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ABSTRACT
Active Appearance Models (AAMs) are generative paramet-
ric models commonly used to track, recognise and synthe-
sise faces in images and video sequences. In this paper we
describe a method for transferring dynamic facial gestures
between subjects in real-time. The main advantages of our
approach are that: 1) the mapping is computed automati-
cally and does not require high-level semantic information
describing facial expressions or visual speech gestures. 2)
The mapping is simple and intuitive, allowing expressions
to be transferred and rendered in real-time. 3) The mapped
expression can be constrained to have the appearance of the
target producing the expression, rather than the source ex-
pression imposed onto the target face. 4) Near-videorealistic
talking faces for new subjects can be created without the
cost of recording and processing a complete training corpus
for each. Our system enables face-to-face interaction with
an avatar driven by an AAM of an actual person in real-time
and we show examples of arbitrary expressive speech frames
cloned across different subjects.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation;;
I.3.7 [Computer Graphics]: Animation;; I.3.7 [Computer
Graphics]: Virtual Reality;

General Terms
Human Factors, Measurement, Performance
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1. INTRODUCTION
Realistic animation of human faces is challenging as the

changes in the features of the face that we interpret as ex-
pressions are the product of a complex interaction between
various anatomical layers, which include bone, muscle, sub-
cutaneous fat, and skin. The problem is compounded by
the fact that we are all expert at detecting and recognising
facial expressions and so are sensitive to even the smallest
discrepancies from normal behaviour. The central problem
then is how best to approximate the intricacies of the face
with sufficient detail such that expressions synthesised on a
model look realistic?

Traditional facial animation approaches are graphics-based,
where points on the surface of the face are represented as
vertices in three-dimensions (3D) and the skin approximated
by connecting the vertices to form a connected mesh. These
mesh vertices are manipulated using time-varying param-
eters that influence the mesh geometry either directly, or
using a physically-based approach [20]. Directly parame-
terised animation [17, 19] uses geometric interpolation be-
tween a collection of hand-crafted face models, known as
morph-targets, where each is meticulously designed to be a
faithful representation of a change in a particular aspect of
the facial anatomy. The drawbacks of this approach are:
1) the morph-targets are usually designed by hand, which is
time-consuming, 2) the morph-targets are designed for a par-
ticular mesh topology, so are not readily transferable across
models. 3) The morph-targets generally are not indepen-
dent, so care is required to ensure a valid facial expression
results from any given combination of the morphs.

Indirectly parameterised models are designed to approxi-
mate the anatomical structure of the face, where animation
parameters act on physical models, which in turn update
the mesh geometry. A popular approach is Waters’ pseudo-
muscle model [26], where individual mesh vertices are dis-
placed according to the relative vicinity of nearby muscle
functions embedded within a mesh. Improved realism has
been achieved by extending this approach to use physically-
based methods [14, 22]. The limitations of physically-based
animation are: 1) it is relatively computationally expensive
compared to directly parameterised animation as the influ-
ence on each individual vertex must be computed as a func-



tion of each muscle. 2) While anatomical models are not
tied to a particular mesh topology they must be manually
inserted in the mesh. Incorrectly embedding a muscle will
produce unexpected results when the model is animated. 3)
To prevent artifacts in the rendered mesh care is required to
ensure that discontinuities at the boundaries of the regions
of interest of the anatomical models are taken into account.

Image-based synthesis can produce animated sequences
with a high degree of both static and dynamic realism. Typ-
ically animation is achieved either using a data-driven ap-
proach, where frames in an existing video sequence are re-
ordered [4, 9], by morphing between static images represent-
ing key-frames in a video sequence [11], or by warping im-
ages using control parameters generated by trajectory syn-
thesis [3, 10]. The main limitations of image-based anima-
tion are: 1) it is relatively computationally expensive com-
pared with graphics-based systems, 2) animation is usually
confined to only re-animating the face, and 3) transfer of
speech and expression information between subjects is rel-
atively difficult and somewhat constrained compared with
graphics-based approaches.

Hybrid systems that animate both the geometry and the
appearance of the face have been proposed. One approach is
to construct an Active Appearance Model (AAM) [8] from
a video sequence and use the model to re-animate a face
speaking novel phrases [24]. A similar idea is to use a 3D
morphable model (3DMM) to render existing faces display-
ing new expressions [2]. Alternatively, 3D point locations for
a sparse set of points on a face can be recovered from a num-
ber of different views using photogrammetry. A dense geo-
metric mesh can then be fitted to the recovered points and
the images from each view blended to create view-dependent
texture maps. Repeating the process for a number of expres-
sions allows realistic sequences to be animated by interpolat-
ing the geometry and morphing the view-dependent images
(across both view and time) [21]. Extending this idea to
capture the reflectance field of the face allows for a change
in illumination in the animated sequences [13]. These lat-
ter methods animate expressive sequences with a stunning
degree of realism, but it is not immediately clear how such
techniques can be extended to animate subtle facial gestures,
such as those corresponding to arbitrary speech phrases.

Performance-driven facial animation transfers movements
on the face of an actor to a model. An advantage of this over
synthesis-based animation is the level of naturalness and re-
alism that can be achieved. One method involves locating a
few key feature points on the face of an actor and either in-
terpolating the displacement of these feature points directly
to mesh vertices [7, 12, 18, 27], or mapping the motion to an
underlying physically-based model for synthesis [6]. In addi-
tion, expressions can be cloned from images of one subject to
images of another by considering the change in both the ge-
ometry and appearance of the face [5, 15, 28]. However, such
image-based methods are relatively computationally expen-
sive and are usually limited in the range of expression that
can be transferred. It is also difficult to manipulate the
cloned expression, such as exaggerate or attenuate the de-
gree of expressiveness, and the result is usually an imposition
of the source expression on the target face. The 3DMM has
been used to transfer expression information between faces,
which offers a compromise between between graphics-based
and image-based approaches [1]. While the results can look
convincing, the main disadvantages are: 1) expressive infor-

mation is not mapped to a target face. Rather changes in the
facial features for one person are simply copied to another
person. 2) The same inner-mouth is used for all subjects. 3)
The algorithm is relatively computationally expensive and
requires a collection of laser scans of faces. The lack of ex-
pression mapping in [1] was recently addressed in [25], where
multi-linear models are constructed from a number of peo-
ple speaking and displaying pre-specified facial expressions.
The model is matched to new faces and expressions cloned on
these new faces based on statistics learned from the training
data. In particular the multi-linear model captures the vari-
ation due to identity, expression and speech independently.
This approach was also approximated in 2D and shown to
work with AAMs [16].

In this paper we describe a simple and intuitive mapping
between AAMs for two or more people such that expressions
on one face can be transferred to other faces. Our approach
requires no high-level semantic information describing facial
expressions, as is required in [16, 25], it allows the full face to
be transferred, unlike [1] and operates at video frame-rate.

2. ACTIVE APPEARANCE MODELS
The shape of an AAM is defined by a 2D triangulated

mesh and in particular the vertex locations of the mesh.
Mathematically, the shape s of an AAM is defined as the
concatenation of the x and y-coordinates of the n vertices
that make up the mesh: s = (x1, y1, . . . , xn, yn)T . A com-
pact model that allows a linear variation in the shape is
given by,

s = s0 +

mX
i=1

sipi, (1)

where the coefficients pi are the shape parameters. Such a
model is usually computed by applying principal component
analysis (PCA) to a set of meshes hand-labelled in a corre-
sponding set of images [8]. The base shape s0 is the mean
shape and the vectors si are the (reshaped) eigenvectors cor-
responding to the m largest eigenvalues.

The appearance of the AAM is defined within the base
mesh s0. Let s0 also denote the set of pixels x = (x, y)T that
lie inside the base mesh s0. The appearance of the AAM is
then an image A(x) defined over the pixels x ∈ s0. AAMs
allow linear appearance variation. This means the appear-
ance A(x) can be expressed as a base appearance A0(x) plus
a linear combination of l appearance images Ai(x):

A(x) = A0(x) +

lX
i=1

λiAi(x) ∀ x ∈ s0, (2)

where the coefficients λi are the appearance parameters. As
with the shape, the base appearance A0 and appearance im-
agesAi are usually computed by applying PCA to the (shape
normalised) training images [8]. The base appearance A0 is
the mean shape normalised image and the vectors Ai are the
(reshaped) eigenvectors corresponding to the l largest eigen-
values. An example appearance model is shown in Figure 1.

A near-photorealistic image of a face is rendered using the
AAM by first applying the shape parameters p = (p1, . . . , pm)T,
Equation (1) to generate the shape, s, of the AAM, then
applying the appearance parameters λ = (λ1, . . . , λl)

T to
generate the AAM image, A(x). The final rendered image
is created using a piece-wise affine warp to warp A(x) from
the base shape, s0, to the model-generated shape, s.



(a) s0 (b) s1 (c) s2

(d) A0 (e) A1 (f) A2

Figure 1: The shape (top row) and appearance (bot-
tom row) of an AAM. Shown are the base shape (a)
and base appearance (d), and the first two basis vec-
tors of the respective models.

3. EXPRESSION CLONING USING AAMS
We now turn our attention to the central problem: au-

tomatically cloning gestures from a source face in a video
sequence to any number of target faces. In particular, we
are interested in mapping parameters between AAMs that
describe person-specific speech and expression information.
The models used here do not require control over the type or
degree of expressiveness in the training data and we typically
build our models from only 15–20 images per person.

3.1 Mapping Parameters Between Models
We propose a linear mapping that is intuitive given the

nature of the vectors that span the shape and appearance
space of the AAM. Each component of a shape vector is an
offset from the mean shape (resp. appearance) and the vec-
tor itself represents the overall displacement that gives rise
to a specific type of gesture — see Figure 1. For example,
one vector might be responsible for opening and closing the
mouth, while another might control eye blink, and so on.
If the correspondence between models were one-to-one, we
could simply apply the parameters for one model directly to
the shape/appearance vectors of another (ignoring scale).
However, it is extremely unlikely that the vectors will corre-
spond between models in this way. Indeed it could be that
a specific source of variation captured by a single basis vec-
tor for one model is represented as a combination of basis
vectors for another model.

To map the meaning of the parameters from one model to
another we compute the relationship between the basis vec-
tors in the two model-spaces to determine the combination of
vectors in the target space that produces the corresponding
change in shape (or appearance) when moving along a sin-
gle vector in the source space. As the basis vectors are unit
length and can be constrained to lie in the same dimension
Euclidean space when the models are built, the alignment
of a source basis vector with the target vector-space is given
simply by the inner products < ss

i , s
∗
j > between a source

vector and each of the target vectors. Thus, a vector (a dis-
placement from the mean) in the source space is a weighted
average of the vectors (displacements from the mean) in the

target-space, and the weights are obtained from the inner-
products. More formally, expressing Equation 1 in matrix
form and including the mapping gives:

s∗ = s∗0 + S∗ (Rps) , (3)

where the columns of S∗ are the basis vectors spanning
the target space, R is a q× r matrix of inner products (the
target space is of dimension q and the source of dimension
r), and ps are the parameters representing the expression
in the source space. Each parameter value in the source
space therefore maps to a parameter vector in the target
space. Note: R does not depend on expression and can be
pre-computed, so the cost of mapping an expression is only
a matrix-vector product. Notice here we do not explicitly
need to define anything about the facial expressions. This
information is implicit from the basis vectors in the source
and target spaces. Also note we are not concerned with the
direction of the eigenvectors. For example, an increasingly
positive value for a source parameter might, say, open the
mouth, while the same action could be defined by an increas-
ingly negative value in the target space. In this instance the
inner product for that combination of vectors is negative
(the displacements from the mean are largely in opposite di-
rections), so the sign of the parameter value is flipped when
the parameter is mapped. Another important consideration
when mapping parameters is moving too far along the target
vectors, which could generate implausible faces. An obvious
example is the upper and lower lip boundaries intersecting.
However, the parameters after mapping to the target space
can be constrained with the limits of the original (target)
training data (typically they must lie within ±3σ from the
mean), which will ensure only valid faces with the target
appearance are generated by the mapping.

The underlying assumption of our approach is that the
base shape and base appearance vectors for the source and
target models represent similar expressions. Since these vec-
tors are averages of a number of facial gestures this assump-
tion usually holds as the average expression quickly con-
verges, even for different faces — see Figure 2.

Figure 2: The mean appearance images for three in-
dividuals computed from approximately 15 images
per person. In general the ‘average expression’ is a
partially open mouth with upper teeth slightly vis-
ible.

3.2 Recovering Missing Components
The linear mapping described previously will undoubt-

edly lose information. If a source vector cannot be com-
pletely described by the target space the mapped expres-
sion/speech gesture will appear under-articulated compared
with the original. However, we can determine beforehand
what components of the source model cannot be described
by the target space and account for this in the target model.
We proceed as follows:



1. Perturb the shape of the source by +1σ along the ith

basis vector:

δi
s = si

√
γi

where γi is the variance captured by the ith shape vec-
tor.

2. Map the source parameter to the target space and per-
turb the target vectors:

δt = S∗ (R
√
γi)

This is the displacement of the source space as best
represented in the target space using the linear map-
ping.

3. Finally, the residual:

δi = δt − δi
s

gives the component of the ith source vector that can-
not be reconstructed by the target model. This is re-
peated for each shape vector and multiples of these off-
sets (determined by the shape parameters) are added
to the shape reconstructed on the target model.

s∗ = s∗0 + S∗ (Rps) + δsps. (4)

Although the appearance parameters are mapped using
Equation 3, we do not compensate for the appearance resid-
uals, as was the case in [1].

4. RESULTS
To compare our mapping with related approaches we have

implemented, in the framework of our AAM system, a simi-
lar method to those described in [1] and [15], where expres-
sion information for one individual is simply copied across
to a target face(s). In the context of an AAM this is sim-
ply a substitution of the target mean shape and appearance
into the source model, with appropriate constraints to en-
sure number of shape vertices and appearance pixels are the
same for both subjects.

To obtain expressive data we filmed a source subject (a
female) while speaking and displaying facial expressions. In
real-time we track this source subject using an AAM and
map the parameters to the target models (one each for a
male and female subject), then render the resultant images.
An (original) image of the source and the two targets is
shown in Figure 3. Note: in the examples all of the subjects
are smiling — this is simply so the reader can compare the
true and reconstructed inner mouth of each subject. This
the area of the face that displays most variation (mouth can
be open or closed, the teeth may or may not be visible when
the mouth is open, and the tongue also displays varying
degrees of visibility). For this reason the inner mouth is
often ignored when cloning expressions: [15] clone between
expressions where the mouth is always closed, and [1] insert
a generic set of teeth into all target faces. The advantage of
an AAM is the variation of the inner mouth is also captured
by the appearance vectors that span the appearance space.

Example facial gestures on the source identity cloned onto
the two target models are shown in Figure 4. Simply swap-
ping (i.e. no mapping) the expression information between
faces creates artifacts on the cloned face (especially around
the teeth), where some of the characteristics of the source

identity are imposed onto the target face. Mapping the pa-
rameters from the source to the target model allows us to
constrain the expression on the target face, so the charac-
teristics of the target are retained — see Figure 4.

Figure 3: Example images of the source (center)
and target (left and right) subjects used to test our
expression cloning mapping.

5. LIMITATIONS AND EXTENSIONS
Our expression cloning system using AAMs has a similar

requirement to image-based cloning [5, 28] and morphable
model-based cloning [1] in that the source and target ref-
erence expressions must be similar. In our case this means
the base shape, s0, and appearance, A0(x), must represent
a similar expression. This is because the model parameters
represent perturbations about the base shape/appearance,
so applying the parameters to a different reference expres-
sion can produce artifacts in the rendered faces. However,
in our experience the mean shape and appearance for differ-
ent models tends to converge relatively quickly. Of course it
is entirely possible to force the base shape and appearance
for the target to be similar to the source model. There is
no reason the base vectors need be their respective means.
The images with the closest shape vertices and appearance
pixels, either visually or in terms of the L2-norm, could be
selected as the reference expression and the basis vectors for
the target model calculated with respect to these references.

A second limitation is the quality of the images recon-
structed using the AAM. The images typically suffer spatial
blur in the regions of the face that matter most (the eyes
and the mouth) since these are the regions that least sat-
isfy the underlying linearity assumption of PCA. For a real-
time system the amount of processing that can be performed
to improve the image quality is constrained. However, we
are currently investigating multi-segment appearance mod-
els [23], extended to partition the appearance-space using
the shape parameters. The appearance is then composed
of a number of sub-models, which are easily combined to
generate the appearance image.

6. SUMMARY
In this paper we have described techniques for transferring

visual speech information and facial expressions between
faces. An AAM is constructed for a source face and one
or more target faces. The source face is tracked in a video
sequence and the model parameters representing the face in
each frame are mapped to the target face(s) and re-rendered,
all in real-time.

The advantages of using AAMs are 1) the mapping is
simple and intuitive. 2) The model can account for a high
degree of variability in the images offering more flexibility



than image-based approaches. 3) No semantic information
regarding the expression is required as the expression is im-
plicitly coded by the parameters of the model. 4) Near-
videorealistic talking faces for new subjects can be created
without the cost of recording and processing a complete
training corpus for each. 5) The use of the model allows
the mapped expression to be constrained, so it has, as far
as possible, the appearance of the target producing the ex-
pression, rather than the source expression on the target
face. We can also manipulate the parameters to exaggerate
or attenuate the mapped expression, which is difficult with
comparable image-based approaches. The system described
in this paper has been used in a videoconference experiment
in which participants naive to the existence of the cloning
procedure spoke with what they were told were six different
people but were actually two confederates cloned onto six
different identities. After the conversations the naive par-
ticipants were asked if “anything was strange” and no one
out of the 24 in the experiment guessed that they were talk-
ing to fewer than six people. These experiments will be the
focus of a future publication.
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Source (A) (B) (C)

Figure 4: Mapping facial gestures from a source model (left column) to two target faces: one is female
(top row of each block) and the other male (bottom row of each block). Expressions are cloned by (A)
substituting the mean shape and appearance of the target into the source space, (B) mapping the parameters
using Equation 3, and (C) mapping the parameters and compensating for the residuals using Equation 4.


