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A B S T R A C T

Data-driven synthesis of human motion during conversational speech is an active research area with applica-
tions that include character animation, computer gaming and conversational agents. Natural looking motion
is key to both perceived realism and understanding of any synthesised animation. Multi-modal speech and
body-motion data is scarce and limited, so it is common to augment real motion data by mirroring the body
pose to double the number of training samples. This augmentation is based on the assumption that a person’s
gesturing is not affected by handedness and that the reflected pose is plausible. In this study, we explore the
validity of this assumption by evaluating the reflective symmetry of a speaker’s arms during conversational
exchanges. We analyse the left and right arm motion of 36 subjects during dyadic conversation and present
the per-frame symmetry of the arm gestures. To identify temporal offsets caused by the presence of a leading
hand, we compute the time lag between movements of the left and right arms. We perform a nearest neighbour
search to test the validity of any mirrored pose. We also consider information theory to examine the information
gain from mirroring the data. We implement a speech-to-gesture generative model to determine the efficacy
of lateral mirroring techniques for data augmentation. Our findings suggest that both positional symmetry
and left–right motion offsets vary from speaker to speaker. We conclude that data augmentation by mirroring
is valid in certain cases when considering the mirrored pose as a new virtual identity, but that it should be
carefully considered as a generic approach if the gesturing style and handedness of the original speaker is to
be maintained.
1. Introduction

Co-speech gesturing contributes to language production and per-
ception during conversation. Gesturing provides semantic context, and
may be indicative of emotion and emphasis (Kendon, 1994; McNeill,
1985; Studdert-Kennedy, 1994; De Ruiter et al., 2012).

Gesturing in conversational speech serves many purposes includ-
ing contributing to increased understanding, turn taking and listener
feedback. Given the multi-modal nature of conversation, it follows that
there is a co-dependency between speech and gesture.

Data-driven approaches for automatically driving body motion from
speech is an active research area (Alexanderson et al., 2020a,b; Henter
et al., 2020; Korzun et al., 2020; Yoon et al., 2020; Ginosar et al.,
2019). Applications for these conversational agents include character
animation, computer gaming and codec avatars (Bagautdinov et al.,
2021). Such systems require multi-modal data comprised of motion
captured body pose with a corresponding audio signal. These datasets
are typically time-consuming and both financially and computationally
expensive to capture, therefore, availability is scarce. A practised aug-
mentation approach is lateral mirroring (Henter et al., 2020; Alexan-
derson et al., 2020b; Gong et al., 2021). This is to flip the left and right
sided motion with each other.
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While lateral mirroring effectively doubles the amount of training
data, we raise the question of how natural and appropriate this aug-
mented data is. Asymmetry is known to occur in pose from physical
body constraints and gesture style types. We present a study of frame-
by-frame position and temporal characteristics to investigate if this
mirroring produces natural speaker-dependent movement. This study
is not only relevant to gesture generation and data augmentation, it
provides an insight into arm symmetry during conversation, providing
greater understanding for all relevant fields of research such as gesture
recognition and gesture behaviour. Finally we consider the use of this
method of analysis as a means to evaluate performance of data-driven
synthesised motion.

2. Related work

We present a review on works relating to speech gesturing, body
motion datasets, methods for speech-driven body animation, and tech-
niques for data augmentation used by these methods.
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2.1. Arm gesture and symmetry

Neither speech nor gesture alone allows a speaker to communicate
to their full efficiency. Removing either of these modalities leads to
a reduction in semiotic versatility (Wagner et al., 2014) and commu-
nicative understanding (Hostetter, 2011). One reason for this is that
each modality represents certain information better than the other. For
example, hands might better describe shape or direction by providing
visual cues. The gestures that form these cues may or may not be
symmetrical, and this may, in part, depend on the particular shape or
direction being described.

Environmental conditions contribute a great deal to the importance
of each modality during a conversation. A small and enclosed space
may cause a person to be conservative with their gesturing, whereas to
communicate the same speech in an expansive, outside environment, a
person may gesture more actively as they have more space. Proximity
and facing direction of the conversational partner within the environ-
ment will also effect the extent and type of gesturing. If conversation
is taking place while walking alongside their partner, this will prompt
different behaviour to a static face-to-face interaction. Similarly, if the
partner is far away, gestures may be emphasised to account for the
reduction in the received audio volume. It has been found that gesture
activity increases during adverse listening conditions, such as acoustic
noise and non-native speaking conversational partners (Drijvers et al.,
2018).

Objects surrounding or colliding with the speaker introduce physical
constraints that inhibit or otherwise affect gesturing. For instance, a
wall to one side of the speaker will limit their available gesture space,
constrain physical activity and likely increase asymmetry. Similarly, a
speaker’s hand might be occupied with an object such as a glass of
water, which would alter gestural behaviour.

Individuals exhibit gestural idiosyncrasies. Some speakers may com-
monly perform self-adaptor traits such as self-touching or scratching.
Others may have physiological restrictions, making particular gestures
impossible and affecting the realisation of others. In each of these cases,
asymmetry in the positioning of the arms is likely.

The amount of conversational gesturing that takes place during an
interaction can be linked to a speaker’s personality. It has been found
that a speaker’s Big Five personality traits (extroversion, neuroticism,
conscientiousness, agreeableness and openness to experience) are cor-
related with the amount of gesture production (Hostetter, 2011). In
particular, extroversion is positively correlated with representational
gesture production, which might be due to extroverted people having
high amounts of energy in social situations and therefore gesturing
regardless of communicative effect.

McNeill defined a gesture space (McNeill, 2011), stating that the
majority of gestures happen in the central gesture space which en-
compasses the area below the neck and between the shoulders and
elbows. Peripheral gesture space encapsulates gestures performed outside
of the central gesture space and can be thought of as the extremes
of gesturing. They suggest that the peripheral gestures aim to capture
visual attention.

McNeill also defined a classification on the semantic functions of
gesture types (McNeill, 2011). They categorised gestures as either
emblematic, iconic metaphoric, deictic or beat: Emblematic gestures bear
a conventionalised meaning; Iconic gestures resemble a certain physical
aspect of the conveyed information; Metaphoric gesture is an Iconic
gesture resembling abstract content; Deictic gesture point out locations
in space; and Beat gestures are simple and fast movements of the
hands commonly synchronised with prosodic events in speech (Pouw
et al., 2020). However, in practice a gesture may perform many se-
mantic functions, and it has instead been proposed to treat each ges-
ture category as a dimension on which gestures load to differing
degrees (McNeill, 2008).

A speaker’s handedness has been found to impact gesture pro-
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duction, particularly regarding the positioning of the left and right
arms. It has been found that beat-style gestures were more commonly
performed with a speaker’s dominant hand, while representational
gestures in right-handed speakers had a right-handed preference while
left-handed speakers did not have a hand preference (Çatak et al.,
2018). There is an association between gestural handedness and the
emotional dimensions of pleasure and arousal. Kipp and Martin (2009)
found significant correlation between emotion category and handed-
ness of the gesture, where speakers consistently used their left hands to
gesture during a relaxed, positive mood and their right hands to gesture
when in a negative, aggressive mood.

We have reviewed works that analyse gestural symmetry during
conversation, however, these works are limited by the data used. Data
is often observed manually from video (McNeill, 2011) or limited to
a few speakers worth of data (Kipp and Martin, 2009). This reveals a
limitation in current studies that we aim to address.

2.2. Body motion data and limitations

Conversational body motion data is needed for performing analysis
of gestural symmetry, and for training generative speech-to-body an-
imation models. However, the availability of such data is scarce and
issues commonly arise during the data collection process resulting in
data that is noisy, unnatural or lacking in quantity. Ideally, motion data
is recorded using optical motion capture systems that track retrore-
flective markers on the speaker. The 3D position of each marker is
triangulated between multiple cameras. Issues regarding marker jitter,
swapping and occlusion often require motion captured landmarks to
be manually cleaned. Generally, motion capture is both financially and
computationally expensive to collect, but can result in high-quality
performance capture. An abundance of body motion data is available if
we use video as a data source. However, extracting 3D key points from
a single video feed is challenging, often leading to noise and inaccurate
depth estimation. This causes a trade off between data quality and
quantity.

A dataset that was collected for data-driven synthesis of motion is
the Trinity dataset (Ferstl and McDonnell, 2018). It contains 244 min
of speech and motion data that was recorded using 20 Vicon cameras,
and the motion data is high quality and accurate. However, the Trinity
dataset contains only one male speaker producing monologue speech.
Gestural motion and symmetry varies across speakers and therefore it
is difficult to draw conclusions from a single speaker. Since the speech
is monologue, the gesturing that relates to listener understanding and
turn taking is also not captured.

Social interaction is not limited to conversation. Joo et al. (2015)
presented a dataset that contains social interactions during game sce-
narios, together with a description of the Panoptic Studio that was
used for the capture. The capture system is comprised of a large dome
structure containing 480 VGA cameras for video capture, each with
calibrated frame timers and positions. Using the known positions of
the cameras and 2D pose estimation software, 3D poses are accurately
predicted. While this system produces clean motion capture, it is both
financially and computationally expensive. With 480 cameras, the data-
rate is approximately 29.4 Gbps, requiring a large amount of processing
power and storage to manage such quantities of data. While this dataset
provides multiple speakers’ motions, the scenarios recorded are not
natural conversations but instead social interactions during games,
which will affect the types of gestures that are produced.

There is an abundance of video data available that contains conver-
sational interaction. This is exploited by Ginosar et al. who extracted
monologue speech and motion data from videos of talk show hosts, lec-
turers and televangelists (Ginosar et al., 2019). The videos are shot from
a single view and therefore only 2D keypoints were extracted. Further
work estimated 3D keypoints for this dataset (Habibie et al., 2021),
however the result is noisy and includes errors in depth prediction.

The main limitations of existing motion captured data is the number
of identities and lack of natural dyadic conversation. The Talking with
Hands dataset presented by Lee et al. mitigates these limitations and is
selected for our analysis (Lee et al., 2019). This dataset is described in

Section 3.
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2.3. Speech-driven body animation

Embodied conversational agents describe both human-like robots
and animations that aim to employ human-realistic verbal and non-
verbal communicative modalities. Data-driven approaches for automat-
ically driving body motion from speech is an active research area
(Alexanderson et al., 2020a,b; Henter et al., 2020; Korzun et al., 2020;
Yoon et al., 2020; Ginosar et al., 2019). These approaches aim to
estimate a speakers pose, typically represented by a sparse set of
skeleton joints, from their corresponding speech audio signal.

Recent approaches for data-driven motion synthesis typically in-
volve deep learning (Alexanderson et al., 2020a,b; Henter et al., 2020;
Korzun et al., 2020; Yoon et al., 2020; Ginosar et al., 2019). Their
success is highly dependent on the data used to train them. For instance,
small datasets or those lacking diversity can lead to models not general-
ising well or overfitting to training data (Perez and Wang, 2017). Data
quality is also important as a model can only learn to be as good as
the training data, and inaccurate or poorly labelled data will cause the
model to learn incorrect information. To mitigate the limited amount
of available body motion data, it is common to augment the dataset. It
is key to ensure that the quality of the data is not compromised during
augmentation, and the focus of our work is to explore this.

2.4. Data augmentation

Data augmentation are techniques used to increase the amount
of data by adding slightly modified copies of real data or created
synthetic data from existing data. The most common technique for
this is through data warping defined in Perez and Wang (2017) as an
approach to directly augment the input data to the model in data space.
Augmentation approaches vary depending on the data type and the
problem domain.

When working with image data it is common to apply simple trans-
formations on each image. These include flipping, scaling, rotating,
translating, noise injection and colour space transformation (Shorten
and Khoshgoftaar, 2019). While flipping, scaling, rotating and translat-
ing are all possible to apply to a 3D skeleton representation of body
motion data, it is not necessarily appropriate. Scaling the skeleton by
a different amount in each dimension would alter the identity. If we
scale by the same amount, and if joint angles are used to represent the
skeleton pose, this scaling would not provide additional information
as the angles would remain identical. Applying a global rotation to the
skeleton might introduce unnatural positioning (e.g. losing foot contact
with the ground). Translating the skeleton would not effectively aug-
ment the data as the speaker would still move in the same way, but in
a different location. Adding noise to the captured motion would cause
unnatural, jittery motion. Flipping (or laterally mirroring) the skeleton
is the only of these data augmentation approaches that still produces
potentially valid human body motion. It is our goal to determine in
what cases this augmentation is a valid approach.

3. Data and pre-processing

This study performs an analysis on the body motion from the
Talking with Hands dataset (Lee et al., 2019). The dataset consists of
16.2-million frames of motion at 90 Frames Per Second across 50 differ-
ent speakers during dyadic conversation. Unfortunately not all of this
data is currently publicly available and therefore the available subset of
36 speakers has been used. The majority of speakers were only captured
in conversation with one other speaker (shallow speakers), while a
small number had multiple conversational partners (deep speakers).
We removed any non-conversation segments of the data (e.g. T-Pose
sequences) prior to performing the analysis.

The dataset provides a set of 3D skeleton joint keypoints for each
frame. Our study focuses on the arm movements, and considers only the
3D locations of the left and right shoulder, elbow, forearm and wrist.
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Fig. 1. Euclidean distance between mirrored right arm and the left for each speaker.

The skeleton was translated per frame such that the mid-point between
each shoulder joint was at the origin. This simplifies the analysis
and accounts for large translations of arms from motion originating
from the spine such as leaning forwards and backwards. This allows
us to evaluate translations made by motion generated from the arms
independently of the rest of the pose. The coordinate system utilised in
this paper is as follows:

• Y - Height (Up and Down)
• X - Depth (Back and Forth)
• Z - Width (Left and Right)

We also use a consistent colour scheme through all figures to
represent each forearm. Cyan depicts the right forearm and Blue depicts
the left forearm.

4. Mean pose symmetry

We first evaluate the symmetry of the mean poses for each speaker,
aiming to reveal an impression of the per-speaker symmetry across all
of their motion. Using all the frames of motion, the per-speaker mean
pose is calculated. We then project the right arm to the space of the
left arm by laterally mirroring (along the y-axis). To evaluate the arm
symmetry, the Euclidean distance between all joints in the left arm
and projected right arm are calculated. The lower this distance, the
closer the two arms are to each other, which is indicative of a more
symmetrical pose.

We show the range of symmetry in Fig. 1. We observe that a person’s
mean pose is not always symmetrical. Shallow3 is found to have the
most symmetrical mean pose, whereas Deep3 has the most asymmetric
pose according to the Euclidean distance.

From the 36 speakers we select the two with the highest and two
with the lowest Euclidean distance, representing the subjects exhibiting
the least and most arm symmetry in their mean pose. We visualise
the level of symmetry by overlaying a perspective projection of the
mirrored right arm onto the left arm. Fig. 2 shows this projection from
both a frontal and side view for each of the four speakers. There is clear
asymmetry in the mean arm pose of Deep3 and Shallow4 (columns one
and two). The left arm of Deep3 shows itself angled towards the right
side of their body, whereas the right arm is pointing away from their
body, towards the camera. Shallow4 orients their right wrist away from
their body while their left wrist is pointing towards their body. At the
other extreme, Shallow3 and Shallow2 show good symmetry (columns
three and four). In these examples, the mirrored right arm overlaps the
left arm from the shoulder to the elbow with a slight divergence from
the elbow to the wrist.

The largest differences between the arm positions is observed in the
side view, whereby each of the left arms are positioned further forward
than the right arms. While this observation is more prominent on the
two most asymmetric speakers, it holds for each of the speakers in
Fig. 2.
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Fig. 2. A projection of the mean pose for four speakers. In each case, the right arm
(cyan forearm) has been mirrored and overlaid onto the left arm (blue forearm). Top
row: front view. Bottom row: side view. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

5. Spatial symmetry

The mean pose analysis in Section 4 provides an indication of
the symmetry of a speaker’s most frequent (or neutral) arm positions.
However, it does not explain whether the motion of the arms is similar
or symmetrical. In this section we investigate whether the observed
asymmetry is an effect of a speaker’s tendency to gesture more on
one side than the other, and whether the arms occupy symmetrical
gesture spaces. We use 3D keypoints to gather statistics regarding the
arm motion of each speaker, discuss the speakers’ motion ranges and
traits, and define their data-driven gesture spaces.

5.1. Full arm motion range

To reveal whether a similar amount of energy is exerted by the left
and right arms, we measure the deviation from the mean pose. We
independently compute a frame-wise Euclidean distance from each arm
to its respective mean pose. These statistics are calculated over all arm
joints.

Fig. 3 shows the results for the four speakers that were identified
as exhibiting the least and most symmetry in their mean pose in
Section 4. It is evident that the amount of deviation from the mean
pose in the left and right arms is not significantly different if we
consider the poses that fall within the whiskers, which represent those
within 1.5× the interquartile range beyond the first and third quartiles.
However, the outliers do appear somewhat asymmetrical for speakers
Deep3 and Shallow4, each displaying greater divergence from the mean
with the right arm compared to the left. Shallow3 and Shallow2 exhibit
more symmetrical outliers, indicating that a similar amount of space is
encompassed by both arms during these infrequent, larger gestures. The
maximum and minimum values for each speaker follow the same trend,
with larger maximum values recorded for the right arm in the former
two speakers, and similar values for both arms for the latter two.

Fig. 4 shows a frontal perspective projection of each speaker’s arm
pose taken over all of their respective conversations at 1 s intervals.
We observe variability in the gestural symmetry and the amount of
gesturing per speaker. Shallow3 appears the most symmetrical with a
wide range of positions produced by both arms. Despite having a highly
symmetrical mean pose, Shallow2 exhibits a high degree of asymmetry
in the peripheral poses whereby the right arm reaches wider poses
than the left, but the left arm produces higher gestures than the right.
Deep3 and Shallow4 both raise their right hands more frequently than
their left, suggesting increased expressiveness in that dominant hand.
From these plots it is evident that asymmetry is most apparent in the
peripheral gesture space where the extreme gestures are performed.
Although relatively infrequent, these extreme gestures capture visual
attention and are perceptually significant (McNeill, 2011).
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5.2. Gesture spaces

McNeill defines the central gesture space as the area below the neck
and between the shoulders and elbows, and the peripheral gesture space
as any gestures performed outside of the central gesture space (Mc-
Neill, 2011). Given the variability between the spaces occupied by
each speaker’s arm and the frequency in which they extend into their
respective peripheral spaces, we propose a data-driven approach to
defining speaker-specific gesture spaces. We use statistics to define a
speaker’s common gesture space and extreme gesture space. The common
gesture space is the region within a single standard deviation of the
respective speaker’s mean arm pose. The extreme gesture space is the
space outside of a single standard deviation of the mean pose, away
from the body.

Using our definition, we partition the data into two sections. The
extreme partition contains all poses with at least one arm in the extreme
gesture space, and the common partition contains the remaining data.
We again compute the per-speaker distance from the mean pose for
each partition, and the results can be seen in Fig. 5. For the majority
of the speakers, the distances from the mean for gestures within the
common gesture space are similar for both left and right arms (Fig. 5,
bottom row). An exception is the speaker Deep3 in which the range is
larger for the right hand. The greatest differences between the left and
right arms are observed in the extreme gesture space (Fig. 5, top row),
particularly for the asymmetric speakers Deep3 and Shallow4. In each
case, one hand diverges further from the mean than the other.

For Deep3, we observe that the left arm is more active in the
extreme gesture space than the right, and the reverse is true in the
common gesture space. We plot the perspective projection of all poses
corresponding to the extreme and common gesture spaces in Fig. 6 for
each speaker to visualise these differences. The top row reveals that the
right arm of Deep3 does contribute to gesturing in the extreme gesture
space, but the poses of the left arm are wider, taller and further from
the mean pose. In contrast, the bottom row shows more movement
in the right arm than the left in the common gesture space, but not
significantly.

Fig. 6 highlights that the positioning of the arms in common gesture
space appears to be more symmetrical than in extreme space across all
speakers. Each speaker exhibits different types of asymmetry in the ex-
treme gesture space. Shallow4 lowers their left arm and raises the right
and Shallow2 extends their right arm wider than the left. Shallow3
has highly mobile arms but holds symmetry in both spaces reasonably
well, consistent with the findings in Section 5.1. The percentage of
poses within each gesture space as shown in Fig. 6 impacts the effect of
mirroring. Given more symmetry being found in the common gesture
space, if a speaker has a lower use of the extreme gesture space, the
potential negative impact of mirroring is reduced.

5.3. Self-adaptor traits

Self-adaptors are movements that occur simultaneously with speech
gesturing, and that typically include self-touch, such as scratching of
the neck, clasping at an elbow, adjusting hair or interlocking fingers.
These traits tend to be realised asymmetrically.

Fig. 7 shows the poses of speaker Shallow25 who frequently touches
their left hand to their right forearm. The reverse, right hand touching
left forearm, is not present in any of the motion. If laterally mirrored,
this self-adaptor movement would not accurately represent a valid pose
from that speaker. The presence and degree of self-adaptor traits has
been found to significantly impact the perceived level of neuroticism of
a speaker (Neff et al., 2011), and the effect of reversing the handedness
of the behaviour is not well established.
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Fig. 3. Per-frame Euclidean distance from the mean of each arm for four speakers. L = Left arm, R = Right arm.
Fig. 4. A frontal perspective projection of all poses per speaker, taken at one-second intervals.
Fig. 5. Per-frame Euclidean distance from the mean of each arm, split into Extreme Gesture Space (Top) and Common Gesture Space (Bottom). L = Left Arm. R = Right Arm.
6. Symmetry in gesture types

When considering the impact of symmetry, the type of gesture being
performed may be important. We reviewed a number of speech-motion
pairs to determine what impact may occur from the gesture being
mirrored. We cannot generalise from these few examples, but instead
should be useful to consider specific aspects of gesture suitable when
mirrored.

We observe that beat gestures are often performed by a single hand.
Fig. 8 shows a pose plot of a beat gesture and the values of each wrist
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position over time. While the pose plot appears fairly symmetrical with
both arms raised, it is clear that the right arm is moving up and down,
while the left stays fairly static. While we do not know the dominant
hand of this speaker, we observe some trends similar to those of Çatak
et al. (2018) where one hand is performing the gesture.

Çatak et al. (2018) suggest that representational gestures are per-
formed by a dominant hand for right-handed speakers but no dominant
hand was found in left-handed speakers. While we cannot compare
handedness in this work, we do consider that the context of the gesture
can determine the symmetry of the gesture performed. Fig. 9 shows a
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Fig. 6. Frontal projections of all poses from four speakers at one-second intervals, split into Extreme Gesture Space (Top) and Common Gesture Space (Bottom). Percentage in the
corner denotes the percentage of poses belonging to the respective gesture space for the respective speaker.
Fig. 7. Shallow25 poses taken at one-second intervals. This speaker exhibits
self-adaptor movements whereby the left hand frequently touches the right forearm.

metaphoric gesture being performed, mimicking the use of an umbrella.
It is typical for a person to only use a single hand while using an
umbrella and therefore a single hand is used to depict this. Should
this pose be mirrored, it may still make logical sense as a single hand
will be used but the handedness of the speaker may not be maintained.
Fig. 10 is a gesture performed by another speaker, however, they are
referring to moving a heavy object onto a table. Typically moving heavy
objects in the manner outlined in the speech would require two hands
and therefore two hands have been used to depict this. In this instance
there are high degrees of symmetry between each arm movement, both
arms moving and seemingly at the same or similar time.

With regards to directional Deictic gestures, we observed that often
the hand closest to the direction was used. Fig. 11 shows a gesture
referring to each end of a building. ‘‘That end of the building’’ is
referred to using the right arm, pointing towards the same direction
to depict an area far away. ‘‘this end of the building’’ is seemingly the
end in which they are stood and a small movement of the left arm is
used to refer to this. Fig. 11 time plot shows a clear spike as the right
arm moves to the peak directional gesture, the left arm is lowering,
suggesting asymmetry.
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Fig. 8. A speaker performing a beat gesture. (a) shows each pose formed over the
sequence with the sentence being said below. (b) shows the positions of each wrist in
both lateral (left–right) and height (up-down) directions.

We describe some examples of symmetrical and asymmetrical poses
and their associated gesture type. We find that in some cases a mir-
rored, symmetrical pose may well still portray the same meaning. A
good example of this is when a metaphoric action requires the use of
both hands to lift something. However, in the example Deictic gesture
this would not continue to make sense when performed in the same
location.
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Fig. 9. A speaker performing a metaphoric gesture. In this case, the gesture is
asymmetric due to context. (a) shows each pose formed over the sequence with
the sentence being said below. (b) shows the positions of each wrist in both lateral
(left–right) and height (up-down) directions.

7. Mirrored pose validity

For some machine learning approaches, the goal of laterally mir-
roring body pose is to generate further, valid examples of the same
speaker. In these cases, validity only holds if the mirrored poses fall
within the gesture space of the original data belonging to that speaker.
In this section we visualise and quantify mirrored pose validity using
this definition.

We perform a nearest neighbour search of each mirrored pose in
the original motion data per speaker. The distance metric used is the
Euclidean distance which is computed over the joint locations in both
arms. We focus on the poses that fall within the extreme gesture space,
defined as any pose outside of one standard deviation away from the
mean pose (Section 5.2). We first present a visualisation of the nearest
neighbours in Fig. 12. In this plot the top row shows a subset of the
mirrored poses for each speaker, and the bottom row shows the nearest
neighbours from the original motion data. It is evident from this figure
that it is not possible to cover the full range of motion found in the
mirrored poses in the original data. For each speaker there are areas in
world space for which the arm does not reach in the original data.

In the rightmost column of Fig. 12 we observe that, with speaker
Shallow2, for the left arm to reach out as wide as it does in the mirrored
poses, in the original data, the right arm also has to extend. This
suggests that in the original data, it is characteristic for either both
arms to move to a wide position together, or for the right arm to move
out wide independently. It is uncharacteristic for the left arm to reach
out independently from the right arm. For both Deep3 and Shallow4
(leftmost columns), when the mirrored poses are at their most extreme
poses (i.e. the arms elevated to their highest and widest positions), it
is not possible to match these in the original data.
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Fig. 10. A speaker performing a metaphoric gesture. In this case, the gesture is
symmetric due to context. (a) shows each pose formed over the sequence with the
sentence being said below. (b) shows the positions of each wrist in both lateral
(left–right) and height (up-down) directions.

Fig. 13 shows mean distances between the mirrored poses and the
closest match in the original data. Although Deep3 was associated
with the least symmetrical mean pose from the dataset (Section 5),
we observe that, in the extreme gesture space, they produce similar
gestures with both left and right hands.

8. Temporal symmetry

Our analysis so far has considered only frame-wise statistics, which
does not account for differences in the dynamics of each arm. Lateral
mirroring for body data augmentation swaps the positions of the arms
on a frame-by-frame basis, so the dynamics of the respective arms are
inherently swapped. In practice, there may exist an asynchrony, or a
temporal shift, between the motion of the two arms, particularly if the
speaker gestures with a dominant hand. In this section we perform a
cross-correlation analysis to reveal any temporal lag between left and
right hands.

Correlation between the left and right hand positions is computed
over a 401-frame window (≈4.5 s), centred at frame 𝑡. For each win-
dowed frame in the left hand data, 𝑡 = 0,… , 𝑇 , we slide the window
over the right arm data from frames 𝑡 − 200 to 𝑡 + 200 and compute
the correlation coefficient between the segments. A larger window size
was not used since we observed that a lag longer than 2.2 s was more
commonly due to a rhythmic motion than an asynchrony caused by
a leading hand. The cross-correlation analysis is performed for each
motion sequence on a per-speaker basis. We independently run the
analysis on each directional axis and the Euclidean distance to the mean
pose of each hand, and the results can be seen in Fig. 14.

Although Shallow2 has a relatively symmetrical gesture space
(Fig. 4), Fig. 14 clearly shows a dominant hand in the temporal domain.
This indicates that this speaker leads with their right hand with a mean
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Fig. 11. A speaker performing a Deictic gesture. (a) shows each pose formed over the
sequence with the sentence being said below. (b) shows the positions of each wrist in
both lateral (left–right) and height (up-down) directions.

offset of 28 frames (≈0.31 s) when considering the distance from the
mean pose. If we consider the individual axes, we observe that the right
hand leads in all cases, and in the X and Y axes the offset is greater than
0.5 s. This suggests that, although a symmetrical pose is formed, there
is a temporal offset between hands achieving this pose.

It is evident that other speakers’ motions are more symmetrical
and very small temporal offsets were found. Shallow3 in Fig. 14 is an
example where the mean offset does not exceed a mean of 17 frames
(0.19 s) in any axis.

9. Mutual information

In this Section we explore mirroring for data augmentation from
an information theory perspective. Specifically, whilst mirroring effec-
tively doubles the amount of data, how much additional information
does it introduce? We compute the mutual information between the
original data and its mirrored counterpart to reveal the dependence
between the two distributions.

We measure Normalised Mutual Information (NMI) (Strehl and
Ghosh, 2002) on a per-speaker, per-axis basis at the wrist joint. NMI
is computed using the following:

𝑁𝑀𝐼(𝑋, �̃�) =
𝐼(𝑋, �̃�)

√

𝐻(𝑋)𝐻(�̃�)
(1)

where 𝐼(𝑋, �̃�) is the mutual information between the original and
mirrored data, and 𝐻(𝑋) and 𝐻(�̃�) is the entropy of the original and
mirrored data respectively. The entropy is calculated using the nearest
neighbour approach (Kozachenko and Leonenko, 1987).

Normalising the Mutual Information allows for easy comparison
between speakers and axis, producing a value between 0–1. This NMI
value describes the dependence of the two variables. At zero NMI, the
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variables are completely independent, and as the NMI increases to 1, it
indicates a reduction in uncertainty and largely dependent variables.

The NMI for each speaker is shown in Fig. 15. This shows that
the amount of mutual information in the wrists is speaker-dependent.
However, when considering the relative mutual information between
axes, the 𝑌 -axis (movement of the wrist in the vertical axis) consis-
tently has higher values. Therefore, our analysis suggests that more
information will be gained in the movement along the 𝑋-axis (forward-
back) and the 𝑍-axis (left–right) from augmenting the dataset with
mirrored poses. Information symmetry is revealed from NMI. Low
levels of NMI and therefore, low information symmetry indicates the
importance of both wrists to predictive models. This is particularly
important when regarding motion datasets gathered from video. As
occlusion is common, arms are often interpolated or missing from the
data. By removing or including potentially incorrect arm movement
on one side, you are losing important information or introducing large
amounts of uncharacteristic information.

10. Generative modelling

To further support our findings, we train a Long Short-Term Mem-
ory (LSTM) model on different splits of data and use various augmenta-
tion settings to map from speech to body pose. We aim to determine the
impact of including the potentially uncharacteristic mirrored motion
for a speaker and whether including the mirrored speaker as a new
virtual identity improves results.

10.1. Motion representation

Of the 36 speakers released, only 18 have both audio and mo-
tion capture available and therefore we use this subset. Mocap was
down-sampled to 30fps to ensure realistic motion was maintained, but
training time was reduced. A test sequence is randomly held out for
each speaker and the remaining data, 20% is held out for validation
and 80% is used for training. The global position for each speaker is
inconsistent and therefore, the respective mean global root position
is removed from each frame on a per-sequence basis. 3D positions in
world space are the target values which are standardised by subtracting
the mean pose and dividing by the standard deviation computed over
all speakers across all training sequences.

10.2. Audio representation

Mel Spectrograms or Mel Frequency Cepstral Coefficients (MFCCs)
are often used in speech-to-motion pipelines (Habibie et al., 2021;
Alexanderson et al., 2020a; Taylor et al., 2021). We instead use a model
trained using a multi-task learning framework that is comprised of 12
regression tasks. (PASE+) (Ravanelli et al., 2020) features encode an
audio waveform and should implicitly encode MFCCs and other speech-
related information, including prosody and speech content. Speech is
downsampled using a band-sinc filtering method from 44.1 kHz to
16 kHz.

10.3. Generative model

Using an LSTM-based model, we train using a single motion frame’s
worth of audio (33 ms) to predict a frame of motion. To ensure motion
is speaker-specific, we condition the speech using a learned feature
vector that encodes a speaker’s identity. This learned feature vector
should adequately associate the speaker and their gesturing style. With
this learned feature vector, it should allow us to introduce a speaker’s
potentially uncharacteristic mirrored motion to the model, without
affecting the gesturing style of the speaker.

The LSTM model contains 4 bi-directional layers, each with 1024
hidden units and a 40% dropout followed by a ReLU non-linearity layer
and a fully connected layer. The output from the fully connected layer
is the estimated (standardised) body pose at that frame.
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Fig. 12. The frontal 2D projections of mirrored poses that are at least 1 standard deviation away from their mean pose (top) and the closest respective mean poses from the
original data (bottom).
Fig. 13. Euclidean distance between mirrored arm position and the closest pose from the original data for poses in the extreme gesture space.
Fig. 14. Cross correlation analysis between left and right hand position for each directional axis and Euclidean distance from the mean.
10.4. Training procedure

Models are trained using the Adam optimiser with a learning rate of
0.0001 and batch size of 256. Not all sequences contain hand motion,
where this is the case, we compute the loss against all joints in the body
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except the hands. We use 30-frame long sequences to train, with a 25-s
overlap on each window.

We use a multi-term loss function. We minimise the position values
as an 𝐿2 loss on joint positions and also an 𝐿2 loss on joint velocity
and acceleration. Introducing the velocity and acceleration allows the
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Fig. 15. Normalised Mutual Information per-speaker, per-axis measured between
the original and mirrored wrist joints. Lower values represent a higher degree of
independence.

model to produce smoother and more realistic transitions. On observa-
tion of some bone stretching artefacts due to positions not having any
constraint on distance apart, we include an 𝐿1 loss on bone length. The
final loss 𝐿𝑐 is computed as:

𝐿𝑝 = 𝐿2(𝑦, �̂�)

𝐿𝑣 = 𝐿2(𝑓 ′(𝑦), 𝑓 ′(�̂�))

𝐿𝑎 = 𝐿2(𝑓 ′′(𝑦), 𝑓 ′′(�̂�))

𝐿𝑏 = 𝐿1(𝑦𝑙𝑒𝑛𝑔𝑡ℎ𝑠, �̂�𝑙𝑒𝑛𝑔𝑡ℎ𝑠)

𝐿𝑐 = 𝐿𝑝 + 𝐿𝑣 + 𝐿𝑎 + 𝐿𝑏

(2)

where 𝑦 and �̂� is the ground truth and predicted motion, and 𝑦𝑙𝑒𝑛𝑔𝑡ℎ𝑠
and �̂�𝑙𝑒𝑛𝑔𝑡ℎ𝑠 are Euclidean distances between each joint and its parent
in the skeleton hierarchy for the ground truth and predicted motion
respectively. The term 𝐿𝑝 is representative of positional accuracy, 𝐿𝑣
velocity accuracy, 𝐿𝑎 acceleration accuracy, 𝐿𝑏 bone length accuracy
and 𝐿𝑐 is the combined loss. 𝐿1 and 𝐿2 represent Mean Absolute Error
and Mean Squared Error respectively.

10.5. Experimental setup

We train the same model architecture on each of the settings defined
as follows:

All Data. We form a baseline using all available training data with no
augmentation.

Half Data. A random subsample of the training data reduces the
number of samples by approximately 50% We train a model using this
reduced data to enable us to compare the effect of doubling the size of
the training set by augmentation versus adding additional ground truth
data.

Mirrored Same Identity . We augment the Half Data training set by
laterally mirroring the pose at each frame. Mirrored data is assigned the
same identity label as the original speaker. This allows us to determine
the impact of introducing uncharacteristic motion for a specific speaker.

Mirrored Virtual Identity . We augment the Half Data training set by
laterally mirroring the pose at each frame. During training, we assign
a new virtual identity label to the mirrored data. This allows us to
determine if adding motion that could be considered characteristic for
a different speaker aids or hinders performance.

All Data Mirrored Virtual Identity We additionally train our model
on all available training data plus the laterally mirrored augmentation.
As in the Mirrored Virtual Identity setting, the augmented sequences are
assigned new virtual identity labels. This represents our optimal setting.
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10.6. Results

We continue to use motion characteristics to evaluate performance.
These include positional pose plots, distances from the mean pose and
temporal handedness. Our analysis should provide an indication of how
characteristic the predicted motion is and whether the introduction
of motion has had an impact on performance. We follow the same
procedure as in Section 3 and translate per frame so that the midpoint
of the left and right shoulders and centred on the origin.

10.6.1. Using the same identity
We observe two key findings; the mirrored data produced far more

muted and symmetrical motion than desired.
We found the movement generated to be positionally symmetrical

over the whole pose but particularly with arm movements. Fig. 16a
shows each of the arms consistently raising simultaneously when using
mirrored data as the same identity. While using just half of the data and
no mirror augmentation, there are more asymmetrical poses which are
closer to the characteristics performed in the ground truth.

Fig. 16b indicates the amount of time and distance away from the
mean pose. It is a common trend across speakers that the distance
from the mean pose was lower in the mirrored with the same identity
split when compared to motion generated from half of the data and
the ground truth. This is indicative of the muted motion observed,
producing slow and small movements.

Temporal symmetry is notably present when using the same iden-
tity. When the left-hand moves, the right hand also moves at the same
time producing unnatural motion. Fig. 16 shows a strong correlation
between the left and right wrists moving at a temporal lag offset of
±1 frame. When compared to the ground truth, this high temporal
symmetry is very uncharacteristic of the speaker.

10.6.2. Augmenting with a virtual identity
With a detrimental effect of including mirrored data under the same

identity, we examine the effects of including mirrored data under a
virtual identity (Mirrored Virtual Identity). We identified improvements
in generated motion quality varied between speakers, however, we did
not find a negative impact on performance. Mirroring with a virtual
identity was found to be competitive with a model trained with all
of the available data, often improving positioning, adding some more
movement that closely resembles the ground truth and generating
motion from all of the data.

An example of improvement from including lateral mirrored data
is shown in Fig. 17. The distribution of distances from the mean pose
shown in Fig. 17b decreases from half of the data and half mirrored
as a virtual identity. We also note the poses in Fig. 17a appear closer
to the predictions using all of the data and ground truth. By seemingly
lowering the arms more often than the generated motion using half of
the data, this supports the hypothesis that the addition of mirrored data
as a virtual identity can be competitive with a model including all data.

11. Discussion

We discuss our findings on arm symmetry during dyadic conversa-
tion and its impact on lateral mirroring for body motion data augmen-
tation. We present the potential issues that could arise, and when it
would and would not be a suitable data augmentation approach.

If lateral mirroring is used for body data augmentation, caution
should be taken if gesturing style and handedness of the speaker are
to be preserved. From our analysis it is clear that mirroring can result
in both valid poses and dynamics for certain speakers who move with a
high degree of arm symmetry. Statistical analysis can be performed on
a per-speaker basis to ensure that this is the case. However, for these
highly symmetrical speakers, the information gained from mirroring
the arm motion might be minimal. In the majority of cases, the speakers
did not move symmetrically, and the mirrored data would not reflect
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Fig. 16. A comparison for a single speaker’s generated motion showing detrimental impact of including mirrored motion under the same identity. Each row corresponds to a
different data split used. Column (a) contains the orthographic projection of a pose at every second in the sequence. Column (b) shows the distribution of distances from the mean
arm pose. Column (c) shows the cross correlation lags between the onset of left wrist motion given right wrist motion in the Z (left–right) and Y (up-down) shown in brown and
pink respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the true characteristics of a speaker’s gesturing style. While mirroring
could produce a physically valid pose for a speaker, it may not fit with
their motion style or handedness.

From our generative modelling, a naive mirroring implementation
did not predict characteristic or plausible motion and was found to
be detrimental to model performance. We instead suggest the use of
a new virtual identity for the mirrored poses. We found that the amount
of improvement was speaker-dependent. We speculate this may be
due to the non-uniform distribution of data across the speakers. As
the dataset used has shallow and deep speakers, the amount of data
available per speaker varies. Although the models appeared to capture
the speaker identities well, there is a chance that with small amounts of
data for some speakers, the motion characteristics required to describe
85
this speaker’s motion are simply not present in the training data. We
speculate the improvement may be due to an increase in generalised
characteristics common across all speakers. If the aim is to preserve the
gesturing style and handedness of the original speaker, lateral mirroring
should instead be used to increase the number of speakers in a dataset
by treating the mirrored data as its own virtual identity. Care must still
be taken to account for directional cues in the training data speech that
could lead to a multi-modal disparity.

Shallow25 in Fig. 7 is an example of an asymmetrical self-adaptor
trait that is characteristic to that speaker. The left arm touching the
right arm is common in their data, but the right arm does not appear
to touch the left arm in the same manner. If this stylistic motion was
to be maintained, simply mirroring the body pose would not suffice.
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Fig. 17. A comparison for a single speaker’s generated motion showing detrimental impact of including mirrored motion under the same identity. Each row corresponds to a
different data split used. Column (a) contains the orthographic projection of a pose at every second in the sequence. Column (b) shows the distribution of distances from the mean
arm pose. Column (c) shows the cross correlation lags between the onset of left wrist motion given right wrist motion in the Z (left–right) and Y (up-down) shown in brown and
pink respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Mirroring the data has the potential to cancel out temporal offset
characteristics. We have observed that certain speakers gesture with a
leading hand. We found a generative model that has been trained on
both the original and augmented motion data with the same identity
removes any temporal offsets and produces temporally symmetrical
motion. This synthetic motion would not be faithful to the original
speaker.

Given the speaker-dependent nature of the amount of symmetry,
we expect the inclusion of a symmetry statistic to aid in numerous
tasks. We discuss the use of statistics for synthetic motion evaluation
in Section 11.1, however, we also suggest considering the use of
these statistics for identity classification. Motion symmetry could be
important to the classification of speaker identity. We expect that a
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discriminatory model (i.e. ‘‘Does this motion resemble the expected
speaker?’’) could be successful when classifying using symmetry motion
characteristics. More work is required to determine what degree of
success classifying a speaker’s identity using motion symmetry alone
could provide.

The mutual dependence between the mirrored poses and original is
speaker dependent, and we observe that some information is gained
through lateral mirroring. More information may be enticing, how-
ever, this measure does not inform on appropriateness, and the added
information may introduce uncharacteristic motions.

Previous work by Çatak et al. (2018) has considered the impact
of handedness on beat and representational gestures. They found that
beat gestures had a preference for the dominant hand of the speaker,
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whereas representational gestures varied. In left-handed speakers, there
was no preference, but in right-handed speakers, there was a right-
handed preference. This suggests that, although arm positions could
be reflectively similar, the types of gesturing could be varied. When
training a generative body motion model using mirrored motion, there
is a risk that both hands will produce beat gestures in the synthesised
animation, which may reduce realism or even understanding.

We analysed a few gesture types and their relationship to symmetry.
While we cannot generalise from this small analysis, it would be sen-
sible to consider when certain gesture types could be adequately mir-
rored. It is essential that handedness is maintained during directional
or positional gestures, such as pointing to communicate a direction.
If a speaker uses a gesture to signify to the left and the augmented
version points to the right with no adaptation of the corresponding
audio speech, this would lead to a disparity in the multi-modal context.
When building gesture-generation systems, it would be beneficial to
keep the handedness of gestures produced consistent.

Further study is required to determine the impact of modifying posi-
tional and temporal symmetry on realism and understanding. However,
our findings suggest that care should be taken when augmenting data
using lateral mirroring. There is a risk that with this augmented data
the motion could lose speaker-dependent characteristics.

11.1. Evaluating synthetic motion

A significant challenge in data-driven synthesis of embodied agents
is how to evaluate the synthesised body animation. It is common
to evaluate performance of generative models by means of a user
study (Alexanderson et al., 2020a). Assuming the synthesised data is
to represent that of a particular speaker, the analysis from this study
could also be considered as a performance evaluation method.

If the goal is to generate animated body motion that is faithful
to the style of a particular speaker, we would expect the animation
to possess the same positional and temporal characteristics as the
speaker’s ground truth motion. We propose that statistical analyses
based on the work presented in this paper would provide good indi-
cators of these qualities. The per-speaker percentage of time spent in
the extreme gesture space, degree of spatial symmetry and temporal
lag of the animated result compared to the ground truth motion would
be indicative of the similarities in both gesturing style and handedness.

12. Conclusion

We have studied four subjects from the Talking with Hands dataset to
examine the symmetry in arm motion during dyadic conversation. We
found that motion symmetry is highly speaker dependent. We derived
a data-driven approach for defining a per-speaker gesture space, and
found that the arms exhibited more lateral symmetry when in the
common gesture space (closer to the mean pose) than when in the
extreme space (further from the mean). We discovered that some
speakers gesture with a leading hand, and others maintain left–right
temporal alignment. We used information theory to find there is a large
amount of information to be gained from both wrists. We employed a
speech-to-motion model to support our findings.

Using these findings we have determined the efficacy of lateral
mirroring for data augmentation and the considerations that should
be made. If the goal is to maintain a speaker’s gesturing style and
handedness, mirroring for generating further examples of that speaker
can only be used in certain cases, and is not suitable as a generic
data augmentation approach. However, we suggest it is suitable for
increasing the number of speakers in the training set by treating the
mirrored data as a new virtual identity.

Finally, we propose our statistical analysis for evaluating the per-
ormance of speech-driven conversational agents to ensure that speaker
87

haracteristics have been retained in the synthesised motion.
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