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ABSTRACT 
This paper describes our entry to the GENEA (Generation and Eval-
uation of Non-verbal Behaviour for Embodied Agents) Challenge 
2023. This year’s challenge focuses on generating gestures in a 
dyadic setting – predicting a main-agent’s motion from the speech 
of both the main-agent and an interlocutor. We adapt a Transformer-
XL architecture for this task by adding a cross-attention module 
that integrates the interlocutor’s speech with that of the main-
agent. Our model is conditioned on speech audio (encoded using 
PASE+), text (encoded using FastText) and a speaker identity label, 
and is able to generate smooth and speech appropriate gestures 
for a given identity. We consider the GENEA Challenge user study 
results and present a discussion of our model strengths and where 
improvements can be made. 
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1 INTRODUCTION 
Co-speech gesturing contributes to language production and per-
ception during conversation. Gestures can aid conversation turn-
taking and listener feedback while also providing semantic context 
and may be indicative of emotion and emphasis [4, 9, 16, 22]. Speech-
driven gesture generation has predominantly focused on estimating 
motion for monadic speech input of a main-agent, with no knowl-
edge of interlocutor speech and no concept of interaction. Instead, 
this year’s GENEA challenge focuses on generating gestures in a 
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dyadic setting – predicting a main-agent’s motion from the speech 
of both the main-agent itself and also the speech of the interlocutor. 

We introduce a system to the GENEA Challenge 2023 that uses 
PASE+ [21] speech embeddings in conjunction with FastText [2] 
word embeddings and a speaker identity label as input to an adapted 
Transformer-XL [3] architecture to generate smooth, contextually 
and temporally coherent motion that can adapt to varying lengths 
of historic context. Specifcally, we extend the Transformer-XL 
model to provide cross-attention with the interlocutor’s speech to 
impart knowledge of both speakers into the prediction. 

Video examples and code can be found in the supplement at 
github.com/JonathanPWindle/uea-dh-genea23. 

2 BACKGROUND & PRIOR WORK 
Many speech-to-motion deep learning techniques are built upon 
recurrent models, such as bi-directional Long Short-Term Memory 
models (LSTMs) [5, 7, 23]. Transformer architectures are growing 
traction in favour of LSTM models in sequence-based AI, with 
sequence-based motion prediction models already making use of 
them [1, 10, 15, 24]. Transformer models do not have a concept of 
temporal position but can efectively model temporal information 
often using a sinusoidal position embedding which is added to the 
input. 

Transformers rely on attention mechanisms which inform the 
network which parts of data to focus on [25]. In self-attention, the 
mechanism is applied to the input sequence to fnd which elements 
within the same sequence may relate to each other and which are 
key to focus on. Conversely, cross-attention is computed for one 
input source in relation to a separate input source, calculating which 
elements from one sequence may relate and be important to focus 
on in another sequence. 

To perform sequence-to-sequence generation using a vanilla 
transformer as defned in Vaswani et al. [25] a sequence is processed 
over a sliding window with a one-frame stride. For each window 
of input, one frame of output is generated. This is computationally 
expensive and window size is limited by the longest input sequence 
seen during training. As the sequence length increases, the size of 
the self-attention mechanism also grows exponentially, leading to 
memory and computational limitations. 

The Transformer-XL architecture [3] difers from the traditional 
transformer architecture in two key ways: 1) Attention is calcu-
lated conditioned on the previous context, and 2) the positional 
encoding uses a learned relative embedding. The Transformer-XL 
architecture allows for extended attention beyond a fxed length 
by using segment-level recurrence with state reuse allowing the 
alteration of context length. The Transformer-XL can therefore be 
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trained efciently on small segment lengths while retaining histori-
cal infuence through the state reuse. As the historic context length 
can vary, the Transformer-XL introduces a learned, relative posi-
tional encoding scheme. Due to its improved ability for modelling 
sequences, we adapt the Transformer-XL architecture for dyadic 
gesture generation. 

3 DATA & PREPROCESSING 
Our model makes use of the GENEA challenge data [11] derived 
from the Talking With Hands dataset [12]. This data includes dyadic 
conversations between a main-agent and interlocutor and consists 
of high-quality 30fps mocap data in Biovision Hierarchical (BVH) 
format, with corresponding speech audio and text transcripts. Our 
task is to generate the main-agent motion conditioned on both 
main-agent and interlocutor speech. We process both main-agent 
and interlocutor speech data the same, using all available modalities; 
motion, speech, transcription and speaker identity. 

3.1 Motion 
Euler angles are required for test submission and are a convenient 
representation supported by many available 3D animation pipelines. 
Despite this, Euler angles are discontinuous and difcult for neural 
networks to learn [28]. We convert rotations to the 6D rotation 
representation presented by Zhou et al. [28] for their suitability to 
deep learning tasks. Global skeleton position is also encoded using 
three �,�, � values. All values are standardised by subtracting the 
mean and dividing by the variance computed from the training 
data. 

Each identity in the dataset has a skeleton with diferent bone 
lengths. Additionally, per-frame joint ofsets are also present in the 
data, possibly to account for bone-stretching in the data capture. 
Our analysis of these joint ofset values revealed very low variance, 
and setting them to a pre-defned fxed value for all frames did not 
impact visual performance. We therefore compute one set of bone 
lengths and ofsets per speaker to simplify the training pipeline. We 
randomly select a sample corresponding to each identity and fx the 
bone lengths and ofsets accordingly using the frst data frame. Joint 
positions can then be computed using the joint angles (measured 
or predicted) and pre-defned speaker-specifc bone measurements. 

3.2 Speech 
3.2.1 Audio. We extract audio features using the problem-agnostic 
speech encoder (PASE+) [21]. PASE+ is a feature embedding learned 
using a multi-task learning approach to solve 12 regression tasks 
aimed at encoding important speech characteristics. These 12 tasks 
include estimating MFCCs, FBANKs and other speech-related in-
formation including prosody and speech content. 

PASE+ requires audio to be sampled at 16KHz, so we used band-
sinc fltering to reduce the audio sample rate from 42KHz to 16KHz. 
We use the released, pre-trained PASE+ model to extract audio 
feature embeddings of size 768 that represents a 33ms window of 
audio to align with the 30 fps motion. The weights for this model 
are not updated during training. 

3.2.2 Text. We extract features from the text transcriptions using 
the FastText word embedding described by Bojanowski et al. [2] 
using the pre-trained model released by Mikolov et al. [17]. For 

each spoken word, we extract the word embedding and align the 
embedding values to each 33ms window of motion. If no word is 
spoken at a given frame then a vector of zero values is passed. When 
a word is spoken across multiple frames, the vector is repeated for 
the appropriate number of frames. 

4 METHOD 
We adapt the Transformer-XL [3] architecture for speech-driven 
gesture generation. Specifcally, we modify this architecture to use 
both self and cross-attention. The advantage of the Transformer-XL 
architecture is that it allows us to model the longer term relationship 
between speech and gesture for input of any duration. 

Our feature extraction process, shown in Figure 1, is used to 
generate a feature vector X of length � for both the main-agent 
and interlocutor. These features are then passed to our model as 
shown in our overview Figure 2 where they are processed using a 
number os Self-Attention Blocks and Cross-Attention Blocks. 

FastText

"Hello"

PASE+ Speaker
Embedding

Speaker Label

Linear

Figure 1: Outline of our data processing pipeline. Our process 
takes as input, � frames starting at frame � of speech audio, 
text transcript and a speaker identity label to generate a 
feature vector X. We use pre-trained models for the audio 
and text inputs. Red box defnes frozen weights. 

4.1 Feature Extraction 
We segment the input into non-overlapping segments of length � 
frames. For each segment, an input feature vector X is generated 
and used to predict Y, a sequence of poses of length � . Our model 
is called for each � -frame feature vector X. In a speech sequence 
of length � , it is therefore called ⌈ � ⌉ times.� 

For each segment, we extract audio (PASE+) features �� :� +� , and 
text (FastText) features �� :� +� as described in Section 3.2, where � 
represents the start frame of a window � . For each utterance, there 
is also a speaker label provided. This is a unique ID which we pass 
to a learned embedding layer. The embedding layer acts as a lookup 
table for learned feature embeddings that are representative of each 
speaker style. The trainable weights ensure that two speakers with 
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Figure 2: Outline of our prediction model which takes as input, � motion frames worth of encoded conditioning information 
starting at time � and predicts � frames of body motion. We show a self-attention block and cross-attention block, where we 
extract �, �,� vectors using main-agent or interlocutor speech according to the attention type conditioned on previous � 
number of hidden states M. These vectors are passed to the Transformer-XL attention block to calculate attention before being 
fed into a feed-forward block. A fnal linear layer predicts � poses ŷt:t+w. 
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similar gesture styles are close in the latent embedding space, and 
conversely, those with diferent gesturing styles are far apart. 

Each modality is extracted and concatenated into a single feature 
vector X as shown in Figure 1. Feature vectors for both the main-
agent and the interlocutor are extracted in the same way using the 
same learned weights. This is because a speaker may appear as the 
main-agent in some sequences and the interlocutor in others. 

4.2 Self-Attention 
As shown in Figure 2, we process the features from the main-
agent using a self-attention block. The attention score is defned in 
Vaswani et al. [25] as: 

��� 
Atention(�, �,� ) = sofmax( √ )� 

�� 

Where Query � , Key � , and Value � are all vectors and queries 
and keys are of dimension �� , and values of dimension �� . These 
vectors are often linear projections of an input vector into their 
respective dimensions � . 

When calculating attention scores in the Transformer-XL model, 
historic context is included using segment-level recurrence with 
state reuse. This is achieved by caching previous hidden state se-
quences which can be used when processing future segments. When 
no historic context is present at the start of the speech sequence, 
our Transformer-XL extracts �, � and � vectors from the main-
agent inputs alone. The historic context from processed segments 
M of length � is cached as each segment is processed. �, � and � 
vectors are then extracted from the subsequent inputs, conditioned 
on previous context. This process is completed using a Linear QKV 
Net shown in Figure 2 which is a single linear layer. 

Transformer models do not have inherent knowledge of posi-
tional order. To ensure temporal coherency, a positional encoding 
is often added to the input vectors to inject some position context 
to the model. As the Transformer-XL architecture can have varying 
lengths of historic context and is not constrained to a maximum 
length, a learned relative position encoding � is instead utilised. 
The learned relative encoding is from a single linear layer and takes 
a sinusoidal position embedding for the full length of context, that 
is the sum of both memory length available and the query length. 
Rather than injecting the temporal information to the input before 
calculating � , � and � , which is the approach used in Vaswani 
et al. [25], the Transformer-XL inputs this information after these 
vectors have been extracted at the time of calculating the attention 
score. 

Using � , � and � in conjunction with the relative position en-
coding � , we use the Transformer-XL attention block to calculate 
attention vectors. As Figure 2 shows, these attention vectors are 
then passed to a Feed Forward Block which comprises of two Lin-
ear layers, with a ReLU activation on the frst output and dropout 
applied to both. 

Each self-attention block has multiple attention heads, each aim-
ing to extract diferent attention features and a self-attention block 
is repeated �self times, with each layer feeding its output to the next. 
Memory values M are persisted on a per-layer basis and therefore 
hidden states are specifc to each self-attention block. The length 
of this memory � can be altered during training and evaluation. 

4.3 Cross-Attention 
While it is reasonable to assume the main-agent speech is driving 
the majority of the gestures, the interlocutor can also infuence 
the motion of the agent indicating turn taking and backchannel 
communication. For example, the main-agent might nod to show 
agreement or understanding when the interlocutor is speaking. 
Therefore we aim to derive the main source of information driving 
the motion from the main-agent’s speech, but also include the inter-
locutor’s speech. We adapt the Transformer-XL to not only compute 
self-attention over the main-agent inputs, but to also utilise cross-
attention from the interlocutor while maintaining segment-level 
recurrence and relative position encoding. This cross-attention 
block is shown in Figure 2. 

Cross-attention is an attention mechanism where the Query � 
is extracted from the input source and the Key � and Value � are 
extracted from an external input element. Our cross-attention block 
uses a similar approach as the self-attention block defned in Section 
4.2, but instead has two separate networks to process the inputs; one 
to extract � from the main-agent self-attention encoding and one to 
extract � and � derived from the interlocutor speech. For each layer 
of cross-attention blocks, the input to the � net is a skip connection 
from the output of the self-attention encoder and therefore remains 
the same input for all cross-attention blocks. The input to the �� net 
in the frst iteration is the interlocutor feature vectors (described in 
Section 4.1), and the output from a cross-attention block thereafter. 

The output from the cross-attention block is then passed to a 
single linear layer which predicts Y, the standardised 6D rotations 
of each joint and the global position of the skeleton. 

4.4 Training Procedure 
For each segment of speech of length � , we predict the pose rep-
resented by a vector of joint rotations Ŷ of length � . In motion 
synthesis it is common to include both geometric and temporal 
constraints in the loss function to ensure that the model gener-
ates output that is both geometrically and dynamically plausible 
[6, 24, 26]. Our loss function �� comprises multiple terms including 
a �1 loss on the rotations (�� ), positions (�� ), velocity (�� ), acceler-
ation (��) and kinetic energy (��2 ) of each joint. If we take yr and 
ŷr to be natural mocap and predicted 6D rotations respectively; yp
and ŷp to to be positions in world space computed using forward 
kinematics given the predicted joint angles and the pre-defned 
speaker-specifc bone lengths, we use the following loss function: 

�� = �1 (yr, ŷr) 
�� = �1 (yp, ŷp) 
�� = �1 (� ′ (yp), � ′ (ŷp)) 
��2 = �1 (� ′ (yp)2 , � ′ (ŷp)2) 

(1) 

�� = �1 (� ′′ (yp), � ′′ (ŷp)) 
�� = �� �� + ���� + ���� + �� �� + ��2 ��2 

Where � ′ and � ′′ are the frst and second derivatives respectively. 
Each term has a � weighting to control the importance of each term 
in the loss. 

Table 1 summarises the parameters used, optimised using a ran-
dom grid search parameter sweep. These settings were chosen using 
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a combination of low validation loss values and quality of the pre-
dicted validation sequences as observed by our team. We train our 
model for 1770 epochs using the AdamW [14] optimiser and found 
that a segment length � of 90 frames and memory length � of 180 
frames was optimal. The Feed Forward Blocks used in both self and 
cross-attention layers are comprised using the same topology and 
size. 

Hyperparameter Value 
TransformerXL Head Dimension 

Number Heads 
32 
32 

Self-Attention Layers (�self ) 
Cross-Attention Layers (�cross) 

4 
2 

Feed Forward Block Dropout 0.2 
Hidden Size 4096 

Embeddings Feature Embedding 1024 
Speaker Embedding 8 

Training Batch Size 32 
Learning Rate 0.00001 
�� 
�� 
�� , �� 
��2 

1 
0.01 
0.5 
0.2 

Context Segment Length (� ) 90 frames 
Memory Length (�) 180 frames 

Table 1: Training hyperparameters. 

5 RESULTS 
Our approach is evaluated in conjunction with the GENEA Chal-
lenge 2023 [11]. Each challenge participant submitted 70 BVH fles 
for main-agent motion generated using the speech of the main-
agent and interlocutor for each interaction. Using these submitted 
BVH fles, motion is rendered on the same character for comparison. 
There are three studies of interest in this challenge; human likeness, 
appropriateness to speech and appropriate to interlocutor. Each 
challenge participant is assigned a unique ID to provide anonymity 
during the evaluation process, our ID which will be used in Figures 
and Tables throughout is SJ. NA denotes natural motion of the 
mocap sequences, BD and BM are baseline systems in a dyadic 
and monadic setting respectively. We give a brief overview of each 
evaluation method, however, we strongly recommend also reading 
the main challenge paper [11] for full details. 

Condi- Human-likeness 
tion Median Mean 

NA 71 ∈ [70, 71] 68.4±1.0 
SG 69 ∈ [67, 70] 65.6±1.4 
SF 65 ∈ [64, 67] 63.6±1.3 

SL 
51.8±1.3 

51 ∈ [50, 51] 50.6±1.3 
SE 50 ∈ [49, 51] 50.9±1.3 
SH 46 ∈ [44, 49] 45.1±1.5 
BD 46 ∈ [43, 47] 45.3±1.4 
SD 45 ∈ [43, 47] 44.7±1.3 
BM 43 ∈ [42, 45] 42.9±1.3 
SI 40 ∈ [39, 43] 41.4±1.4 
SK 37 ∈ [35, 40] 40.2±1.5 
SA 30 ∈ [29, 31] 32.0±1.3 
SB 24 ∈ [23, 27] 27.4±1.3 
SC 9 ∈ [ 9, 9] 11.6±0.9 

SJ 51 ∈ [50, 53] 

Table 2: Summary statistics of user-study ratings from the 
human-likeness study, with confdence intervals at the level 
� = 0.05. Conditions are ordered by decreasing sample median 

rating. Our model results are highlighted in pink . Table and 
caption from [11]. 
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Figure 3: Signifcance of pairwise diferences between condi-
tions in human-likeness study. White means that the condi-
tion listed on the �-axis rated signifcantly above the condi-
tion on the �-axis, black means the opposite (� rated below �), 
and grey means no statistically signifcant diference at the 
level � = 0.05 after Holm-Bonferroni correction. Conditions 
are listed in the same order as in Table 2. Figure and caption 
from [11]. 
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5.1 Human Likeness 
This user-study aims to evaluate how human-like the motion gen-
erated is, independent of the speech. Although each comparison 
system motion corresponds to the same input speech and condi-
tioning, these sequences were muted to ensure ratings can only 
depend on the motion seen in the videos. 8 systems were compared 
at any one time and participants were asked “Please indicate on a 
sliding scale how human-like the gesture motion appears”. Study 
participants gave their ratings in response to this question on a 
scale from 0 (worst) to 100 (best). 

Summary statistics (median, mean) are shown in Table 2 and 
signifcance comparisons are provided in Figure 3. Our system 
(SJ) was evaluated to be the third highest ranking of submitted 
systems with regards to mean and median human likeness score. 
Figure 3 shows only NA, SG and SF are signifcantly better than 
our system. Our system scores signifcantly higher than 9 other 
systems, including both baseline systems. 

Condi- Pref. Raw response count MAStion matched 2 1 0 −1 −2 Sum 

NA 0.81±0.06 73.6% 755 452 185 217 157 1766 
SG 0.39±0.07 61.8% 531 486 201 330 259 1807 

521 391 401 155 1806SJ 0.27±0.06 58.4% 338
BM 0.20±0.05 56.6% 269 559 390 451 139 1808 
SF 0.20±0.06 55.8% 397 483 261 421 249 1811 
SK 0.18±0.06 55.6% 370 491 283 406 252 1802 
SI 0.16±0.06 55.5% 283 547 342 428 202 1802 
SE 0.16±0.05 54.9% 221 525 489 453 117 1805 
BD 0.14±0.06 54.8% 310 505 357 422 220 1814 
SD 0.14±0.06 55.0% 252 561 350 459 175 1797 
SB 0.13±0.06 55.0% 320 508 339 386 262 1815 
SA 0.11±0.06 53.6% 238 495 438 444 162 1777 
SH 0.09±0.07 52.9% 384 438 258 393 325 1798 
SL 0.05±0.05 51.7% 200 522 432 491 170 1815 
SC −0.02±0.04 49.1% 72 284 1057 314 76 1803 

Table 3: Summary statistics of user-study responses from the 
appropriateness to speech study, with confdence intervals 
for the mean appropriateness score (MAS) at the level � = 0.05. 
“Pref. matched” identifes how often test-takers preferred 
matched motion in terms of appropriateness, ignoring ties. 
Our model results are highlighted in pink . Table and cap-
tion from [11]. 

5.2 Speech Appropriateness 
To measure appropriateness of gestures to speech, participants 
were asked to view two videos and answer “Which character’s 
motion matches the speech better, both in terms of rhythm and 
intonation and in terms of meaning?”. Both video stimuli are from 
the same condition and thus ensure the same motion quality, but 
one matches the speech and the other is mismatched, generated 
from an unrelated speech sequence. Five response options were 
available, namely “Left is clearly better”, “Left is slightly better”, 
“They are equal”, “Right is slightly better”, and “Right is clearly 
better”. Each answer is assigned a value of -2, -1, 0, 1, 2 where a 
negative value is given for a preference to mismatched motion and 
a positive value for a preference to matched motion. 

Table 3 provides summary statistics and win rates, Figure 4 
visualises the response distribution and Figure 5 shows signifcance 
comparisons. Our approach (SJ) ranked second in the submitted 
systems. Figure 5 shows that there are few signifcant diferences 
between pairwise systems. Only SG and the natural mocap (NA) 
rank signifcantly better than our system. Again, our system ranks 
signifcantly better than 9 other conditions including the dyadic 
baseline system. 
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Figure 4: Bar plots visualising the response distribution in 
the appropriateness to speech study. The blue bar (bottom) 
represents responses where subjects preferred the matched 
motion, the light grey bar (middle) represents tied (“They are 
equal”) responses, and the red bar (top) represents responses 
preferring mismatched motion, with the height of each bar 
being proportional to the fraction of responses in each cat-
egory. Lighter colours correspond to slight preference, and 
darker colours to clear preference. On top of each bar is also 
a confdence interval for the mean appropriateness score, 
scaled to ft the current axes. The dotted black line indicates 
chance-level performance. Conditions are ordered by mean 
appropriateness score. Figure and caption from [11]. 

5.3 Interlocutor Appropriateness 
As this year’s challenge includes awareness of the interlocutor 
speech and motion, the appropriateness of the generated main-
agent motion to the interlocutor’s speech is also evaluated. The 
was done using a similar technique used for measuring speech ap-
propriateness but difered in several important aspects. The test data 
contained pairs of interactions, one with matched main-agent and 
interlocutor interactions and another with the same main-agent 
speech, but mismatched interlocutor speech. Preference can be 
quantifed for generated motion with matched over mismatched in-
terlocutor behaviour and we can assess how interlocutor behaviour 
afects the motion. 

Our system ranked 8th in this study but only natural mocap, SA, 
BD and SL are rated signifcantly higher than it. There is no other 
signifcant diference to any other system, except SH where we were 
signifcantly better. We observe from the statistics in Figure 7 that 
our system had the lowest number of negative scores (preference 
for the mismatched dyadic interaction), and a large number of no 
preference scores. 
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Figure 5: Signifcance of pairwise diferences between con-
ditions in the appropriateness to speech evaluation. White 
means that the condition listed on the �-axis rated signif-
cantly above the condition on the �-axis, black means the 
opposite (� rated below �), and grey means no statistically sig-
nifcant diference at the level � = 0.05 after Holm-Bonferroni 
correction. Conditions are listed in the same order as in Table 
3. Figure and caption from [11]. 

Cond- Pref. Raw response count MASition matched 2 1 0 −1 −2 Sum 

NA 0.63±0.08 67.9% 367 272 98 189 88 1014 
SA 0.09±0.06 53.5% 77 243 444 194 55 1013 
BD 0.07±0.06 53.0% 74 274 374 229 59 1010 
SB 0.07±0.08 51.8% 156 262 206 263 119 1006 
SL 0.07±0.06 53.4% 52 267 439 204 47 1009 
SE 0.05±0.07 51.8% 89 305 263 284 73 1014 
SF 0.04±0.06 50.9% 94 208 419 208 76 1005 
SI 0.04±0.08 50.9% 147 269 193 269 129 1007 
SD 0.02±0.07 52.2% 85 307 278 241 106 1017 
BM −0.01±0.06 49.9% 55 212 470 206 63 1006 

157 617 168 39 1012SJ −0.03±0.05 49.1% 31
SC −0.03±0.05 49.1% 34 183 541 190 45 993 
SK −0.06±0.09 47.4% 200 227 111 276 205 1019 
SG −0.09±0.08 46.7% 140 252 163 293 167 1015 
SH −0.21±0.07 44.0% 55 237 308 270 144 1014 

Table 4: Summary statistics of user-study responses from the 
appropriateness to interlocutor study, with confdence inter-
vals for the mean appropriateness score (MAS) at the level � 
= 0.05. “Pref. matched” identifes how often test-takers pre-
ferred matched motion in terms of appropriateness, ignoring 

ties. Our model results are highlighted in pink . Table and 
caption from [11]. 

Figure 6: Signifcance of pairwise diferences between con-
ditions in the appropriateness to interlocutor study. White 
means that the condition listed on the �-axis rated signif-
cantly above the condition on the �-axis, black means the 
opposite (� rated below �), and grey means no statistically sig-
nifcant diference at the level � = 0.05 after Holm-Bonferroni 
correction. Conditions are listed in the same order as in Fig-
ure 4. Figure and caption from [11]. 
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Figure 7: Bar plots visualising the response distribution in the 
appropriateness to interlocutor study. The blue bar (bottom) 
represents responses where subjects preferred the matched 
motion, the light grey bar (middle) represents tied (“They are 
equal”) responses, and the red bar (top) represents responses 
preferring mismatched motion, with the height of each bar 
being proportional to the fraction of responses in each cat-
egory. Lighter colours correspond to slight preference, and 
darker colours to clear preference. On top of each bar is also 
a confdence interval for the mean appropriateness score, 
scaled to ft the current axes. The dotted black line indicates 
chance-level performance. Conditions are ordered by mean 
appropriateness score. Figure and caption from [11]. 
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5.4 Observations 
We observe that the animation generated from our model is smooth 
and temporally coherent without jitter or sudden shifts in motion 
while maintaining gesture beats in time with speech. Our model 
appears to reliably and realistically animate beat gestures. Beat 
gestures are simple and fast movements of the hands and have 
a close relationship to prosodic activity such as acoustic energy 
and pitch [20, 27]. The PASE+ model used for encoding audio in 
our system was trained to estimate prosodic features as one of its 
downstream tasks, making the derived audio features particularly 
suitable for animating beat gestures. 

We do not expect gestures to occur during every audio beat, 
but when they happen they should synchronise with the speech. 
Using the method of motion and audio beat extraction used in the 
beat align score calculation presented in Liu et al. [13], we can 
visualise the onset of audio beats and motion gesture over time. 
Figure 8 shows two well timed gestures for a 3 second audio clip. 
The utterance of “programs” shows a beat gesture where during 
the syllable utterance “pro”, the speaker moves their right hand 
from right to left and as the stressed syllable “grams” is spoken, 
the hand begins to change velocity and move from left to right. We 
also see an example of muted speech where our model continues to 
perform well. As there is no speech, there is little to inform gesture, 
we fnd the right arm drops to the side, and left arm lowers slightly. 
However, as the speech begins again, both arms raise in time with 
the speech. 

A diference between natural mocap motion and our generated 
animation is that the latter does not exhibit sporadic, non-speech 
related motion such as self-adaptor traits. Self-adaptors are move-
ments that typically include self-touch, such as scratching of the 
neck, clasping at an elbow, adjusting hair or interlocking fngers 
[18]. Despite the indirect relationship between these behaviours 
and speech, these traits are linked to perceived emotional stability 
of an agent [18] and may infuence perceived human-likeness. 

6 DISCUSSION 
Our approach performed well with regards to human-likeness and 
appropriateness to speech. Our model performed comparably to 
10 of the other systems with regards to appropriateness to the in-
terlocutor’s speech, but clearly it can be improved in this area. We 
observe in Figure 7 and Table 4 that, for our system, participants 
preferred the mismatched stimuli least compared to all other sys-
tems (including natural mocap). The majority of responses were 
tied, meaning that they considered the mismatched stimuli to be of 
equal appropriateness as the matched animation. It is unclear where 
this uncertainty stems from and more work is required to evaluate 
this cause. There may be a lack of infuence from the interlocutor 
speech in this model architecture. There are many ways to incorpo-
rate the interlocutor speech in this model, for example including as 
an extra input to the self-attention rather than as cross-attention 
or altering skip connections. These ideas or simply increasing the 
number of cross-attention layers may improve the performance of 
the appropriateness to the interlocutor. 

More experiments are also required to determine the impact 
of including the interlocutor information on human-likeness and 
appropriateness to speech as well as appropriateness to interlocutor. 

P    r    o g    r     a    m    s <mute>   medical

Figure 8: Generated gestures for given audio beats. Using a 
3s audio clip from the test dataset we show the audio spec-
trogram, as well as aligned audio beat onsets and their cor-
responding onset strengths as well as motion gesture onset 
detection of the right wrist using the method of beat detec-
tion defned in Liu et al. [13]. We can see during the syllable 
utterance “pro”, the speaker moves their right hand hand 
from right to left and as the stressed syllable “grams” is spo-
ken, the hand begins to move left to right. When there is 
silence, the arms begin to rest and again gesture in the next 
utterance. 

This may have a positive efect on these two evaluations or may 
limit performance in these areas. 

Although our proposed method is deterministic, i.e. the same 
inputs will always produce the same outputs, it could be possible to 
incorporate this design into a probabilistic model. For example, this 
approach could be adjusted to incorporate probabilistic difusion 
[8, 19] methods. 

7 CONCLUSION 
We have presented our submission to the GENEA Challenge 2023, 
a modifed Transformer-XL based approach that utilises both self-
attention and cross-attention. Our solution generates smooth, tem-
porally coherent animation from the conversational speech of a 
main-agent and interlocutor. Subjective evaluation results support 
that our system performs well in regards to human-likeness and 
appropriateness, ranking third and second respectively when com-
pared to the 14 other systems and baselines and performing signif-
cantly better than 9 in both evaluations. Our approach continues to 
be competitive when evaluating the generated main-agent motion’s 
appropriateness to the interlocutor, where only the natural mocap 
and 3 systems performed signifcantly better. 
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