
Evaluating Error Functions for Robust Active Appearance Models

Barry-John Theobald
School of Computing Sciences, University of East Anglia, Norwich, UK, NR4 7TJ

bjt@cmp.uea.ac.uk

Iain Matthews and Simon Baker
The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA, PA 15213

{iainm,simonb}@cs.cmu.edu

Abstract

Active appearance models (AAMs) are generative
parametric models commonly used to track faces in
video sequences. A limitation of AAMs is they are not
robust to occlusion. A recent extension reformulated the
search as an iteratively re-weighted least-squares prob-
lem. In this paper we focus on the choice of error func-
tion for use in a robust AAM search. We evaluate eight
error functions using two performance metrics: accu-
racy of occlusion detection and fitting robustness. We
show for any reasonable error function the performance
in terms of occlusion detection is the same. However,
this does not mean that fitting performance will be the
same. We describe experiments for measuring fitting ro-
bustness for images containing real occlusion. The best
approach assumes the residuals at each pixel are Gaus-
sianaly distributed, then estimates the parameters of the
distribution from images that do not contain occlusion.
In each iteration of the search, the error image is used
to sample these distributions to obtain the pixel weights.

1. Introduction

Active Appearance Models (AAMs) are generative
parametric models commonly used to track faces in
video [1, 2]. A major limitation of AAMs is they are
not robust to occlusion and only a small amount of oc-
clusion can cause the AAM search to diverge. A robust
extension to AAMs that is an efficient formulation of
earlier fitting algorithms [3, 4] was described in [5]. In
this paper we consider the choice of error function for
use in this robust AAM search. This is not a problem
that be answered using synthetically occluded data, as
was done in [5]. Choosing an error function is effec-
tively the same as asking what is the real distribution of
outliers in images? Two ways this could be answered

are by measuring the accuracy of occlusion detection,
or measuring the robustness of the search. In this paper
we test eight error functions using both of these metrics.
We show that for any reasonable error function (mono-
tonic and symmetric), the occlusion detection perfor-
mance is the same. However, this does not mean that
fitting performance will be the same as the type of er-
ror is important. A search that includes a small number
of borderline outlier pixels (Type I error) may converge
as these pixels are down-weighted to reduced their in-
fluence. Likewise, a search that ignores a number of
inlier pixels (Type II error) may also converge. In this
case not all of the available information is used in the
search. All evaluation in this paper is conducted on a
video sequence of a deaf-signer and we show the best
results are obtained when the distribution of the resid-
ual at each pixel is assumed to be Gaussian. Clean, un-
occluded images are used to estimate the parameters of
these distributions, which are sampled in each iteration
of the search using the error image.

2. Active Appearance Models: AAMs

The shape, s, of an AAM is defined by the 2D coor-
dinates of the N vertices that form a triangulated mesh:

s = (x1,y1,x2,y2, . . . ,xN ,yN)T . (1)

AAMs allow linear shape variation, meaning a shape
can be expressed as a base shape, s0, plus a linear com-
bination of n template shapes, si:

s = s0 +
n

∑
i=1

pisi, (2)

where the coefficients pi are the shape parameters.
AAMs are normally computed by hand-aligning

the vertices of the mesh with the corresponding features
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Figure 1. The linear shape model (top row) and
appearance model (bottom row) of an AAM.
Shown are the base shape and appearance (left
column) and first three modes of variation.

in a set of training images and applying PCA [1]. The
base shape is the mean shape and the template shapes
are the eigenvectors corresponding to the n largest
eigenvalues. An example is illustrated in the top row
of Figure 1.

The appearance of the AAM is defined within s0.
Let s0 also denote the set of pixels x = (x,y)T that lie
inside s0, a convenient abuse of terminology. The ap-
pearance of the AAM is then an image, A(x), defined
over the pixels x ∈ s0. AAMs allow linear appearance
variation, meaning A(x) can be expressed as a base ap-
pearance, A0(x), plus a linear combination of m appear-
ance images Ai(x):

A(x) = A0(x)+
m

∑
i=1

λiAi(x) ∀ x ∈ s0, (3)

where the coefficients λi are the appearance parameters.
As with the shape, the base appearance, A0(x), and ap-
pearance images, Ai(x), are usually computed by apply-
ing PCA to the (shape normalised) training images [1].
An example is illustrated in the bottom row of Figure 1.

2.1. Robust Fitting of AAMs

The goal of the robust AAM search [5] is to min-
imise:

∑
x∈s0

ρ

(
[A(x)− I(W(x;p))]2 ;σ

)
, (4)

with respect to the shape and appearance parameters.
I(W(x;p)) is the image warped onto the base mesh,
ρ(•) is a robust error function [6] and σ is a vector
of scale parameters. Updates for λ are required that
minimise:

∑
x

ρ
′ (E(x)2 )[

E(x)+
m

∑
i=1

∆λiAi(x)

]2

, (5)

where E(x) has been normalised so the component of
the error image in the direction of Ai(x) is zero [5]. The
least squares minimum of this expression is:

∆λ = −H−1
A ∑

x
ρ
′ (E(x)2 )

AT(x)E(x), (6)

where A(x) = (A1(x), . . . ,Am(x)) and HA is the appear-
ance Hessian:

HA = ∑
x

ρ
′ (E(x)2 )

A(x)TA(x). (7)

The steepest descent parameter updates are com-
puted using:

∆p = −H−1
ρ ∑

x∈s0

ρ
′(E(x)2)

[
∇A0(x)

∂W
∂p

]
E(x), (8)

where ∇A0(x) is the gradient of the base appearance and
∂W
∂p is the Jacobian of the warp [2]. The Hessian, Hρ is

computed using:

Hρ =
K

∑
i=1

ρ
′
i
(
E(x)2)

∑
x∈Ti

[
∇A0(x)

∂W
∂p

]T [
∇A0(x)

∂W
∂p

]
,

(9)
where the base appearance is subdivided into K trian-
gles, T1,T2, . . . ,TK , allowing the search to deal with oc-
clusion. Assume that ρ ′(E(x)2) is constant in each tri-
angle; i.e. assume ρ ′(E(x)2) = wi, say, for all x ∈ Ti.
Pixels with a large error in E(x) have a small weight,
wi, so have less significance in updating the parame-
ters. In practise the assumption that wi is constant for
all x ∈ Ti holds only approximately, so wi must be es-
timated from ρ ′(E(x)2), for example by setting it to be
the mean value computed over the triangle [7]. The ef-
ficiency of this search arises since the internal part of
Equation 9 does not depend on the error so is constant
across iterations. Denote:

H i
ρ = ∑

x∈Ti

[
∇A0(x)

∂W
∂p

]T [
∇A0(x)

∂W
∂p

]
, (10)

The Hessian H i
ρ is the Hessian for triangle Ti and can be

precomputed. Equation 9 then simplifies to:

Hρ =
K

∑
i=1

wi ·H i
ρ . (11)

Although this Hessian does vary from iteration to itera-
tion, the cost of computing it is minimal and the same
spatial coherence approximation can be made for the
appearance Hessian of Equation 7.

The following sections consider the selection of ρ ,
and evaluate eight possibilities using the accuracy of oc-
clusion detection and fitting robustness as performance
metrics. The evaluation is conducted on video se-
quences of a deaf-signer, thus we consider only real oc-
clusions.



3. Error Functions for Robust AAMs

The purpose of the robust error function in Equa-
tion 4 is to down-weight pixel outliers. Desirable prop-
erties on the form of the error function include a func-
tion that is non-negative, symmetric, monotonic and
piecewise differentiable. The final property is desired
since it is the derivative, ψ , of the objective function
that determines the influence of each pixel. The symme-
try property is desired so a Gauss-Newton optimisation
can be applied, rather than the less efficient Newton op-
timisation [8]. In this paper we consider the following
eight weighting functions:

E1: — Huber function [6] (c = 1.345):

ψ(E(x);σx) =
{

1 |E(x)| ≤ c
c

|E(x)| |E(x)|> c

E2: — Talwar function [9] (c = 2.795):

ψ(E(x);σx) =
{

1 |E(x)| ≤ c
0 |E(x)|> c

E3: — Tukey bisquare function (c = 4.685):

ψ(E(x);σx) =


(

1−
(

E(x)
c

)2
)2

|E(x)| ≤ c

0 |E(x)|> c

E4: — Cauchy function (c = 2.385):

ψ(E(x);σx) =
1

1+
(

E(x)
c

)2

E5: — Standardised distance:

ψ(E(x)) =

{
1 |E(x)

σx
| ≤ 2σx

0 otherwise

E6: — Pixel-wise threshold:

ψ(E(x)) =
{

1 |E(x)| ≤ Emax(x)
0 otherwise

E7: — Probability density function assuming the dis-
tribution of the residual at each pixel is Gaussian:

ψ(E(x)) =
1

σx
√

2π
e

(
− |E(x)|

2σ2x

)

E8: — Decaying exponential:

ψ(E(x)) = e

(
− |E(x)|

2σ2x

)

E1–E4 are the W-estimators for the correspond-
ing M-estimators [6]. The tuning constant, c, adjusts
the scale, which is usually estimated from the residuals
using the median of absolute deviations (MAD) [6]. In
this work, we use the standard deviation of the residu-
als in unoccluded images as the measure of scale. We
denote this as σx to reflect that each pixel is treated in-
dependently. The distribution of the residuals is mod-
elled per-pixel, not over E(x). Hence, the decision as
to whether a pixel is occluded is not influenced by any
other pixel.

4. Evaluation

Two metrics have been used to evaluate robust er-
ror functions: occlusion detection accuracy and robust-
ness of fit. The fitting algorithms in [5] were tested
by first labelling (occlusion-free) images using a non-
robust search, then comparing the result of the robust
search after adding artificial occlusion. This is fine
since the relative performance of the fitting algorithms
is not expected to depend on the data. In this work
the relative performance of the error functions are be-
ing tested, which will depend on the data. Hence our
evaluation must be performed on real data.

A short video sequence of a deaf-signer is divided
into 112 frames containing occlusion and 136 frames
without occlusion. Examples from the occluded set are
shown in Figure 2.

Figure 2. Example images used in the eval-
uation of robust AAMs. Note, the body suit
forms the basis of an optical tracking system
(not used in this work).

Two forms of ground-truth are required: which pix-
els are occluded and the location of the landmarks in
each frame. Occluded pixels are identified by creating
a binary mask and hand-painting over occluded regions
in each image. The landmarks are slightly more tricky.
It is undesirable to compare the output of the fitter with
hand-labels as these are likely to be noisy. A non-robust



fit cannot be used to determine the ground-truth as the
search will likely fail, see Figure 5. Also, a robust
search using any single error function cannot be used
as the results will be biased towards this function. In-
stead we first hand-label all 112 images in the occluded
set, taking care to ensure occluded landmarks are in a
reasonable position. Next, a robust AAM search using
all eight error functions is performed using the hand-
labels as an initial guess. Examples that diverge are ig-
nored and the ground-truth is the mean of the converged
(visible) landmarks. Example ground-truth is shown in
Figure 3.

Figure 3. Example ground-truth data: The left
image shows the binary mask for the image
displayed on the right. White pixels in the mask
denote the occluded pixels. The ground-truth
landmarks are overlaid on the image on the
right.

4.1. Occlusion Detection

There are two types of error when classifying pixels
as inliers or outliers.

Type I Error — a pixel outlier is classified as an inlier.

Type II Error — a pixel inlier is classified as an out-
lier.

The following describes evaluating error functions in
terms of occlusion detection accuracy.

4.1.1. Procedure. Each of the 112 (occluded) images
are warped from the ground-truth landmarks onto the
base shape and the residuals computed. These residuals
are then input to each error function and the result com-
pared with the hand-painted ground-truth. Since some
functions make only a soft decision as to which pix-
els are occluded (i.e. E1, E4, E7 and E8), a threshold,
τ , is required that defines a decision boundary. This
threshold is not used in the robust search, it is used only
to make a decision in this detection experiment. Since
the decision as to whether a pixel is visible or occluded
is sensitive to τ , we consider the affect of varying the
threshold.

4.1.2. Results. Figure 4 shows the average number of
pixels correctly identified as occluded against the aver-
age Type II error for each error function.
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Figure 4. Curves showing the accuracy of oc-
clusion detection against misclassified outlier
rate for the error functions defined in Section 3.

The results in Figure 4 are as should be expected.
The curves1 for any symmetric, monotonically increas-
ing error function will be the same in the following
sense. Consider the two sets of pixels parameterised
by the threshold τ:

FP(τ) = {x ∈ ρ(|E(x)|) < τ | x /∈ y}
T P(τ) = {x ∈ ρ(|E(x)|) < τ | x ∈ y}

where y ⊂ I(W (x;p)) are the occluded pixels, T P(τ)
are the true positives, FP(τ) are the false positives and
τ is the decision threshold. As τ varies the proportion
of |FP| and |T P| to the total number of pixels map out
the ROC curve. Thus, for any symmetric and monoton-
ically increasing error function for which

ρ(Ei) > ρ(E j) ∀ (|Ei|< |E j|)

it follows that:

|FP(τ)| ≤ |FP(t)| ∀ (t ≥ τ)
|T P(τ)| ≤ |T P(t)| ∀ (t ≥ τ)

and

FP(τ) ⊂ FP(t) ∀ (t ≥ τ)
T P(τ) ⊂ T P(t) ∀ (t ≥ τ)

since ρ cannot change the ordering of the residuals.
FP(τ) and T P(τ) are improper subsets of the respec-
tive supersets.

1For some error functions such as (E2, E3, E5 and E6), the curves
are degenerate and consist just of a single point.



4.2. Fitting Robustness

It is clear from Figure 4 that in terms of occlu-
sion detection accuracy, monotonic and symmetric er-
ror functions perform the same. However this does not
mean that they perform the same in terms of fitting ro-
bustness. The following describes the evaluation of the
error functions from Section 3 in terms of the fitting ro-
bustness.

4.2.1. Procedure. Twenty of the images from the un-
occluded frames were hand-labelled using the landmark
configuration shown in Figure 3. An AAM was con-
structed from these labelled images and the non-robust
AAM search [2] used to annotate the remaining unoc-
cluded images. Each image was then warped onto the
base shape and the error image computed. The standard
deviation of the residual and maximum absolute value
of the residual at each pixel was computed, providing
the parameters for the error functions.

For each of the 112 occluded images, 500 starting
locations for a robust search were generated by ran-
domly perturbing the ground-truth shape and similar-
ity transform parameters with additive white Gaussian
noise. The variance of the distribution used to perturb
each shape parameter was equal to a multiple of the
variance captured by the corresponding mode of vari-
ation. Specifically, fifty offsets were generated for each
of ten evenly spaced levels of shape perturbation rang-
ing from 0.3 to 3 times the variance of the correspond-
ing mode. The similarity transform parameters were
generated by perturbing two points in the mesh with
Gaussian noise of variance five times the shape off-
set and the similarity transform parameters then solved
for [2]. At each iteration of the search, the image was
warped onto the template and the robust error functions
used to estimate and down-weight occluded pixels from
resulting residuals. The triangle weights, wi in Equa-
tion 11, were computed as the mean of the pixel weights
within each triangle. This however is not the only op-
tion. For example, pixel-wise weights could be applied
(an inefficient search), or the minimum pixel weight
within each triangle could be used. Experiments evalu-
ating different triangle weighting schemes are ongoing.

In all cases, the robust fitter was run for twenty it-
erations and the search was deemed to have converged
if the RMS error between the ground-truth and fitted
landmarks was below 2.0 pixels. Both the frequency of
convergence (robustness) and the rate of convergence
(accuracy) are used to quantify the performance of er-
ror functions.

4.2.2. Results. The set of 112 images containing oc-
clusion were divided into two further sets: those that

contain 0 < n ≤ 25% occlusion (80 frames) and those
that contain 25 < n ≤ 50% occlusion (23 frames)2. The
frequency and rate of convergence averaged over all tri-
als and all images for each image subset are shown in
Figure 5.

The performance of the error functions is similar
for low degrees of occlusion (≤ 10%). However, as
the level of occlusion increases weighting pixels us-
ing error function E7 appears to be the most robust
technique. The average frequency of convergence is
approximately 15% higher for ≤ 25% occlusion than
the next best error functions (E6 and E8). As is ex-
pected, the frequency of convergence decreases as the
amount of occlusion and shape perturbation increases.
The unweighted L2 norm (non-robust) AAM search is
surprisingly robust for low amounts of occlusion and
performed only slightly worse than error function E5.

In terms of the rate of convergence, the error func-
tions behave the same for low/moderate amounts (≤
25%) of occlusion — they are within one pixel at each
iteration. Indeed it appears that, with the exception of
the Tukey Bisquare function, the degree of occlusion
does not influence how quickly the robust AAM will
converge, only whether or not it will converge.

Figures 4 and Figure 5 suggest that robust AAMs
are able to cope with a relatively large Type II error. The
location on the curve for E7 shows that, with the ex-
ception of τ = 0, this error function classifies many of
the unoccluded pixels as occluded. Thus, as we would
expect, it is better to ignore unoccluded pixels than to
include occluded pixels during the fit. In terms of the
M-estimator functions (E1—E4), the best performing
are the Talwar function and Cauchy function. The Tal-
war function was also used in [10] for robustly fitting
morphable models to images.

5. Conclusions

In this paper we have reviewed the efficient ro-
bust AAM search algorithm and described a number of
robust error functions that can be used in this search.
We evaluated these error functions using two evalua-
tion metrics: one to determine the accuracy of occlu-
sion detection and another to determine the robustness
of the search. We have shown that in terms of occlu-
sion detection accuracy, all monotonic and symmetric
error functions perform the same, whereas in terms of
fitting robustness some perform significantly better than
others. We have found that of the eight functions tested
here, the best approach is to model, using a Gaussian,
the distribution of the residuals at each pixel for known,

2The nine frames with > 50% occlusion were ignored in this ex-
periment as the fitter always failed to converge.
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Figure 5. Frequency and rate of convergence of the robust AAM search using the error functions
defined in Section 3 for Top row: 0 < N ≤ 25% occlusion and Bottom row: 25 < N ≤ 50% occlusion.

unoccluded data. The weights used during the search
are then computed by sampling the respective distribu-
tions given the residuals at each pixel in each iteration.
Functions E1–E4 are well understood general purpose
error functions used by the robust statistics community
for performing an iteratively re-weighted least squares
fit. It is perhaps to be expected that E7 out-performs
these as the parameters of this error function are esti-
mated from known good data.

The error functions were tested on only a single
video sequence. This was due to the difficulty in ob-
taining ground-truth. Every frame containing occluded
pixels requires the manual placement of the landmarks
and the manual marking of the occluded pixels. Fur-
ther work will involve labelling more sequences and
performing similar tests on more subjects. We will
also compare different ways of computing the triangle
weights from the pixel weights. In this work, the trian-
gle weight is the mean of the pixel weights within the
triangle. We will also contrast the robustness of this ef-
ficient algorithm with a less efficient algorithm which
retains the individual pixels weights, but must recom-
pute the Hessian in each iteration.
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