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Abstract

The application of two-dimensional (2D) shape and appearance models to the problem of creating realistic synthetic

talking faces is presented. A sample-based approach is adopted, where the face of a talker articulating a series of pho-

netically balanced training sentences is mapped to a trajectory in a low-dimensional model-space that has been learnt

from the training data. Segments extracted from this trajectory corresponding to the synthesis units (e.g. triphones) are

temporally normalised, blended, concatenated and smoothed to form a new trajectory, which is mapped back to the

image domain to provide a natural, realistic sequence corresponding to the desired (arbitrary) utterance. The system

has undergone early subjective evaluation to determine the naturalness of this synthesis approach. Described are tests

to determine the suitability of the parameter smoothing method used to remove discontinuities introduced during syn-

thesis at the concatenation boundaries, and tests used to determine how well long term coarticulation effects are repro-

duced during synthesis using the adopted unit selection scheme. The system has been extended to animate the face of a

3D virtual character (avatar) and this is also described.

� 2004 Elsevier B.V. All rights reserved.
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1. Background

It is well known that speech is amulti-modal form

of communication; seeing the face of a talker pro-
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vides information that can significantly influence

the perception and understanding of speech, as illus-
trated by both the McGurk effect (McGurk and

MacDonald, 1976) and the speech-reading ability

of humans (and machines) (Stork and Hennecke,

1996). It is, therefore, reasonable to focus attention

on the visual modality in addition to the auditory

in the synthesis of speech. Traditional approaches

to synthesising talking faces can be broadly classified
ed.
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as either model-based or image-based. Model-based

systems tend to use techniques from computer

graphics, where points on the face are represented

as vertices in 3D and the surface itself approximated

by connecting the vertices to form a mesh. The mesh
then is animated by applying the appropriate time-

varying parameters, e.g. (Parke, 1974; Massaro,

1998; Pelachaud, 1991; Waters, 1987). Image-based

systems use computer vision or image processing

algorithms to analyse images of real faces, which

can later be post-processed to re-synthesise the face

in a video sequence, e.g. (Bregler et al., 1997; Brand,

1999; Cosatto and Graf, 1998; Ezzat et al., 2002;
Huang et al., 2002). There is a trade-off between flex-

ibility and realism. Model-based systems are flexible

and can be efficiently rendered, especially onmodern

graphics processors, but they tend to lack videoreal-

ism—a videorealistic system is defined as one that is

indistinguishable from a recorded sequence of a talk-

er, regardless of speech content. Texture mapping an

image of a real face onto the mesh generally is still
not enough to convince a viewer that the animated

sequence is a real face. At the cost of computational

expense and a distinct lack of flexibility, image-based

systems can achieve close to videorealism providing

the correct lip shape is presented for a given sound

and the synthesisedmovements on the face look nat-

ural. Image-based systems are also limited in their

application. Only the face in a sequence is re-ani-
mated, the full character cannot perform novel ac-

tions. The approach adopted in this work is based

on shape and appearance models and can be consid-

ered a hybrid image-based/model-based approach.

A statistical model of the appearance of the face is

texture mapped onto a 3D mesh model, which in

turn is animated by a statistical model of shape.

Thus, pose, shape and texture are all animated inde-
pendently. Potential applications for the system in-

clude desktop agents, character animation in films

or computer games, translation agents, low band-

width video conferencing and the personalisation

of web-based instant messenger clients to name but

a few.

1.1. Previous work

The system proposed here has similarities with

several systems reported previously. The Video
Rewrite system by Bregler et al. (1997) was one

of the first examples of a visual speech synthesiser

that approached videorealism. A video sequence of

a talker is segmented into short clips that corre-

spond to triphones. Segments of this video can la-
ter be selected according to the similarity of a

desired triphone and each candidate triphone in

the video. The selected segments are then concate-

nated and the neighbouring regions cross-faded

to ensure a smooth transition, resulting in new se-

quences of a talker uttering novel phrases. The

similarity between triphones is measured in terms

of the visual confusion of the individual phonemes
that form the triphones, and a set of mouth shape

parameters defining the triphones (e.g. width and

height). The visual confusions used in Video Re-

write are drawn from confusion matrices that

had been published previously, e.g. (Owens and

Blazek, 1986). The disadvantage of using generic

data (i.e. not talker specific) in this way is that

the clustering of mouth shapes associated with
speech is poorly defined and has been found to

be talker dependent (Kricos and Lesner, 1982).

Arslan and Talkin (1998) also proposed a con-

catenative synthesiser. An optical tracking system

tracks the (xyz) positions of a set of markers at-

tached to the face of talker enunciating a series

of training sentences. The trajectory of the marker

positions is segmented into a lookup codebook,
where each entry corresponds to an observation

of a phone and contains the marker positions,

the phoneme symbol and a context label (two pho-

neme symbols either side of the centre-phone). A

similarity score is then computed between each

phoneme pair, so, during synthesis, examples can

be selected from the codebook in contexts that

are closest to a desired context. Concatenating
the selected segments creates a new trajectory for

the markers, which can be used to animate a

three-dimensional (3D) graphics model of the face.

The advantage of this approach is that the similar-

ity of speech segments is entirely speaker depen-

dent. However, since the animation is based on

graphics models, this approach lacks the static

realism (photorealism) of systems such as Video
Rewrite.

Ezzat et al. (2002) proposed a (potentially) vid-

eorealistic system based on multi-dimensional mor-
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phable models (MMMs). Images are selected to

represent the key mouth shapes associated with

speech production and a further image selected

as a reference. The set of optical flow vectors that

morph the reference image to each mouth shape
image are computed, which form the shape com-

ponent of the MMM. The shape parameters define

the linear contribution of the optical flow vectors

that when applied to the reference image generate

a set of morphed images, and the appearance

parameters define the contribution of these mor-

phed images in the synthesis of the final frame.

To train the synthesiser, images of the mouth
of a talker in a training video are projected into

model-space and each phoneme represented as a

multi-dimensional Gaussian. A trajectory of shape

parameters and a trajectory of appearance param-

eters for a novel utterance are computed using reg-

ularisation. The parameters are then applied to the

model to generate an image sequence of a talker�s
mouth, and these images are re-composited back
into an original video sequence to create realistic

synthetic visual speech sequences. Using original

background scenes gives natural eye and eyebrow

movements, which serves to improve the realism

of the system. However, the disadvantage of this

approach is that only the face can be re-animated,

the character cannot perform novel actions. Also,

the entire phoneme sequence forming the target
utterance must be known before the trajectory

can be computed, making a real-time implementa-

tion difficult.

The system proposed in this work is closely re-

lated to the three described above. The basis of

the system is a shape and appearance model, see

Section 2, which, like the model in (Ezzat et al.,

2002) is a generative model. The advantage of the
shape and appearance model over theMMM is that

the shape component of the model describes the

movement of the features of the face directly in

terms of a coordinate system. Thus, the geometry

of the face of a complete character can be animated

using the shape component of the model. As in

(Bregler et al., 1997), the idea is to select segments

from the training data based on the similarity of tri-
phone segments and concatenate the selected seg-

ments to form new sequences. The unit selection

approach is based on that in (Arslan and Talkin,
1998), however both the shape and appearance of

the face is considered, whereas in (Arslan and Tal-

kin, 1998) only the shape is considered. Also, the

temporal evolution of each phoneme, the degree

to which each phoneme is modified by context
and the relative significance of each model parame-

ter are also considered. The final output from the

synthesiser can be in the form of a 2D image se-

quence, which can re-composited into an existing

video sequence (as in (Ezzat et al., 2002)), or can

be used to create realistic sequences that can be

combined with other manual gestures (e.g. deaf-

signing) by animating a complete character.
2. Shape and appearance models

To construct a shape and appearance model, a

set of images are first hand-annotated with land-

marks that delineate the shape. The vector, s,
describing the shape in an image is given by the

concatenation of the x and y-coordinates of the

landmarks that define the shape: s = (x1,y1, . . .,
xn,yn)

T. A compact model that allows a linear

variation in the shape is given by

s ¼ s0 þ
Xk

i¼1

sipi; ð1Þ

where si form an orthonormal set of basis shapes
and p is a set of k shape parameters that define

the contribution of each basis in the representation

of s. The basis shapes may be derived from the

hand-annotated examples using principal compo-

nent analysis (PCA), and the shape model is often

referred to as the point distribution model (PDM)

(Cootes et al., 1998). In this case, the base shape,

s0, is the mean shape and the basis shapes are the
k eigenvectors of the covariance matrix corre-

sponding to the largest eigenvalues.

To ensure that the model generates legal shapes,

in the sense of the training examples, the parame-

ters are constrained to lie within some limit, typi-

cally ±2 standard deviations, from the mean. The

result of varying the first four parameters of a typ-

ical shape model is shown in Fig. 1.
A compact model that allows a linear variation

in the appearance of the face is given by



Fig. 1. Varying the first four parameters of a shape model through ±2 standard deviations from the mean. Typically, 10 parameters are

required to account for 95% of the shape variation. For the model shown here, the first parameter appears to capture the opening and

closing of the mouth and the second the degree of lip rounding. Subsequent modes capture more subtle variations in the mouth shape.
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A ¼ A0 þ
Xl

i¼1

Aiqi; ð2Þ

where Ai form an orthonormal set of basis images

and q is a set of l appearance parameters that de-

fine the contribution of each basis in the represen-

tation of A. The elements of the vector A are the
(RGB) pixel values that are bound by the base

shape, s0. Again, as with the shape, the orthonor-

mal set of basis images can be found using PCA.

In (Cootes et al., 1998), shape variation is first re-

moved from the images on which the model is

trained by warping each example from the hand-

annotated landmarks, s, to the base shape. This

ensures each example has the same number of pix-
els and that a pixel in one example corresponds to

the same feature of the face in all other examples.

An example of an appearance model, the base and

first three basis images, is shown in Fig. 2.

Any example face image can be described by a

set of shape parameters and a set of appearance

parameters, p and q respectively. Applying the

shape parameters to the shape model, Eq. (1), gen-
erates a set of landmarks, s. Applying the appear-

ance parameters to the appearance model, Eq. (2),
Fig. 2. The base and first three basis images of an appearance model. N

Typically, between 15 and 30 parameters are required to account for
generates an appearance image. The final synthes-

ised image of the face is generated by warping the

new appearance image from the base shape to the

landmarks s. Note, we do not project the shape
and appearance parameters into a combined space

(as in (Cootes et al., 1998)) for synthesis as subjec-

tive testing of various forms of appearance models

have shown that the most dynamically realistic

models are comprised of independent shape and

appearance models (Theobald et al., 2003). Also,

although the models shown here are of the whole

face, the synthesiser is primarily concerned only
with the synthesis of the visible articulators.
3. Data capture and preparation

The training data for the talking head consists

of a single talker enunciating approximately 300

sentences (around twelve minutes of speech, in
accordance with similar systems, e.g. (Ezzat

et al., 2002; Huang et al., 2002)). To confine the

variation of the facial features to only the gestures

related directly to speech production, the talker

was instructed to maintain a neutral expression
ote: the basis images have been suitably scaled for visualisation.

95% of the appearance variation.
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(no emotion) throughout the recording. The video

was captured using a head mounted camera to en-

sure the pose of the head remained as constant as

possible and was transferred from DV tape to

computer using an IEEE 1394 compliant capture
card with a frame size of 360 · 288 pixels at a

frame rate of 25fps (i.e. one quarter DV-PAL).

The audio was captured using the on-camera

microphone and digitised at 11025Hz, 16bits/

sample stereo. The capture conditions were con-

trolled such that unwanted sources of variation,

i.e. identity, pose and lighting, were, as far as pos-

sible, minimised. The training video contained
approximately 34000 frames (including both

speech and silence) and each frame was mapped

to the corresponding point in the space spanned

by the shape and appearance model using the gra-

dient descent active appearance model search algo-

rithm (Baker and Matthews, 2001). 1 This uses

gradient descent optimisation to automatically

find the parameters that generate a synthetic
(model-generated) face image that is as close as

possible to the face in the corresponding video

frame—i.e. the error between the original and

synthesised face images is minimised. Given an

initial set of parameters, the algorithm iteratively

solves for updates to the parameters until there

is little or no change between iterations. Since

the face in a video frame forms a point in the
model-space, the movements of the face corre-

sponding to a sentence approximate a trajectory

through the model-space—it is only an approxi-

mation since the trajectory exists only at each

frame. A continuous parametric representation

of this trajectory is obtained using Hermite inter-

polation (Bartels et al., 1987) and is stored in a

synthesis codebook. Hermite interpolation is used
to fit the data rather than natural cubic splines as

the second order smoothness constraints in the

calculation of the natural cubic spline often re-

sults in an over-smoothed fit of the data points.

This is particularly significant when rapid changes

in the trajectory of the parameters (or in the vis-
1 In principle any face tracker that uses shape and appear-

ance models can be used. The choice is arbitrary. The gradient

descent active appearance model was selected as it has proved

to be both fast and reliable.
ible articulators) is required, during the plosives

/b/ and /p/ for example. Using a natural cubic

spline, the acceleration of the articulators would

be required to be smooth.

The HTK speech recogniser was used in forced
alignment mode (Young et al., 1999) to segment

the trajectory by aligning the constituent phoneme

symbols that form the sentences to the audio com-

ponent of the training video. The timing informa-

tion returned by the recogniser is stored in the

synthesis codebook and is later used to index the

trajectory in the model-space such that segments

can be extracted corresponding to individual
phones, or groups of phones.
3.1. Measuring phoneme similarity

It is well known that during speech lip shapes

depend not on only the sound being produced,

but also the surrounding sounds—known as pho-

netic context. The trajectory in the synthesis code-
book is formed from the limited number of

training sentences and so contains only a subset

of all possible contexts in which each phoneme

may appear. A synthesiser must be capable of

synthesising entirely arbitrary utterances, so some

method of selecting contexts from the training

data that are �closest� to a previously unseen con-

text is required. The scheme adopted here is sim-
ilar to that in (Arslan and Talkin, 1998) as it is

automatically learned from the data on which

the synthesiser is trained. There is no manual

specification of the similarity between synthesis

units, as in (Bregler et al., 1997) for example.

The scheme in (Arslan and Talkin, 1998) is ex-

tended here to consider the time variation of the

synthesis parameters, the appearance information
in the face, the degree to which each phoneme is

modified by context and the relative significance

of each model parameter. A similarity matrix is

automatically constructed from the training data,

where each element contains an objective measure

of similarity, in terms of the shape and appear-

ance parameters, between each phoneme pair.

To build the matrix, first all observations of each
phoneme are gathered and the relevant sub-trajec-

tories are extracted from the original trajectory.



Table 1

Some typical phoneme similarity scores

Phoneme Rank 1 Rank 2 Rank 3

m p 0.869 b 0.850 w 0.830

f v 0.808 s 0.621 dΩ 0.619

t d 0.967 II 0.900 z 0.894

tS dΩ 0.898 S 0.852 s 0.767

The column Rank 1 is the most similar phoneme with its sim-

ilarity score, Rank 2 the second most similar and so on. Gen-

erally the most similar phonemes belong to the same class of

sound, for example the bilabials /b/, /m/ and /p/ are all con-

sidered similar, as are the labio-dental fricatives, /f/ and /v/, and

so on.
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These are then sampled at five equi-distant points

over the duration of each observation. 2 Next, the

mean representation of each phoneme is com-

puted and the distances found on a pair-wise basis

using,

Dij ¼
Xkþl

m¼1

X5

n¼1

½ðviP i
mn � vjP j

mnÞwm�2; ð3Þ

where the first summation is over the number of
parameters in the shape and appearance model

and the second over the five equally space samples.

The value Dij is the distance between phonemes i

and j and Pi is the mean representation of the ith

phoneme and Pj the jth phoneme. The weights v

take into account the degree to which the context

modifies the lip shape for a phoneme, i.e. how reli-

able the mean representation is. For each pho-
neme, the weight is proportional to the variance

of the area between the mean and observed sub-

trajectories, so those that are more modified by

context are penalised more heavily. This ensures

that two phonemes with the same mean but un-

equal variances are not considered identical. In

practise, phonemes that belong to the same class

of sound (e.g. bilabial) have approximately equal
means and equal variances and this scaling effec-

tively amplifies the similarity value. The value wm
is the significance of the mth parameter in the

model and is proportional to the variance captured

by the corresponding principal component, i.e.

how significant the parameter is in the representa-

tion of the data. Note,
ffiffiffiffiffiffi
Dij

p
is the Frobenius norm

of the weighted difference between the phoneme
representations and this formulation approximates

computing the area between the multi-dimensional

curves representing each phoneme in the model-

space (computing the area analytically results in

similar distance scores).

Given the matrix of distance values, the similar-

ities are computed using
Sij ¼ e�cDij : ð4Þ
2 The choice of sampling at five equi-distant points follows

(Arslan and Talkin, 1998). The effect of increasing the number

of samples was tested in (Theobald, 2003) and found to have no

significant change in the performance.
The range of similarity is 0 (maximally dissimi-

lar), to 1 (identical) and the variable c controls the

spread of similarity values over the range (0,1).

This similarity matrix is stored with the parameter
trajectory and phoneme timing information in the

synthesis codebook. Typical similarity values are

given in Table 1.
4. Synthesis

The visual synthesiser is driven by a sequence of
phoneme symbols that form the desired utterance

and the duration of each. The input can be either

an auditory utterance or a text stream. For an

auditory input, an automatic speech recogniser

(ASR) converts the utterance to the constituent

phoneme symbols and durations, whereas for a

textual input, a text-to-speech (TTS) synthesiser,

e.g. (Black and Taylor, 1997), converts the input.
For each phoneme to be synthesised, the original

training data is searched for the N examples of

that phoneme in the most similar contexts found

in the codebook using

dj ¼
XC

i¼1

Slij

iþ 1
þ
XC

i¼1

Srij

iþ 1
; ð5Þ

where dj is the similarity between the desired con-

text and the jth context in the codebook, C is the

context width, Slij is the similarity between the

ith left phoneme in the jth codebook context and
the corresponding phoneme in the desired context,

Srij is the similarity between the ith right phoneme

of the jth codebook context and the corresponding
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Fig. 3. Upper plot shows the first shape model parameter trajectory from an original sequence (solid curve), an unsmoothed

synthesised sequence (dotted curve) and a smoothed synthesised sequence (dashed curve). The lower plot shows the same information,

but for the first appearance parameter.

3 The cubic smoothing spline is an approximating technique.

Interpolating techniques, e.g. Hermite, as used previously,

cannot be used as sampling the interpolating functional results

in exactly the unsmoothed data.
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phoneme in the desired context. This similarity

score is attractive since it allows the context width

to be easily varied by simply changing an input

parameter to the synthesiser (C), the structure of
the synthesiser itself requires no modification. In

the results presented here a context width of

C = 1 is used, hence, the synthesis unit is the tri-

phone. The effect of varying the context width

has been tested using both objective and subjective

testing, the results of which can be found in (The-

obald, 2003). However, it was found that increas-

ing the context width did not significantly
improve the synthesiser output. Given the N clos-

est matches in the codebook for each synthesis

phoneme, the corresponding sub-trajectories from

the original parameter trajectory are extracted and

temporally warped to the desired duration. A

weighted average of these normalised trajectories is

computed to give a new trajectory in the model-

space, where the weights are proportional to the
similarity of the codebook context to the synthesis

context, ensuring the most similar contexts receive

more weight. Results of subjective tests to deter-

mine the effect of varying N (where N = {1,3,5})
on the naturalness of the synthesiser output are gi-

ven in Section 5.

The new phoneme sub-trajectories in the model-

space are concatenated to form a trajectory for the
new sentence, which is sampled at the original

frame rate. Since no smoothness constraints were

placed on the examples selected from the code-

book, cubic smoothing splines are fitted through

the model parameters to ensure a smooth transi-

tion between synthesis units and the smoothed

parameters are applied to the model to produce

the synthetic image sequence of the talking face. 3

The synthesiser itself outputs a sequence of 2D

landmarks and a sequence of appearance images.

The final synthesised image frames are created by

warping the appearance images to the correspond-

ing landmarks.

Example parameter trajectories are shown in

Fig. 3, where the trajectory for the first parameter



Fig. 4. The top row shows pixel values extracted from selected video frames from an original video sequence not used in training, while

the bottom row shows the corresponding face output by the synthesiser.
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for the shape and appearance models are shown

for an original (unseen) sequence and the synthes-

ised equivalent. While there are systematic differ-
ences between the trajectories, the overall shapes

are generally correct. The difference in bias mani-

fests itself in a difference in articulation strength

between the original and synthesised mouth ges-

tures, as shown in Fig. 4. Formal subjective testing

is required in order to determine the significance of

the differences between these trajectories. Results

of early subjective tests are given in Section 5. In
generating these examples, the data for the original

sequence was not included in the synthesis

codebook.

The synthesis method described here for creat-

ing near-videorealistic synthetic visual speech se-

quences has the advantage over traditional

image-based systems in that the manipulation of

the original data is much easier in terms of the
model parameters than the original images. The

resultant sequences are still only 2D image se-

quences of a talking face however. It just happens

that the images are created by the generative mod-

el, rather than having been obtained directly from

a camera. The next section describes some early

subjective tests used to evaluate the naturalness

of the synthesiser output, followed by an extension
to the system that allows a full-bodied 3D talking

person to be created.
5. Evaluation of talking faces

The quality of the output of a synthesiser can be

measured using both subjective and objective tests.

Objective measures of performance are attractive

because they are automatic and repeatable.

Numerical comparisons are made between some
parameterisation of an original utterance and its

synthesised equivalent, with the difference giving

a measure of the distortion in the synthesised out-

put. Objective measures can be used only as a

guide however, since it remains difficult to deter-

mine the overall naturalness of the synthesiser out-

put using only objective methods. Subjective

measures may seem less attractive as they require
a panel of users to make judgements regarding

the performance of the system, however it should

be remembered that it is the human perception

of the performance that is the ultimate benchmark.

Subjective measures of quality include the natural-

ness, acceptability and intelligibility (Benôıt and

Pols, 1992, in Bailly et al., 1992). Intelligibility is

a measure of the information provided by the



Table 2

Result of the per-viewer Wilcoxon signed rank test to determine

the effect of the smoothing spline on the synthesiser output

Viewer N n W p<

1 20 20 0.0 0.001

2 20 20 0.0 0.001

3 20 20 0.0 0.001

4 20 20 38.0 0.01

5 20 16 23.5 0.02

6 20 18 122.0 0.12

7 20 20 67.5 0.17

8 20 20 92.5 0.65
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synthesiser. Acceptability measures how suitable a

system is for a given application. For example, for

a particular application the user interface need not

be videorealistic and a graphics model may suffice.

Naturalness is a general measure of performance
that indicates the smoothness and realism of the

dynamics of the features of the face. The following

sections outline subjective experiments conducted

to determine the naturalness of the synthetic visual

speech output by the synthesiser. Experiments to

determine the acceptability and intelligibility are

on-going and will be presented in a future

publication.

5.1. Testing the effect of parameter smoothing

The synthesiser described above imposes no

smoothness constraints on units selected from the

training corpus. The assumption was made that

discontinuities at the concatenation boundaries

will effectively be removed using the natural cubic
smoothing spline. The aim of this test was to deter-

mine whether this smoothing significantly affects

the naturalness of synthesiser output, i.e. how nat-

ural do the sequences appear if the required dis-

continuities found in natural speech are also

removed? The test used here follows the double

stimulus continuous quality scale (DSCQS) method

outlined in ITU BT.rec 500 (Union, 1974–1978–
1982–1986–1990–1992–1994–1995–1998–1998–

2000). This is a set of tests designed to evaluate the

performance of new video coding techniques

against a reference system. In the DSCQS method,

sequences are presented in pairs to a viewer who is

asked to judge the quality of each. The sequences

are rated on a continuous scale (from 1 to 5), cor-

responding to the levels ‘‘bad’’, ‘‘poor’’, ‘‘fair’’,
‘‘good’’ and ‘‘excellent’’. The scores are usually

collected on paper, where users are asked to strike

through the scale at the point corresponding to the

quality. Here a graphical user interface (GUI) pre-

sents the movies and a slider collects the score

from the user. The GUI approximates a continu-

ous scale by collecting scores in the range 1–50,

i.e. approximating the continuous scale 1–5 to
one decimal place.

The sequences presented in this test were the

original video projected into the model-space and
the same sequence with the parameters smoothed.

This is essentially a video coding problem, where

the unsmoothed sequences represent the reference

system and the smoothed sequences the system un-

der test. Eight subjects, all postgraduate students
and all non-expert in auditory or visual speech

synthesis, took part in this test and all were asked

to watch the sequences and rate the naturalness of

the dynamics of the face. The original auditory sig-

nal from the training video was played with the vi-

sual sequences in order to provide a reference for

the spoken material. In all 20 sentences were pre-

sented in pairs (smoothed and unsmoothed),
where the order of the pair is randomised.

5.1.1. Results

The result of a two-sample Wilcoxon�s signed

rank test (Wakerly et al., 2002) on individual

viewer responses is shown in Table 2, where N is

the total number of observations, n is the number

of observations used (sequence pairs with a differ-
ence in naturalness rating not equal to zero), W is

the Wilcoxon test statistic and p the probability va-

lue. Viewers 1–3 detected a significant reduction in

the naturalness of the smoothed sequences, the

unsmoothed sequences were always rated more

natural than the smoothed. The remaining five

of the eight viewers did not detect a significant

reduction in the naturalness of the smoothed se-
quences (p < 0.01), indeed viewer six preferred

the smoothed sequences overall. Feedback from

the subjects suggested that the smoothing splines

gives the effect of ‘‘lazy’’ speech, i.e. the articula-

tion strength is lower for the smoothed sequences

and movements appear slower.



Table 3

Result of the Kruskal–Wallis analysis for the synthesis condi-

tions; random lip movements, N = {1,3,5} observations

extracted and blended from the synthesis corpus and the

original (smoothed) parameter trajectories in the presentation

of sentences

Sequence type n Median Z

Random 160 6 �18.97

N = 1 160 30 1.20

N = 3 160 33 3.79

N = 5 160 32 2.70

Original 160 37 11.27

H = 408.04 p < 0.001

n is the number of sequences in the test, and Z the Kruskal–

Wallis test statistic. Median is the median naturalness score for

each test condition. Note, as with all non-parametric tests, the

median is used rather than mean (since the median is a non-

parametric quantity).
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5.2. Testing the naturalness of sentence level

synthesis

Recall that during synthesis, the most similar

contexts available in the codebook to the desired
context are found. The original parameter sub-tra-

jectories for those examples extracted from origi-

nal trajectory and temporally normalised to the

desired duration. They are then blended by com-

puting a weighted average, and concatenated to

form the synthesised parameter trajectory. The

purpose of this experiment was to determine the

effect of varying the number of observations ex-
tracted from the synthesis codebook. In order to

determine how well the longer term effects of coar-

ticulation are modelled, sentences were synthesised

and played back to the viewer.

Five test conditions were used, random lip

movements synchronised to the original acoustic

speech signal, a single example (N = 1) extracted

from the corpus for each synthesis phoneme,
N = 3 and N = 5 observations extracted and

blended, and the original (smoothed) parameters.

In all cases the original speech signal was played

back with the synthetic output. The random lip

movements and original parameters were included

to provide an upper and lower bound on the per-

formance of the synthesiser. Note that the original

video frames were not used. Rather, the video was
projected into the model-space. The aim was to en-

sure the viewer makes judgements based on the

dynamics of the synthesised sequences. Original vi-

deo frames and frames synthesised using the model

differ in pictorial quality—camera noise is re-

moved during the averaging process in computing

the PCA. During initial trials using original video,

subjects stated that judgements were made based
on the pictorial quality of the video frames and

not necessarily the naturalness of the synthetic

movements of the mouth.

The test data consisted of 20 sentences drawn at

random from the training corpus and held out

from training the synthesiser; each sentence was

presented five times (once for each test condition)

to eight viewers (the same viewers from the previ-
ous experiment) and played back in a randomised

order. The test is broadly similar to the previous

experiment, but where sequences were presented
in pairs (in Section 5.1), the order of the sequences

in this test is randomised over all 100 sequences.

The viewers were again asked to watch the se-

quences and rate the naturalness of the dynamics

of the face.

5.2.1. Results

The responses were subjected to a Kruskal–

Wallis test (Wakerly et al., 2002) to determine

whether there were significant differences between

the various synthesis methods, the original se-

quences and the random sequences. The result of

the test for all sequence types is shown in Table
3, where n is the number of sequences, Median rep-

resents the median naturalness score (in the range

1–50) and Z is the Krukal–Wallis test statistic

(Wakerly et al., 2002). It is clear that the distribu-

tion of at least one of the sequence types differs

(p < 0.001). The median naturalness score for the

random mouth movements (6) is considerably less

than for the other four sequence types (>30). This
is promising in that the naturalness of the synthes-

iser output is significantly better than random

movements (worst case), and is close to the origi-

nal smoothed sequences (best case). A point to

note from this experiment, the smoothed se-

quences here are judged more natural than the

smoothed sequences in the test described in Sec-

tion 5.1, and as natural as the original unsmoothed
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sequences. This is most likely because in the previ-

ous experiment the smoothed sequences were com-

pared directly to the unsmoothed and the loss of

subtle movements would be less obvious if the se-

quences were compared indirectly.
To test for a significant difference in the natural-

ness of original and synthesised sequences, the

Kruskal–Wallis test was repeated with the random

lip movements removed, shown in Table 4. To

determine if there is any significant change in the

naturalness when varying the top N examples ex-

tracted from the codebook, the test was again re-

peated without the random lip movements and
the original sequences, shown in Table 5.

The result of these tests show that the natural-

ness scores for the synthesiser output are signifi-

cantly lower than the original sequences, but

there is no significant difference in selecting the

top N, for N = {1,3,5} examples, from the code-

book. The difference between the synthesiser out-

put and the original sequences could be
attributed to the fact that the original audio signal

was played back to the viewer with the visual se-

quences. In this case the original audio and visual

information come from the same video sequence.
Table 4

Result of the Kruskal–Wallis analysis for the synthesis condi-

tions; N = {1,3,5} observations extracted and blended from the

synthesis corpus and the original (smoothed) parameter trajec-

tories in the presentation of sentences

Sequence n Median Z

N = 1 160 30 �4.48

N = 3 160 33 �1.23

N = 5 160 32 �2.60

Original 160 37 8.32

H = 73.18 p < 0.001

Table 5

Result of the Kruskal–Wallis analysis for the synthesis condi-

tions; N = {1,3,5} observations extracted and blended from the

synthesis corpus in the presentation of sentences

Sequence n Median Z

N = 1 160 30 �1.92

N = 3 160 33 1.78

N = 5 160 32 0.14

H = 4.60 p < 0.1
If an utterance is spoken more than once and ana-

lysed in terms of the model parameters, there will

undoubtedly be differences between the parameters

due to the natural variability in the speech produc-

tion process. It has been noted (Bailly et al., 2003)
that simply ‘‘stretching’’ parameter trajectories to

align visual gestures to an audio track may not

be sufficient to maintain coherence between the

auditory and visual modalities. It is therefore un-

fair to expect the synthesiser to exactly replicate

the original sequence, and it would be useful to re-

peat this experiment using synthetic audio rather

than the original, or aligning audio from a second
recording to the test video.

Although the difference is not significant, it

could be expected that selecting a single observa-

tion should perform worst because the example ex-

tracted could be an over (or under) articulation of

a mouth shape. Selecting more than one and gen-

erating a new trajectory as a weighted average

should ensure that over and under articulations
are attenuated. The reason selecting more and

more examples does not significantly affect the nat-

uralness is because the new trajectory is a weighted

average of the selected examples, hence as more

and more are selected their influence in the new

trajectory becomes less and less. The new trajec-

tory is always formed from examples of the correct

phoneme, but as more examples are used the sub-
tle differences due to context are averaged out in

the less similar examples.
6. Extending the synthesis to 2.5D

The synthesiser described in Section 4 provides

very realistic 2D speech animation of the human
face (2D in the sense that an image sequence is

generated). The resultant synthetic faces can be

composited back into an original video sequence,

as with other 2D synthesis systems (Bregler et al.,

1997; Ezzat et al., 2002). However, it is desirable

to animate the face of a full-bodied 3D virtual

character, rather than simply re-animating the

mouth in an existing sequence. The character is
then free to move around and interact with a

virtual environment. Here, we adopt a technique

based on scattered data interpolation used in
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(Pighin et al., 1998) for animating facial expres-

sion. The 3D coordinates of a sparse set of points

defined on the face of an individual are recovered

from multiple camera views. These sparse points

are then used to adapt a dense generic 3D mesh
to the individual. Here, we use the same model

used by the face tracker and synthesiser, where

the sparse shape model landmarks are used to

drive the dense 3D mesh and the appearance

images provide a dynamic texture map. These tex-

ture maps are warped to the 3D vertices of the face

mesh rather than the 2D landmarks of the shape

model, providing near-videorealism in three
dimensions. The actual animations produced by

the synthesiser are essentially 2.5D since the shape

model contains no depth variation—the depth

information on the 3D avatar is held constant.

The resultant animations are, however, still very

realistic for moderate rotations of the head as

the depth cues are captured in the subtle changes

in the dynamic texture map.
First, a correspondence must be defined be-

tween the N 2D landmarks in the shape model

and the M� N vertices of the 3D mesh. This is

done manually prior to synthesis and informs the

synthesiser which vertex belongs to which point

in the shape model. Vertices on the 3D mesh

mapped to a point in the shape model are known

as constrained vertices and the displacements for
these vertices are known, they take the coordinates

of the corresponding shape model points. The dis-

placements for the constrained vertices are given

by

ui ¼ pi � p
ð0Þ
i ; ð6Þ

where p(0) is the 3D mesh in the default position,
i.e. adapted to the mean shape in the shape model,

and pi are the new 3D coordinates for the ith
Fig. 5. Example frames from a sequence, where a generic mesh is defo

with the appearance images output by the synthesiser.
constrained vertex. A smooth vector-valued func-

tion that fits the known displacements, f(pi) = ui,
is defined such that the displacements of the

remaining (unconstrained) vertices can be found

using f(pj) = uj.
A radially symmetric basis function is used in

(Pighin et al., 1998), which falls off smoothly with

distance, thus the displacement of unconstrained

vertices are more influenced by the displacement

of constrained vertices lying closer by. The func-

tion f(p) is defined as

f ðpÞ ¼
X

i

ci/ðkp� pikÞ; ð7Þ

where, following (Pighin et al., 1998), the basis

function takes the form /(r) = e�r/64 and the coef-

ficients c are found by multiplying the (x,y,z)

coordinates of ui with the matrix U�1, where

Uik = /(kpi � pkk), with pi the ith constrained ver-
tex and pk the kth constrained vertex.

The original synthesiser training data was cap-

tured using a head mounted camera to minimise

unwanted pose variation from the face model. In

the synthesised sequences, pose information

(translation and rotation) can be applied to the

3D mesh prior to rendering the face, hence the

pose of the face is independent of the synthesis
parameters. The mesh used to drive the model

need not contain only a face, it could form part

of a full virtual character, shown in Fig. 6. In this

instance vertices are tagged prior to synthesis as

belonging to the face of the avatar, or not. Those

not forming the face are ignored, while those

belonging to the face are displaced as described

above. Example frames from an animated se-
quence using a generic mesh model are shown in

Fig. 5 and an example of a full bodied talking ava-

tar is shown in Fig. 6.
rmed according to the 2D shape model landmarks and textured



Fig. 6. Example frames from a sequence, where the face of a complete avatar is animated using a shape and appearance model.

B.J. Theobald et al. / Speech Communication 44 (2004) 127–140 139
7. Future work

Future work will include an investigation of

how expressive speech can be animated using the

model. Currently the synthesiser is trained on

speech without emotional context. One approach

to animating expressive speech would be to include

existing graphics rules, for example Waters� muscle
model (Waters, 1987), and apply the graphics rules

to the 3D mesh after the speech animation has

been generated. A second approach could be to

capture a database of images with emotional

expression in the same session as a speech corpus

is captured. A separate shape and appearance

model could then be trained on this database,

and the leading modes of variation added to the
speech model. One of the major limitations of im-

age-based synthesis is the lack of generalisation—

only the face(s) in the synthesiser corpus may be

animated. Since our animation parameters are off-

sets from the mean shape and appearance, we will

investigate how displacing the mean to a new posi-

tion in the model-space affects the perceptual qual-

ity of the synthesiser output when animating new
faces.
8. Conclusions

In this paper we have presented an alternative

to existing techniques for creating highly realistic

synthetic visual speech. The synthesiser generates
a new trajectory in face-space corresponding to a

novel utterance from example parameter trajecto-

ries in a corpus. The parameters are applied to

the model to create a 2D set of landmarks and

an appearance image. The final synthesised video

frame is generated by warping the appearance im-

age to the 2D landmarks, or by adapting a generic
3D mesh to the landmarks and warping the shape-

normalised image to the new mesh vertices. The

latter allows the face of a complete virtual charac-

ter to be animated with a high degree of realism,

i.e. a ‘‘talking person’’, rather than a ‘‘talking

head’’.

Formal subjective testing of the synthesiser

shows that the naturalness is approaching that of
original sequences coded in terms of the model

parameters. A Turing test reported in (Theobald

et al., 2003) showed that by simply judging the

dynamics of the system, the synthesised sequences

are indistinguishable from model encoded se-

quences. The short-fall in the naturalness in the

tests reported here could be attributed to the fact

the original audio was used in the test rather than
synthetic auditory speech. The tests will be re-

peated with synthetic auditory speech to determine

how real speech influences the perceived natural-

ness. Also, the original sequences could be cap-

tured twice, and one set of sequences used for

synthesis and the other for testing. The auditory

component for the test sequences would come

from the training sequence, but re-synchronised
to the test sequences. Another factor that could

possibly influence the naturalness is the face in

the test sequences is presented as a patch against

a black background, see Fig. 4. Re-compositing

the face into an original video sequence may fur-

ther improve the realism (Ezzat et al., 2002). The

face is then seen in the correct context, i.e. part

of a complete body, and with hair etc.
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