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Abstract

Nonverbal visual cues accompany speech to supplement the meaning 
of spoken words, signify emotional state, indicate position in discourse, 
and provide back-channel feedback. This visual information includes 
head movements, facial expressions and body gestures. In this article we 
describe techniques for manipulating both verbal and nonverbal facial 
gestures in video sequences of  people engaged in conversation. We are 
developing a system for use in psychological experiments, where the effects 
of  manipulating individual components of  nonverbal visual behavior 

during live face-to-face conversation can be studied. In particular, the techniques we describe 
operate in real-time at video frame-rate and the manipulation can be applied so both participants 
in a conversation are kept blind to the experimental conditions.

1 Mapping and manipulating facial expression
Audiovisual conversation is information rich, comprised of both the linguistic message 
content and non-linguistic information. This non-linguistic information might include 
facial expressions to convey emotional state, head nods to indicate emphatic stress, 
and posture and eyegaze to signal turn-taking in discourse. There is increasing interest 
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in understanding the relationship between verbal and nonverbal conversational cues. 
In large part, this interest comes from the entertainment industry, which requires 
life-like animation of embodied characters. If interactive dialogue between animated 
characters is to be believable, it must seem realistic and lifelike.

In psychology and speech perception, the ability to generate experimental stimuli 
using computer-generated characters is attractive as individual aspects of verbal and 
nonverbal cues can be manipulated to arbitrary precision and in complete isolation 
from each other (Massaro, 1998). In this article, we describe the development of a 
system for automatically capturing, encoding, and manipulating facial expressions 
and global head movements, and transferring this information from video sequences 
of one person to video sequences of another. In particular, we describe techniques 
that allow these manipulations to be accomplished in real-time at video frame-rate 
during face-to-face conversations and with both participants in the conversation being 
kept blind to the processing and manipulation of the visual cues accompanying the 
speech. This system is being developed to provide experimenters with the means for 
controlled investigation to better understand the mechanisms of communication and 
social interaction.

2 Background and related work
Computer-generated models of faces are useful in studying speech perception because 
the experimenter has precise control over the stimuli. For example, the use of a model 
allows the amplitudes of expressive face movements to be exaggerated or attenuated. 
Likewise, the timing of facial expressions can be manipulated to create arbitrary 
durations. Many of these effects would be impossible even for highly accomplished 
actors. An effective face model can make them possible.

In some ways, the freedom of manipulation provided by face models presents a 
problem for researchers; models can extrapolate beyond what is plausible or accept-
able. For experimental validity, it is important that the stimuli presented to the viewer 
be acceptably realistic. Constraining the appearance of generated facial expressions 
is a nontrivial challenge. The changes in the appearance of a face that we interpret 
as a facial expression are the product of the complex interaction of neuromuscular 
signals, anatomical structures (including bone, muscle, subcutaneous fat, and skin), 
and light (Terzopoulos & Waters, 1993). The difficulty of ensuring that only plausible 
facial expressions are generated is compounded by the fact that people are expert at 
detecting and recognizing facial expressions and are acutely sensitive to even minute 
discrepancies from normal behavior. As the realism of computer-generated models 
increases, the viewer generally becomes more reactive to subtle errors in dynamic 
sequences – errors are more readily detected and the face may appear “zombie-like.” 
This occurrence often is referred to as the Uncanny Valley effect (Mori, 1970).

Generally, the most pleasing, natural, and lifelike facial animation is achieved 
using performance-driven techniques. To implement this approach, feature points are 
located on the face of an actor and the displacement of these feature points over time 
is used either to update the vertex locations of a polygonal model (Guenter, Grimm, 
Wood, Malvar, & Pighin, 1998; Noh & Neumann, 2001; Williams, 1990), or are mapped 
to an underlying muscle-based model (Choe, Lee, & Ko, 2001). Performance-driven 
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facial animation enables subtle facial movements to be captured and transferred to 
the animated face model, but there are several inherent limitations that make this 
approach unsuitable in many applications. Extensive time is required to setup the 
capture environment. The motion capture markers (e.g., LEDs or reflective tape or 
ink) must be applied to the actor, and they may inhibit ease or naturalness of move-
ment. Finally, consistent placement of these markers must be maintained between 
capture sessions. 

An alternative is image-based animation, in which changes in the position of the 
facial features observed in images or video sequences of one person are used to warp 
images of another person (Chuang & Bregler, 2002; Chang & Ezzat, 2005; Liu, Shan, 
& Zhang, 2001; Zhang, Liu, Quo, Terzopoulos, & Shum, 2006). In this way, there is 
no longer need for motion capture, which considerably reduces setup time. On the 
down side, the range of convincing facial expressions that can be transferred is limited 
to those that actually occurred. It also is difficult to manipulate facial expressions, 
such as exaggerate their intensity or qualitative appearance, as the face is represented 
only as raw pixel values. There is no underlying parametric model available to provide 
quantitative guidance in constructing realistic image manipulation.

A hybrid approach based on Blanz and Vetter’s (1999) three-dimensional 
morphable model (3DMM) transfers facial expressions from images of one person’s 
face to images of another person. This expression transfer is achieved by copying to 
the new face the changes in facial geometry and facial appearance that result from 
displaying a facial expression (Blanz, Basso, Poggio, & Vetter, 2003). 3DMMs have the 
advantage of a parameterized face model that provides control over the deformation of 
the facial geometry, and an image-based texture-map that provides near-photorealistic 
rendering of the facial appearance. 3DMMs are capable of producing highly convincing 
results, but there are several practical limitations that restrict their use. Firstly, this 
approach requires a collection of 3D laser range scan images to build the face model. 
Secondly, changes in face shape and appearance that result from movements of the 
facial features as measured in images of one person are copied directly to images of 
another person. This makes it difficult to model and apply person-specific charac-
teristics of facial expressions. Thirdly, because the inside of the mouth is difficult 
to model, the same generic inner mouth must be used for all subjects. And fourthly, 
the algorithms are computationally expensive, which currently rules out real-time 
applications. Approaches that address these limitations are needed.

The lack of facial expression mapping in the system proposed by Blanz et al. (2003) 
was addressed recently in Vlasic, Brand, Pfister, and Popovic (2005) using multilinear 
face models to represent changes in images that are due to identity, age, and facial 
expression. The learned multilinear model can be used to predict the appearance of 
common facial expressions in images of new, unseen faces. However, to construct the 
multilinear model, a 3D laser range scanner is required to capture facial images of 
a number of people displaying the same prespecified facial expressions (e.g., smile, 
frown, surprise, and so on). While this approach remains computationally expensive, 
it can be approximated efficiently in 2D (Macedo, Brazil, & Velho, 2006) using Active 
Appearance Models (AAMs) (Cootes, Edwards, & Taylor, 2001), but this approxima-
tion still requires the used of a common set of posed facial expressions from which 
the multilinear model is learned.
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We have developed an AAM-based system that captures, manipulates, and 
transfers facial expressions, visual speech gestures, and changes in head pose from 
video sequences, all in real-time at video frame-rates. Our approach requires no 
marker-based tracking, offline processing, or high-level semantic descriptors. The full 
face, including the eyes and inside of the mouth, can also be transferred. This makes 
it possible for this approach to be used for analyzing and manipulating real-time 
conversation in an interactive two-way videoconference experimental paradigm.

3 Linear deformable face models
The key to our approach is a linear deformable model that can both analyze and 
synthesize images of faces. The idea of representing an ensemble of images of faces 
as a compact statistical model was first proposed by Sirovich and Kirby (1987). They 
noted that humans store and recognize a large number of faces almost instantaneously, 
which suggests the information required to encode faces may be represented in only 
a few tens of parameters (Kirby & Sirovich, 1990). They proposed a compact linear 
face model of the form,

 
(1)

where F is an instance of a face, F0 is a reference face, Fi are basis faces that characterize 
the allowed deformation from the reference face, and each pi defines the contribution 
of the corresponding basis face in representing F. Thus, faces are not coded directly, 
but rather indirectly as displacements from the reference.

Turk and Pentland (1991) developed the idea proposed by Sirovich and Kirby 
(1987) into a system for recognizing faces in images. Thus, F is a (vectorized) face 
image, F0 is the mean (vectorized) image computed from a training set of face images, 
and each Fi is referred to as an Eigenface. The model is usually obtained by applying 
principal components analysis (PCA) to a set of training images containing faces. 
Linear models have since become one of the most popular techniques for modeling 
flexible objects, such as faces, and they have a wide range of applications, which include: 
low-bandwidth transmission of face images (Koufakis & Buxton, 1999; Mogghaddam 
& Pentland, 1995; Theobald, Kruse, Bangham, & Cawley, 2003), face recognition and 
verification (Blanz & Vetter, 2003; Edwards, Cootes, & Taylor, 1998; Shackleton & 
Welsh, 1991; Yang, Zhang, Frangi, & Yang, 2004), automated lip-reading (Luettin, 
Thacker, & Beet, 1996; Matthews, Cootes, Bangham, Harvey, & Cox, 2002), and face 
synthesis (Cosker, Marshall, Rosin, Paddock, & Rushton, 2004; Fagel, Bailly, & Elisei, 
2007; Govokhina, Bailly, Bretin, & Bagshaw, 2006; Hong, Wen, Huang, & Shum, 2002; 
Theobald, Bangham, Matthews, & Cawley, 2004; Theobald & Wilkinson, 2007).

3.1  
Active Appearance Models (AAMs)
Perhaps the most common form of linear deformable face model is the AAM (Cootes, 
Edwards, & Taylor, 2001), which provides a compact statistical representation of 
the shape and appearance variation of the face as measured in 2D images. A recent 
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extension, the so called 2D 3D AAM (Xiao, Baker, Matthews, & Kanade, 2004), 
provides a convenient method for constructing models of 3D shape variation from 
2D images, overcoming the need for an expensive 3D laser range scanner required 
for a 3DMM.

The shape of an AAM is defined by a 2D triangulated mesh and in particular the 
vertex locations of the mesh. Mathematically, the shape, s, of an AAM is defined as 
the concatenation of the x and y-coordinates of n vertices that make up the mesh:

          

For face models, vertices typically are defined to delineate the eyes, eyebrows, nose, 
mouth and the outline of the face. A compact model that allows a linear variation in 
the shape is given by,

        (2)

where the coefficients pi are the shape parameters that allow the mesh to undergo 
both rigid (head pose) and non-rigid (expression) variation. Such a model is usually 
computed by applying PCA to a set of meshes that have been aligned with a corre-
sponding set of training images. Typically this alignment is done manually, although 
automated approaches have shown some success (Wang, Lucey, & Cohn, 2008). The 
base shape s0 is the mean shape, and the vectors si are the (reshaped) eigenvectors 
corresponding to the m largest eigenvalues. Care is required when hand-labeling images 
to ensure that all example shapes have the same number of vertices, and vertices are 
labeled in the same order in all images. Hand-labeling errors can result in significant 
sources of variation in the shape component of the AAM.

The appearance, A(x), of an AAM is an image that exhibits variation under 
the control of the model parameters and is defined as the pixels, x = (x, y)T, that lie 
within the base mesh, x s0. AAMs allow linear appearance variation. That is, the 
appearance can be expressed as a base appearance, x s0 plus a linear combination 
of l appearance images, Ai(x):

           (3)

where the coefficients i are the appearance parameters. The appearance component 
of the AAM is usually computed by first warping the manually annotated training 
images to the base shape, then applying PCA to the shape-normalized images (Cootes 
et al., 2001). The base appearance A0 (x) is the mean shape normalized image, and the 
vectors Ai (x) are the (reshaped) eigenvectors corresponding to the l largest eigenvalues. 
The advantage of this two-stage approach to modeling the face is that the resulting 
modes of variation are more compact and cleaner, in the sense that they model changes 
in the facial features rather than change in the images, as is the case with Eigenfaces. 
An example AAM is shown in Figure 1.
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3.1.1  
Facial image synthesis
Near-photorealistic images of faces are synthesized using an AAM by first applying 
the shape parameters, Equation (2), to generate the shape of the AAM, then applying 
the appearance parameters, Equation (3), to generate the AAM image, A(x). The 
synthesized image is created by warping A(x) from the base shape, s0, to the model-
synthesized shape using a piece-wise affine warp. Example images synthesized using 
an AAM are shown in Figure 2. We note here that the AAMs used in this work require 
a common structure. Each person-specific model requires the equivalent number of 
landmarks and pixels and the ordering of the landmarks must be consistent across all 
models. The shape of the model is constrained to include information in the region 
of the face only to the eyebrows. The forehead region is not included in our current 
work as there are no identifying features that can consistently be located across all 
individuals. Occlusion of the forehead by hair, for instance, is a problem. Solutions 
have been proposed (e.g., Gross, Matthews, & Baker, 2006); however, these solutions 
significantly increase the computational expense. 

3.1.2  
Multi-segment AAMs
The standard approach to constructing the appearance component of the AAM is to 
warp the images onto s0 and concatenate all pixels bound by the mesh before applying 

Figure 1
An example AAM derived from 15 hand-labelled images from a longer sequence of a single 
individual. Shown are the mean shape and appearance (A and D respectively), and the 
first two modes of variation of the shape (B–C) and appearance (E–F) components of the 
model. Note the AAM includes the region of the face only to the eyebrows. There are no 
defining features that are easily identifiable on the forehead that can consistently be placed 
manually across individuals. Work is ongoing to overcome this limitation
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PCA. The assumption is that the probability distribution of the pixel intensities is 
Gaussian. However, this assumption often is not met for face images. Consequently, 
some important information might be considered noise and discarded. In addition, if 
the distribution of the data is multimodal or nonlinear, then linearly interpolating the 
basis vectors to re-synthesize face images can result in parameters that appear valid, 
in that they are within the limits of the training examples, but lie in invalid regions of 
the global parameter space (Bregler & Omohundro, 1995). When assumptions about 
the distribution of the data are not met, some blurring in the rendered images may 
occur. This consequence is most striking in the eyes and inner mouth, in particular 
the teeth. These are important areas of the face as they are ones on which viewers 
tend to focus their attention.

To address this issue, we apply a relatively straightforward extension to improve 
the quality of rendering by constructing a piece-wise PCA model. Independent 
appearance models are constructed for each region of the face (skin, eyes, nose, and 
inner-mouth). This can be done in the coordinate frame of s0, so the pixel indices for 
the different regions of the face are constant across all images. The appearance for 
individual segments then can be regenerated and copied into the appearance vector 
A(x) before warping to the shape s. This notion could be taken further by clustering 
the regions of the face according to the shape parameters, for example building 
separate models of appearance to account for an open and closed mouth. This also 
allows different model segments to be encoded with more or less resolution, giving 
more significance to regions of the face to which a viewer is likely to pay particular 
attention.

4 Manipulating facial expressions
In this section we illustrate the usefulness of AAMs for studies of social interaction. 
Individual verbal and nonverbal conversational cues obtained from the face in a video 
sequence can be manipulated independently so that their separate and combined 
effects can be studied. For example, one might wish to decouple the apparent sex 
of an individual from his/her behavior to determine each factor’s influence during 
conversation. Or, one might wish to attenuate or exaggerate the degree of expressive-
ness to examine its influence on perceived personality traits. Exaggerated expressions 
and head movements are believed to increase a sense of liveliness and lead to greater 
rapport (Grahe & Bernieri, 1999). Attenuating expressiveness and head movement 

Figure 2
Example face images synthesized using AAMs trained on three different individuals
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may create a sense of disinterest, sadness, or depressed affect (Gehricke & Shapiro, 
2000; Schwartz, Fair, Salt, Mandel, & Klerman, 1976). Using AAMs, the behavior 
and identity of each person can be manipulated during actual conversation without 
the individual’s awareness that a change has occurred. 

The following descriptions of mapping and manipulating facial expressions 
consider only the intensity of those expressions. Focus to date has been on developing 
techniques that operate in real-time at video frame-rate, allowing conversational cues 
to be manipulated during live face-to-face interaction in a videoconferencing environ-
ment. Manipulating other factors, such as the frequency of occurrence of expressions, 
and the temporal properties of facial expressions will be the focus of future work. This 
is difficult to achieve during live conversation, as a priori knowledge of the temporal 
properties of the facial expressions over the conversation is required.

4.1  
Manipulating the intensity of facial gestures
Facial expressions can be represented in terms of the parameters of an AAM, which 
in turn represent displacements from the origin in the space spanned by the model. 
It follows that multiplying the parameters by a scalar greater than unity increases the 
distance from the mean, thereby exaggerating the facial expression represented by 
the parameters. Conversely, scaling by a value less than unity decreases the distance 
from the origin, thereby attenuating the intensity of the facial expression. Equations 
(2) and (3) can easily be extended to allow the intensity of facial expressions to be 
manipulated, as follows:

           (4)

                              
(5)

To illustrate the effect of manipulating the intensity of facial expressions in this way, 
an AAM was constructed and used to track a face during a conversation in a video 
sequence. The tracking algorithm used is the inverse compositional algorithm described 
by Matthews and Baker (2004), which runs far in excess of video frame-rate (> 200 
fps). The goal is to minimize the sum of squares difference between a model instance 
A(x) A0(x) m

i 1 iAi(x) and the input image warped back onto the base mesh I 
(W(x;p)). Following (Gross, Matthews, & Baker, 2006), this is achieved as follows:

Pre-compute:

 Compute the gradient of base appearance 

 Compute the Jacobian of the warp at 

 Compute steepest descent images 

 Project out appearance variation 
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 Compute the Hessian 

Iterate:

 Warp the image onto the base shape 

 Compute the error image 

 Compute the warp update 

 Update the warp 

The fitting algorithm iterates until convergence, that is, until the change in the para-
meters between iterations falls below some threshold. The key to the efficiency is the 
error is computed in the coordinate frame of model and not the image. Thus the Hessian 
matrix required to minimize the error function is constant and can be pre-computed. 
Also, since the appearance variation is projected-out from the steepest-descent images, 
the appearance parameters can be ignored during the fitting process. The AAM 
search is local and so requires a reasonable starting estimate for the parameters p. 
To track the face throughout a video sequence, the first frame can be manually hand-
labeled, and then each subsequent frame can use the fit from the previous frame as the 
starting estimate. The parameters measured from the video can then be scaled using 
Equations (4) and (5), and the resultant facial expressions re-synthesized by applying 
the parameters to the model. Figure 3 shows example frames from a video sequence 
re-rendered using the AAM both with and without adjustment to the intensity of the 
facial expressions.

Varying degrees of exaggeration/attenuation can be applied to the different 
parameters of the AAM. However, to ensure the resultant facial expressions are valid, 
we generally apply the same degree of scaling to all parameters. The scaling parameter 
in Equations (4) and (5) is different to indicate the shape and appearance components 
of the model can be manipulated independently. To ensure any manipulated facial 
expression is valid, in the sense that it appears genuine, constraints are placed on the 
parameter values to ensure that they lie within chosen limits of the original training 
data. Typically the parameters are constrained to lie within 3 standard deviations 
from the mean (Cootes et al., 2001). This prevents artifacts such as the mouth opening 
abnormally wide, or other violations of facial topology, for example the upper and 
lower lips intersecting when the mouth closes.

An advantage of using an AAM for this task is that it takes only in the order of 
150 ms to capture a video frame, extract the AAM parameters automatically, apply 
the manipulation, re-render the face, and display the resultant image. Thus, AAMs 
allow face images to be manipulated during face-to-face interaction within a video-
conferencing environment. Thus, two people can communicate with one another over 
the videoconference, but the face(s) displayed are re-rendered using the AAM, and not 
the image captured directly from the camera. The manipulation of the parameters can 
be applied prior to re-synthesis, thus both interlocutors are free to converse naturally 
and are kept blind to any manipulation of the facial expression. A further advantage 
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is the scaling of the parameters allows facial expressions to be manipulated precisely 
(e.g., smile exactly half as much), which is impossible using an actor.

4.2  
Copying facial expressions between faces
The previous section described how the intensity of facial expressions can be manipu-
lated using AAMs. However, it might also be useful to present facial expressions 
independently of identity. This would be particularly beneficial in experiments 
contrasting the influence of social expectation and behavior on natural conversations. 
This could be achieved using an actor, whereby the actor behaves differently in different 
conversations, thereby effectively dissociating identity from behavior. However, the 
conversations are no longer natural, and the reliability is largely dependent on the 
skill of the actor.

Alternatively, this can be achieved by transferring facial expressions from images 
of the face of one person (the source) to images of the face of another (the target). 
This is achieved by measuring the difference between an image containing a reference 
facial expression (say, neutral) and an expressive image, then imposing this difference 

Figure 3
Facial expressions of varying intensity rendered using an AAM. Left column shows the 
expressions scaled to 25% intensity, the middle column shows the expressions as measured in 
original video, and the right column shows expressions exaggerated to 150% of the intensity 
measured in the video. The effect of scaling the parameters is much more pronounced in 
more extreme expressions
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onto an image of the same reference facial expression for the target identity. This 
difference can be measured in terms of shape and appearance information (Blanz, 
Basso, Poggio, & Vetter, 2003) or in terms of raw pixel intensity changes (Liu, Shan, 
& Zhang, 2001).

This form of facial expression mimicry fits naturally within our AAM framework. 
The parameters of an AAM are, by definition, offsets from the mean. Provided that 
the base shape and appearance for two models represent approximately the same 
facial expression, then swapping the mean shape and appearance from one AAM into 
another will effectively recreate the same facial expression (behavior) on a different 
face (identity). Equation (2) for reconstructing the shape can be easily modified to 
take this transfer into account as follows:

           (6)

where the left hand side of Equation (6) uses the source model to compute the param-
eters from a known shape, and the right-hand side applies the parameters to the 
source modes of variation and the target mean shape. The structure of the equa-
tion for transferring appearance is exactly the same. Thus facial expressions can be 
simultaneously copied to an image of the target face and manipulated in terms of the 
intensity. The computational cost of this mimicry is exactly as outlined in the previous 
sections, so again it can be used to manipulate live face-to-face conversations over a 
videoconference without either conversant being aware of the manipulation. Example 
facial expressions rendered using AAMs both before and after substituting the mean 
shape and appearance from a target model into a source model are shown in Figure 
4, where the case for both within-gender and between-gender mimicry are shown.

The requirement that the mean shape and appearance for both the source and 
the target AAM represent similar facial expressions is generally not a problem. The 
mean shape and appearance are computed from a number of images displaying a range 
of facial expressions, so averaging over many examples usually results in the means 
converging to approximately the same facial expression, even for different identities 
and gender—see Figure 5.

4.3 
Mapping facial expressions between faces
The method for copying facial expressions between faces described previously substi-
tutes the mean (shape and appearance) from one AAM to another. The modes of 
variation (the basis shape and appearance vectors) of the source model still are used 
to generate the expression itself. Hence the cloned expression appears as the source 
expression imposed onto the target identity. See, for example, the teeth in Figure 4. 
Whilst this is useful for presenting facial expressions independently of identity, we 
might wish to map gestures from facial images of one person to facial images of another 
such that the characteristics of the target person are retained.

If the basis vectors between two AAM spaces could be interpreted to have the 
same meaning, say the first vector opens and closes the mouth, the second the eyes, 
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Figure 4
Dissociating expression and identity by copying changes in the features of  the face that 
characterize expressions. Here expressions on (A), a reference face, are copied to other 
faces of (B) the same gender and (C) the opposite gender. As expressions are copied, the 
characteristics of  the expression are the same on all faces. For example, the nasiolabial 
furrows, the shape of the smile, the mole on the cheek and the teeth are all characteristic 
of the person in (A)

Figure 5
The base appearance of three AAMs each trained on 20 images of the respective individual. 
The mean appearances converge to approximately the same expression
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and so on, the entire model for the target person could be substituted for the source, 
rather than substituting only the mean shape/appearance. The source model could 
be used to analyze the video and determine the AAM parameters, which could then 
be applied directly to the target model. However, basis vectors computed using PCA 
simply maximize the projected variance of the input data—the source and target 
basis vectors do not correspond in any physically meaningful way. Simply applying 
the parameters directly from one model to another will produce incorrect facial 
expressions. The problem is illustrated in Figure 6.

The manner in which the features of the face can vary is highly constrained. 
Individual features generally do not move independently of one another (in a global 
sense), and features generally move in the same way between faces—the mouth can 
open and close, the lips can round, the eyes can blink, and so on. It follows therefore 
that the information contained within one AAM space should be embedded in some 
way within another. The question is: how does one map the meaning of a basis vector 
of one AAM to the space spanned by another? One approach to solving this problem 
is to capture many individuals displaying the same facial expressions, then use multi-
linear models to separate expression from identity (and any other source of variation 
of interest). Expressions can then be predicted and synthesized on new faces (Macedo 
et al., 2006; Vlasic et al., 2005). Our approach to mapping between AAM spaces avoids 
the need for this complex, controlled, data capture.

The basis of our approach is not to think about the problem as mapping facial 
expressions between images of different people, but rather to consider it a geometric 
problem. A change in the facial features captured by a basis vector in one model-space 
ought to be captured by a combination of the basis vectors in another model-space 
(because the movement of the facial features is highly constrained, as stated). The basis 

Figure 6
Illustration of the mismatch in alignment between model-spaces. The parameters (A) in 
the source space representing the expression to be mapped can be copied directly to (B) the 
same location on the 2D plane. However, the resulting misalignment means that this point 
is not in the same location relative to the target basis vectors. Thus, the expression generated 
does not match the original. Instead, the parameters should be mapped by considering the 
rotation of the basis vectors between the model-spaces such that (A) is mapped to the point 
(C) in the same relative location between model-spaces
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vectors themselves are computed when the model is trained and remain constant 
thereafter, so we can pre-compute the alignment of a basis vector from one model (the 
source model) with the basis vectors of another model (the target model) by computing 
the inner products

These inner products are then used to weight the parameter values computed using 
the source model so they correctly represent, as far as possible, the same deforma-
tion on the target face. Thus, Equation (2) rewritten in matrix form and extended to 
incorporate the mapping can be written as:

           (7)

where the columns of T are the basis vectors spanning the target space, R is a q  r 
matrix of inner products (the target space is of dimension q and the source of dimen-
sion r), and ps are the parameters representing the expression in the source space. 
Note: because R does not depend on expression and can be pre-computed, the cost 
of mapping an expression is only a matrix-vector product. Equation (3), which is 
used to generate the appearance images, takes exactly the same form as Equation 
(7). Cloning facial expressions in this way has the advantage that we do not explicitly 
need to define anything about the facial expressions. This information is implicit from 
the basis vectors in the source and target spaces. Also, we are not concerned with the 
direction of the eigenvectors. For example, an increasingly positive value for a source 
parameter might, say, open the mouth, while the same action could be defined by an 
increasingly negative value in the target space. In this instance the inner product for 
that combination of vectors is negative (the displacements from the mean are largely in 
opposite directions), so the sign of the parameter value is flipped when the parameter 
is mapped. The parameters are also constrained to lie within the chosen 3 standard 
deviation limits of the target model, so the appearance of the resulting synthesized 
faces are valid given the original training data of the target person. This ensures the 
characteristics of the target face are preserved after mapping. The parameters can 
also be scaled after mapping to manipulate the intensity of the facial expression, as 
described previously.

Example images illustrating the mapping between various facial expressions are 
shown in Figure 7. Although there is some degradation in image quality, images can 
be generated at video frame-rate. If greater image quality is desired, multisegment 
modeling can be used to improve the rendering and reduce the effects of blurring 
(see Figure 8) at the additional cost of a precomputed look-up from pixels within a 
segment to pixels within the face image. Further effort can be applied to improve the 
quality of static images; however, this would increase the computational cost and 
rendering time. In a previous study (Theobald et al., 2003) we found that the image 
degradation such as that introduced by an AAM was not statistically significant in 
terms of the perceived naturalness of the speech dynamics in comparison with, say, 
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Figure 7
Dissociating expression and identity by mapping changes in the features of the face that charac-
terize expressions. Here expressions on (A), a reference face, are mapped to another face (B) of 
the same gender and (C) of the opposite gender. As expressions are mapped the characteristics of 
the expression are, as far as possible, consistent with expression changes on the respective people. 
These are the same expressions as those shown in Figure 5. Notice the mole on the cheek no 
longer appears on the cloned faces, and the teeth for each person appear as their own. In Figure 5, 
the same teeth as are visible in (A) are copied into the inner mouth for each cloned person

Figure 8
Multi-segment modelling and re-rendering. (A) An expression on a source confederate as 
measured in a video sequence and re-rendered on their model, and the expression mapped 
to a target face and rendered using (B) a standard AAM and (C) a multi-segment AAM. 
The multi-segment model reduces some of the blurring artefacts apparent in the standard 
AAM rendered image
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temporally distorted video. The temporal properties of facial gestures are unaffected 
by the manipulation we have described in this article.

5 Summary and discussion
In this article we have described techniques for manipulating and transferring facial 
expressions from video sequences containing one face to video sequences containing 
other faces. AAMs are constructed for a source face and one or more target faces. The 
source face is tracked in a video sequence using the inverse compositional AAM fitting 
algorithm and the model parameters representing the facial expressions are mapped to 
the target face(s) and re-rendered, all in real-time at video frame-rate. The advantages 
of using AAMs are as follows: (1) The mapping is simple and intuitive and requires 
no manual specification of the type or degree of facial gestures. (2) The model can 
account for a high degree of variability in the images, which offers more flexibility than 
purely image-based approaches. (3) Near-videorealistic avatars for new subjects can 
be created without the cost of recording and processing a complete training corpus for 
each—visual speech and expression information can be synthesized for one face and 
transferred to another. (4) The model allows the mapped expressions to be constrained, 
so that they best match the appearance of the target producing the expression. (5) The 
model parameters can be manipulated easily to exaggerate or attenuate the mapped 
expression, which would be difficult using comparable image-based approaches.

The methods described here will be used in perceptual studies of dyadic conversa-
tion in a videoconferencing environment. The facial expressions of one conversant will 
be manipulated as described and the effect of these adjustments on behavior during 
real-time natural conversations will be investigated. The advantage of this approach is 
both interlocutors are blind to any manipulation, either in terms of the expressiveness 
of their actions, or the identity or apparent gender of the person they appear to be.
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