optimized
by using the auto-differentiation of the ray casting operation. The
aperture radius, however, is a parameter for the sampling operation
and its auto-differentiation gradient has high variance, due to the
random sampling.
We follow [Pidhorskyi et al. 2022] and render the gradient of

aperture radius from its analytic gradient. The gradient of pixel
color 𝐶 (p) with respect to aperture radius 𝑎𝑅 as,

𝑑𝐶 (p)
𝑑𝑎𝑅

=
2
𝑎𝑅

𝐶ring (𝑎𝑅) + 0 − 2
𝑎𝑅

∫ 𝑎𝑅

𝑎𝑟=0

2𝑎𝑟
𝑎2
𝑅

𝐶ring (𝑎𝑟 )𝑑𝑎𝑟 (7)

=
2
𝑎𝑅

(
𝐶ring (𝑎𝑅) −𝐶 (p)

)
. (8)

Thus, we can render 𝐶ring (𝑎𝑅) by sampling points on the bound-
ary of the aperture and use Eq. (8) for computing the gradient of
the aperture radius; this gives us stable convergence of the aperture
radius, as shown in Table 3.

4 IMPLEMENTATION
We implement our framework using neural graphics primitives for
fast reconstruction and rendering speeds and a compact volume
representation [Müller et al. 2022]. Additionally, we use a dense
volume acceleration structure for empty space skipping [Li et al.
2023]. Similar to NerfAcc, we use a sample-point target to guide
ray batching and adjust the number of pixels sampled per batch
dynamically. We use an ADAM optimizer [Kingma and Ba 2014]
with an exponential learning rate reduction schedule with two steps
to guide the optimization towards convergence. We observed that it
is critical to average colors in linear space to create realistic bokeh
effects, in particular in bright areas, and account for the logarithmic
transfer function in sRGB encoded images during our reconstruc-
tion. We use the same batching, number of steps and learning rate
schedule across all methods for a fair comparison. The experiments
are run on NVIDIA A100 GPUs with 80GBmemory unless otherwise
specified.

5 EXPERIMENTS

5.1 Synthetic experiments
5.1.1 Experiment setup. We validate our method on the synthetic
data rendered with large aperture; see Fig. 5. We render the blender
scenes from [Mildenhall et al. 2021] in BlenderNeRF2 [Raafat 2023]
with ƒ/5 and focus distance 3.5m for 100 images captured from a
hemisphere with radius 4m. We render the same images sharp and
without defocus for testing.
2Blender computes ƒ numbers differently from photography conventions; to reproduce
the rendering use ƒ/0.2 and focal length 50mm camera in Blender.

scene NGP ZN ZN + A LN 6 LN 32
lego 0.8801 0.8806 0.8800 0.9214 0.9360
chair 0.9023 0.9023 0.9303 0.9261 0.9419
ficus 0.9300 0.9395 0.9361 0.9645 0.9657
drums 0.8826 0.8838 0.6085 0.9037 0.9033
mic 0.9157 0.9157 0.9299 0.9325 0.9377
ship 0.7352 0.7362 0.7017 0.7515 0.7467

hotdog 0.9373 0.9377 0.9361 0.9549 0.9572
Table 1. Reconstruction SSIM from synthetic defocused measurements with
different methods.

To isolate the effect of addressing defocus, we only use the recon-
struction loss between measured pixel color 𝐶 and rendered pixel
color 𝐶 (p),

ℓ𝑟𝑒𝑐𝑜𝑛 = smooth ℓ1 (𝐶 (p) −𝐶) , (9)
where smooth ℓ1 loss equals ∥𝑥 ∥22 for |𝑥 | <= 1 and |𝑥 | otherwise;
we use it for robust optimization. We use the ground truth camera
intrinsics, extrinsics, aperture radius, and focus distance unless
otherwise specified. All experiments are run with learning rate 1e-2
for a fixed number of 2e4 steps. We use base resolution of 16 with
16 levels and a maximum resolution of 4096 for the NGP volume,
backed by a hashmap of size 219. The target number of point samples
per batch is 262,144 for all methods.

5.1.2 Comparison against ZipNeRF and ZipNeRF modified for aper-
ture. We implemented the multisampling and downweighting from
ZipNeRF (ZN), as well as a modified version where we shift the sam-
pling cone apex to the focus plane and expand the cone to match the
aperture (ZN+A) for comparison with the proposed ƒNeRF method.
The modification in the cone shape is shown in the sampling loca-
tions in Fig. 4. We report the SSIM and PSNR metrics on the sharp
testing images in Table 3. An Instant NGP (NGP) reconstruction
with pinhole camera model does not model lens aperture and bakes
in the defocus blur in the scene, as shown on second column. The
ZipNeRF (ZN) reconstruction models a cone defined by the pixel,
not the lens aperture, and fails on large aperture scenarios as shown.
ZipNeRF with the sampling cone modified for aperture (ZN+A) pro-
duces sharper results, but the model mismatch in partial occlusions
tends to produce over-smoothed rendering and an over-sharpened
reconstruction. ZN+A fails to reconstruct the drum scene due to the
large amount of partial occlusions and specularity in this scene. Our
proposed method with aperture modeling significantly improve the
sharpness of reconstruction, with 32 rays (LN-32) showing more
details than 6 rays (LN-6) on most scenes, as shown on the last two
columns.

5.1.3 Number of rays per pixel. To understand how the reconstruc-
tion quality and runtime scale with the number of rays we sample
for each pixel, we reconstruct the synthetic Lego scene with the
proposed ƒNeRF method with different numbers of rays per pixel,
but with a constant number of pixels per batch (1024) Fig. 6. This
experiment is run on a NVIDIA Quadro RTX 8000. The reconstruc-
tion quality saturates near 16 rays per pixel. We also see that the
runtime does not increase significantly below 8 rays per pixel; we
posit that the lower increase in runtime originates from synergy



Fig. 4. Schematic of sampling locations of different methods in 2D. (a) blue
points show ZipNeRF samples on a small cone with apex on the pinhole
location; (b) yellow points show ZipNeRF modified for aperture by moving
the apex to focus plane and expanding the cone to match aperture; (c)
purple points show ƒNeRF samples on 6 rays, drawn at random, passing
through the aperture. ZipNeRF sample solely on a cone surface whereas
the proposed method casts rays within the cone volume. We show actual
sampling locations in 3D in the supplementary video.

scene NGP ZN ZN + A LN 6 LN 32
lego 25.75 25.84 26.02 28.26 29.00
chair 27.25 27.24 27.84 28.9 29.64
ficus 27.28 27.65 26.32 30.65 30.49
drums 22.54 22.46 14.53 23.93 23.43
mic 24.18 24.17 26.10 25.84 26.07
ship 22.64 22.68 21.46 23.51 23.17

hotdog 29.63 29.69 30.06 31.93 32.08
Table 2. Reconstruction PSNR from synthetic defocused measurements
with different methods.

effects of the many rays in each batch being closely related in terms
of memory accesses and computation.

5.1.4 Optimizing aperture radius and focus distance. To evaluate the
convergence of the aperture radius and focus distance parameters,
we reconstruct the synthetic Lego scene with mismatched initial pa-
rameters (80%, 100%, 120%). As shown in Tab. 3 mismatched defocus
parameters result in degraded reconstruction quality, in some cases
leading to complete failures to reconstruct the scene. Allowing for
joint optimization of the defocus parameters with the scene leads
to comparable quality with correctly optimized defocus parameters
up to a range of 20% of the aperture and focus depth initialization.
This means that in practice, the proposed method can be expected
to work reliably even for ballpark estimates of these parameters.

aperture init. focus init. scene only + opt. defocus params.
80% 100% 28.73 | 0.7606 29.19 | 0.9295
100% 100% 28.98 | 0.9294 29.07 | 0.9311
120% 100% 27.72 | 0.8364 29.13 | 0.9276
100% 80% 18.55 | 0.7385 24.14 | 0.9341
100% 100% 29.04 | 0.9368 29.00 | 0.9366
100% 120% 22.86 | 0.8199 28.97 | 0.9338

Table 3. Reconstruction PSNR|SSIM fromdifferent aperture radius and focus
distance initializations for the synthetic lego scene, for scene only and joint
optimization with defocus parameters. The aperture and focus initialization
is perturbed as specified in the leftmost columns. When optimizing the
defocus parameters we manage to maintain near perfect reconstruction
quality. Note that there is a slight variance due to the stochastic optimization
in our method comparing the two lines initialized with ground truth.

5.2 Experiments on Recorded Data
5.2.1 Experiment setup. To evaluate reconstruction on recorded
data, we optimize camera poses using CamP [Park et al. 2023] (using
SE3, sampling 128 points in the reconstruction volume, with diago-
nal weight 𝜆 =1e-1, and identity weight 𝜇 =1e-8 ) and the distortion
loss from [Barron et al. 2022] (𝜆𝑑𝑖𝑠𝑡 =1.5938e-3).

5.2.2 DoF NeRF experiments. We validate our method on data from
DoF-NeRF [Wu et al. 2022], which captures scenes with different
focus distances and different apertures (ƒ/4 and ƒ/16). We show
comparisons with DoF-NeRF in Fig. 7. The input consists of images
captured with 2 focus distances with the same camera pose, each
consisting of 22 images. We run our instant NGP implementation
with pinhole camera model as a baseline. For DoF-NeRF, since their
code is unavailable, we use the PSNR number and result presented in
their paper. We follow the configuration described in the DoF-NeRF
paper and reconstruct with ƒNeRF at the same resolution, with input
dimension of 497 × 322, and jointly optimize aperture radius and
focus distances. However, unlike DoF-NeRF which estimates the
per-frame defocus

5.2.3 Mip-NeRF360 experiments. We also evaluate our method on
the Mip-NeRF360 dataset. While the apertures are fairly small, we
can still improve the results and produce sharper details in the
reconstruction in Fig. 8. Since the captures are centered around an
object, most background points were similarly defocused across all
frames. The quantitative validation metrics are similar to baseline
due to the validation set sharing the same defocus blur as input.
Since each scene contains more than a hundred images at high
resolution, we find a balance between pixels per batch and rays
per pixel, by starting at randomly sampling 1 ray per pixel and
doubling it for each epoch. The kitchen scene is reconstructed with
5e-4 aperture radius and 1.09 focus distance, and the bicycle scene
with 1.5e-4 aperture radius and 0.15 focus distance. We use three
sets of hyperparameters across all experiments in the paper: we
adjust them between synthetic data, indoor and outdoor spaces. To
provide a rough overview of their ranges: the max resolution of the
NGP is between 4096 and 467830, backed by a hashmap of size 219
- 221. The overall learning rate for the ADAM optimizer is chosen
between 0.01 and 0.0001, pose between 1e-5 and 1e-4, and intrinsics
between 4e-6 and 8e-6. We also regularize the deviation from initial
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Fig. 5. Synthetic data results. From left to right: input frame closest to test viewpoint, reconstruction from iNGP, ZipNeRF, ZipNeRF modified for aperture, the
proposed method LensNeRF with 6 rays per pixel, LensNeRF with 32 rays per pixel, and all-in-focus ground truth. The closest input views demonstrate notably
blurry regions in important areas of the image, and our reconstructed model is not able to leverage this viewpoint for the reconstruction of this viewing angle.
However, other viewpoints were sufficient to reconstruct the areas in question with high fidelity and sharpness and the model is not negatively affected by the
reconstruction loss thanks to our accurate depth-of-field model.

camera pose, with a rotation loss using the ℓ2 distances between
initial and optimized rotation matrices weighted by 𝜆rot=9.59e-3,
and a translation loss using the ℓ2 distance between initial and
optimized camera locationsweighted by 𝜆trans=9.09e-3. The learning
rate schedule is being applied with two reduction steps with a size
between 0.2 and 0.4. Other parameters include weight decay (2e-6 to
9e-6) and gradient scaling (600x-6000x) for better numerical stability
for compatibility with FP16 tensor operations.

5.2.4 New data. We image a miniature figurine of size 5cm× 8cm
× 6cm with a Canon EOS M100 with ƒ/5.6. Since the subject is small,

we capture it with the camera handheld close to it, resulting in a
close focus distance and a shallow depth of field. We captured 96
images spread around the upper hemisphere. We reconstruct using
88 frames of 10 times downsampled images, at 600 × 400 resolution.
One of the practical problems of reconstructing from defocus blurred
data is that the initial camera poses from structure from motion
are often inaccurate. This is not a problem if the images are from
a pre-calibrated multi-camera capture system. DoF-NeRF solves
this problem by capturing with both large and small aperture from
the same positions and using the poses estimated only from small
aperture photos. We do not capture any photos at small apertures
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Fig. 6. Reconstruction quality and runtime v.s. number of rays per pixel on
synthetic lego data. The reconstruction quality saturates near 16 rays per
pixel; the runtime does not decrease significantly below 8 rays per pixel.

Fig. 7. DoF-NeRF dataset reconstructions from (ƒ/4) captures. The numbers
are PSNRs evaluated against ƒ/16 images at 2 unseen poses.

and found that we can get reasonable pose estimates using Agisoft
Metashape3 using downsampled data. This results in high quality
reconstructions that we can segment in 3D. You can find a held out
image, as well as reconstruction renders in Fig. 1.

6 CONCLUSION
In this paper, we improved the camera modeling in radiance field
methods and pushed them closer to the realities of practical camera
systems. The proposed method, LensNeRF, can be easily integrated
into most radiance field reconstruction systems. It casts multiple
rays from the camera aperture to render physically realistic defocus
blur. We show that LensNeRF reconstructs sharp radiance fields and
is computationally tractable. By incorporating the optics of a thin
lens into our modeling, we are able to render the analytic gradient of
aperture radius. We are successful at jointly estimating the aperture
radius and focus distance, two parameters that control the amount
of defocus, along with the scene. We have critically evaluated the
current state of art volume sampling approach, ZipNeRF, and il-
lustrated the effects of approximations included in that approach.
We introduce an aperture sampling extension to ZipNeRF to more
reasonably compare with our LensNeRF approach in scenarios in-
volving partial occlusions. Our experiments on synthetic and real
defocused camera inputs show up to 3dB PSNR improvement when
evaluated on all-in-focus novel views.
3https://www.agisoft.com

While this work represents a stride toward more accurate model-
ing of practical camera systems, it is important to acknowledge its
limitations. One of the key simplification is the use of the thin lens
model, which, although effective, does not encapsulate the complex-
ity of modern camera lenses with multiple elements. Some unique
characteristics of cameras, such as chromatic aberration, lens flare,
and bokeh variation cross different regions of the lens, are not rep-
resented in our model. Further research could focus on integrating
more expressive camera models that capture these nuances while
maintaining rendering efficiency. These advancements will push
the fidelity of reconstructions from practical camera inputs.
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Fig. 8. Results on MipNerf360 [Barron et al. 2022] data. Both NGP an ZipNeRF bake defocus blur into their reconstructions, resulting in smoothed out details.
ZN+A generates over-sharpened details and introduces artifacts near occlusion boundaries. ƒNeRF reconstructs better details without artifacts. Please refer to
our supplementary results for a better visualization of the reconstructions.
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