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ABSTRACT

In this paper we present work towards videorealistic synthetic
visual speech using non-rigid appearance models. These mod-
els are used to track a talking face enunciating a set of training
sentences. The resultant parameter trajectories are used in a con-
catenative synthesis scheme, where samples of original data are
extracted from a corpus and concatenated to form new unseen se-
quences. Here we explore the effect on the synthesiser output of
blending several synthesis units considered similar to the desired
unit. We present preliminary subjective and objective results used
to judge the realism of the system.

1. INTRODUCTION

Potential applications for a realistic visual speech synthesiser in-
clude desktop agents, character animation in computer games, trans-
lation agents, low bandwidth videoconferencing, and film and me-
dia post-production. In many such applications, videorealism may
be a requirement. Traditionally to achieve videorealism image-
based techniques are employed, for example [1, 2, 3]. Model-
based schemes are usually based on a computer graphics represen-
tation of the face [4] and are employed where videorealism is not
a requirement. The trade-off is the bandwidth required to drive the
animations, image-based systems require the greater bandwidth.
Recently computer vision techniques have been used to extract a
model of the face from video sequences and the model applied to
create near-videorealistic synthetic visual speech, for example [5,
6]. Such systems are attractive since they allow the realism of
image-based systems to be achieved, while still maintaining the
flexibility of model-based systems. They also allow videorealistic
synthesis at low bandwidths [7].

Here we describe both a model that creates near-photorealistic
facial images, and how this model is used in a sample-based method
for synthesising visual speech.

2. DATA CAPTURE

Training data was collected using an ELMO EM-02PAL camera
and digitised at a frame rate of 25 frames per second using an IEEE
1394 compliant capture card with a frame size of 720x576. The
audio was captured using the on-camera microphone and digitised
at 11025 Hz, 16 bits/sample stereo. This was later used to pho-
netically segment the video using a hidden Markov model (HMM)
speech recogniser run in forced-alignment mode.

To minimise unwanted sources of variation when creating the
model, the video was recorded using a head mounted camera, record-

ing a single talker in one sitting, thus eliminating variations due to
pose, identity and lighting. The speaker held the facial expression
as neutral as possible (no emotion) to confine the variation of the
facial features to that due to speech. The training data consisted of
279 sentences containing multiple occurrences of 6315 triphones,
resulting in approximately 34,000 frontal images of the face.

3. THE FACE MODEL

The face model that forms the basis of the synthesiser is based on
shape and appearance models due to Cootes and co-workers [8].
Facial gestures are represented as principal component scores drawn
from statistical models of the shape and appearance variation of the
face.

Following the notation of Cootes [8], a model of shape, termed
the point distribution model(PDM), is trained by hand labelling
landmark points in a set of images and performing a principal com-
ponent analysis (PCA) on the coordinates. Any shape can be ap-
proximated usingx ≈ x + Psbs, wherePs is the matrix of the
first ts eigenvectors of the covariance matrix, andbs is a vector of
shape parameters.

An appearance model is computed by shape normalising the
training images so the landmarks in each image lie in the position
of the landmarks of the mean shape. A PCA is then computed on
the resultant image set such that any shape-free appearance can be
approximated usinga ≈ a+Paba, wherePa is the matrix of the
first ta eigenvectors of the covariance matrix andba a vector of
appearance parameters.

A combined shape and appearance model is built by comput-
ing and concatenating the shape and appearance parameters for
each labelled image and performing a third PCA. The combined
shape and appearance model is given byb ≈ Qc, whereQ is the
matrix of eigenvectors of the covariance matrix andc a vector of
parameters that reflect changes in the shape and appearance of the
face. Given the combined model, realistic images can be synthe-
sised given a set parameters using

x ≈ x + PsWsQsc, a ≈ a + PaQac, (1)

where the matrixWs takes into account the scaling mismatch be-
tween the parametersbs (which models Euclidean distance) and
ba (which models pixel RGB intensity). This is computed as
shown in [8].

Given a set of landmarks,x, and a shape-free image,a, the
final synthesised image is created by warpinga to x.



4. DATA PREPARATION

The face in the video is first encoded in terms of the model parame-
ters. This requires locating the landmarks in all images, computing
the shape parameters, warping each image to the mean shape and
computing the appearance parameters, then finally projecting into
the combined shape and appearance space (if a combined model is
used).

Given that the database contains over 34,000 images, labelling
all by hand would be a time consuming and tedious task. In-
stead, a shape model and an appearance model are built from 100
images labelled by hand and thegradient descent active appear-
ancesearch algorithm [9] used to automatically label the images.

For each frame in the video the face is mapped to the corre-
sponding point in the model space. Over the course of a sentence
the discrete points corresponding to the parameters for each frame
map a trajectory through the face-space. A continuous parametric
representation of this trajectory is obtained using Hermite interpo-
lation, and the 279 trajectories, one for each training sentence, are
stored in the synthesis codebook.

The audio component of the training video is passed through a
speech recogniser, the output from which is a list of the constituent
phoneme symbols that form each sentence and their corresponding
start and stop times. This phonetic information is also stored in
the synthesis codebook and is later used to index the trajectories
such that segments can be extracted corresponding to any particu-
lar phoneme.

4.1. Measuring Phoneme Similarity

The model is to be used in a sample-based synthesis scheme, so
the synthesiser must be able to account for phonemes appearing in
unseen contexts. To allow for this, a similarity matrix is used to
find contexts in the training data that are ‘closest’ to the desired
context. The scheme described here is similar to that described by
Arslan and Talkin [10].

The similarity matrix is automatically derived from the train-
ing data and each element contains an objective measure of simi-
larity between two given phonemes. To measure the similarities,
first all observations of each phoneme are gathered and the por-
tions of the original trajectories sampled at five evenly spaced in-
tervals. Next the mean representation of each phoneme is com-
puted. For a model withN parameters, each phoneme is repre-
sented by anN × 5 matrix.

The mean representation may not however, be a reliable repre-
sentation of a phoneme, particularly if it is significantly modified
by context. To allow for this, the dispersion of each phoneme in the
face-space is computed by calculating the total area between the
normalised parameter trajectories and the corresponding mean tra-
jectory. The distance between two phonemes is given by the sum
of the squared differences between the matrix elements, where the
matrices are weighted by their relative stability. Since the model is
based on PCA, errors in the lower dimensions of the face-space
are more significant than errors in the higher dimensions. The
rows of the matrices are also weighted by the significance of the
corresponding parameter in the model. The distance between any
phoneme pair is given by

Dij =
X

k

X
l

h“
viP

i
kl − vjP

j
kl

”
wk

i2

, (2)

whereP i is the matrix representing theith phoneme andP j the

matrix representing thejth phoneme. The valuewk is the signifi-
cance of thekth parameter in the model,vi is the variability of the
ith phoneme andvj the variability of thejth phoneme.

Given the matrix of distance values, the similarities are com-
puted using

Sij = e−νDij . (3)

The range of similarity is 0 (maximally dissimilar), to 1 (iden-
tical). The variableν controls the spread of similarity values over
the range (0,1). The similarity matrix is stored with the parame-
ter trajectories and phoneme timing information in the synthesis
codebook.

5. SYNTHESIS

The synthesiser can be driven in one of three ways; by the shape
model alone, the shape and appearance model, or the combined
model. These systems differ only in what the parameters model.

For a synthesiser driven by the shape model alone, a linear
mapping is assumed to exist between the shape parameters and the
appearance parameters, such that the appearance parameters can
be predicted from the shape parameters output from the synthesiser
using

ba = Abs. (4)

WhereA is computed given the original parameter trajectories
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For a synthesiser driven by the shape and appearance mod-
els, each sentence is represented by two trajectories. TheN × 5
phoneme matrices in the similarity calculations become2N × 5
matrices, whereN shape andN appearance parameters are con-
catenated to form the phoneme observations.

The combined model case is identical to the shape only case,
each sentence is represented as a single trajectory and phoneme
observations are represented by anN × 5 matrix. In this case
however, the appearance is implicitly modelled by the parameters.

5.1. Synthesising a New Utterance

The visual sequence corresponding to a new utterance is synthe-
sised by first converting a text stream to a list of phonemes and
durations. For each phoneme to be synthesised, the original train-
ing data is searched for then examples in the most similar contexts
in the codebook using
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wheresj is the similarity between the desired context and thejth

context in the inventory,C is the context width,Slij is the similar-
ity between theith left phoneme in thejth inventory context and
the corresponding phoneme in the desired context,Srij is the sim-
ilarity between theith right phoneme of thejth inventory context
and the corresponding phoneme in the desired context.

This similarity score is attractive since it allows the context
width to be easily varied without modifying the synthesiser. In the
results presented here a context width ofC = 1 is used. Hence,
the synthesis unit is the triphone.



5.1.1. Creating New Parameter Trajectories

Given then closest matches in the codebook for each synthesis
phoneme, the corresponding portions of the original parameter tra-
jectories are extracted and temporally warped to the desired dura-
tion. These normalised trajectories are blended to form a new tra-
jectory in the face-space, where the blending is weighted such that
the most similar contexts receive more weight and the sum of the
weights is unity.

These new phoneme trajectories in the face-space are concate-
nated and sampled at the original frame rate. Smoothing splines [11]
are fitted through the model parameters to ensure a smooth tran-
sition between synthesis units and the smoothed parameters are
applied to the model to produce the synthetic image sequence of
the talking face.

Figure 1 shows an example of a real and synthetic shape pa-
rameter trajectory, while Figure 2 shows example faces output
from the tracker and the corresponding faces output from the syn-
thesiser.
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Fig. 1. A shape parameter trajectory from the tracker (black solid
line) and synthesiser output (red dashed line). In this example, the
synthesiser blended then = 3 closest examples in the codebook.
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Fig. 2. Example faces output by the tracker (A and C) and the
corresponding examples output by the synthesiser (B and D).

6. RESULTS

We present here subjective and objective results of tests performed
on the synthesiser.

6.1. Subjective Results

A Turing test was used in order to select the model from the three
outlined in Section 3 that produces the most natural looking an-
imations. In the test, original sequences and the corresponding
synthesiser output were randonly intermixed and played to viewers
(without audio). Viewers were then asked to watch the sequences
and identify which were real and which were synthetic.

Ezzat performed similar tests in [5] and noted post-processing
of the synthetic output was required. The process of averaging
image frames in the synthesis removes camera noise from the syn-
thetic sequences and gives the face a zombie-like effect due to the
removal of subtle eye and eye brow movements. To overcome this,
an estimate of the camera noise is made and added to the synthetic
images and a face mask defined such that mouth regions from syn-
thesised images can be re-composited into a background sequence
from the original video. This ensures a fair comparison between
real and synthetic sequences.

Here, since we are testing thedynamicsof the various models,
camera noise is removed from the original sequences by playing
the tracker output (model encoded video) rather than the video it-
self. Pixels from the eyes and above are also removed from the
sequences, viewer attention is then focused on the movements of
the face around the mouth region.

Twenty sequences (ten original and ten synthetic) were played
to 12 viewers, with the results shown in Table 1.

Synthesis Type % Correct χ2 p≤
Shape driven 71.67% 45.067 0.001

Combined driven 60.42% 10.4232 0.01
Separate driven 52.92% 0.8236 1

Table 1. Percent correct identification of real and synthetic se-
quences.

It is clear that the shape driven model performed the worst
of the three as viewers were able to correctly identify the real se-
quences from the synthetic. The hypothesis that the model and
video are indistinguishable has a probability of p≤ 0.001, and so
is rejected. This is perhaps due to the assumption of a linear re-
lationship between the shape and appearance parameters. It was
shown in [12] that a non-linear mapping results in a better approx-
imation of the original appearance parameter trajectories.

The combined model performed better than the shape only
model, however since the hypothesis that the model and video are
indistinguishable has a probability of p≤ 0.01, this is also rejected.
The best performance was obtained by driving the synthesiser with
separate shape and appearance information. For this synthesis
scheme, the error between real/synthetic judgements approached
the chance level (50% correct) and the hypothesis that the model
and video are indistinguishable has a probability of p≤ 1, and is
therefore accepted.

6.2. Objective Testing

One possible objective measure of performance is the correlation
between real and synthetic parameter trajectories. Figure 3 shows
the mean correlation coefficients for the first five parameters of the
shape and appearance models in the synthesis of 279 sentences.
Also shown is the effect of varying the number of examples ex-
tracted and blended from the codebook in forming the synthetic
trajectories, described in Section 5.1.1.
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Fig. 3. The mean correlation coefficient between original and syn-
thesised parameter trajectories for the shape (upper) and appear-
ance (lower) models, averaged over the synthesis of 279 sentences.

Objective measures of the synthesiser output, such as the cor-
relation between parameter trajectories, are difficult to quantify. It
is unclear at what point the difference between real and synthetic
trajectories becomes significant. Some parameters will be better
correlated than others, however, the model parameters are not in-
dependent and good quality synthesis requires all parameters to
have a high correlation.

A perhaps more meaningful measure of performance is the
RMS error between points on the face in real and synthetic se-
quences, and the RMS error between pixel values in the real and
synthetic images. Figure 4 shows these errors for the same se-
quences used to create Figure 3.
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Fig. 4. Mean RMS error between synthesised and original land-
marks for the whole face (*) and mouth only (+), and the pixels
contained in the whole face (o) and the mouth only (�).

7. CONCLUSIONS

In this paper we have described three models that produce near-
photorealistic facial images and explained how these models can
applied to create near-videorealistic synthetic visual speech. Sec-
tion 6.1 gave results of a Turing test used to select the model that
produces the most natural facial movements. We are presently con-
ducting formal subjective testing to determine the intelligibility of
these models. In lieu of these results, Section 6.2 presented ob-
jective measures of performance. Caution should be taken when
using these as a direct measure of synthesis performance since the

same sentence spoken more than once by the same talker will itself
never be identical. Demos of the system can be found at
http://www.facial-animation.co.uk.
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