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Speech-Driven Conversational Agents using Conditional
Flow-VAEs
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Figure 1: Our method uses Conditional Flow-VAEs to model the complex, many-to-many relationship between the speech signal and
body gesture. Our approach works equally well for monologue and dyadic conversation, with a unified model providing compelling
animation for both speaking and listening modalities.

ABSTRACT
Automatic control of conversational agents has applications from
animation, through human-computer interaction, to robotics. In in-
teractive communication, an agent must move to express its own
discourse, and also react naturally to incoming speech. In this pa-
per we propose a Flow Variational Autoencoder (Flow-VAE) deep
learning architecture for transforming conversational speech to body
gesture, during both speaking and listening. The model uses a nor-
malising flow to perform variational inference in an autoencoder
framework and is a more expressive distribution than the Gaussian
approximation of conventional variational autoencoders. Our model
is non-deterministic, so can produce variations of plausible gestures
for the same speech. Our evaluation demonstrates that our approach
produces expressive body motion that is close to the ground truth
using a fraction of the trainable parameters compared with previous
state-of-the-art.

CCS CONCEPTS
• Computing methodologies → Continuous models; Supervised
learning by regression; Neural networks; Motion processing.

KEYWORDS
normalising flows, variational autoencoder, body animation, speech
driven
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1 INTRODUCTION
Speech gesturing encompasses the motions of the body that ac-
company speech, including movements of the head, arms and torso.
Gestures play a key role in human communication by conveying mes-
sages that are complementary to speech, providing information about
the semantic content of utterances, emotion, and emphasis [De Ruiter
et al. 2012; Kendon 1994; Mcneill 1985; McNeill 1992]. In con-
versational speech, gestures may facilitate speech understanding
and are critical to natural interaction and turn-taking [Maatman
et al. 2005]. They are used for expressing feedback during listen-
ing (eg. nodding) [Wagner et al. 2014] and are indicative of levels
of understanding and agreement. Without natural speech gesturing,
the communicative extent of conversational agents is limited and
perceived realism is reduced [Ennis et al. 2010].

In this work, we seek to model the relationship between speech
and upper body gesture in dyadic conversation. We automatically
generate realistic body animation from just an audio signal and an
indication of who is talking. This work has applications in character
animation, social robotics and driving conversational agents.

The relationship between speech and gesture is complex and
many-to-many; the same phrase may be connected to any number
of gestures, and similar gestures may occur during different utter-
ances. Speech and body events may occur asynchronously, and the
onset of a gesture very often appears prior to the realisation of the
speech [Kendon 1972; Wagner et al. 2014]. Gesture is also idiosyn-
cratic, and we each express ourselves uniquely. These factors make
speech-driven gesture generation particularly challenging.

We pose the problem of speech gesture estimation as: given an
input sequence of interactive conversational speech, automatically

1
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generate the corresponding body motion for one of the speakers,
whilst speaking and listening. Probabilistic generative models are
appealing for this task, as they provide a statistical model of the
data, usually in the form of a probability density. This allows for a
non-deterministic output for any input, which is well suited to the
complex relationship between speech and gesture.

One such model is the generative variant of an autoencoder, the
Variational Autoencoder (VAE), which learns a distribution that
can be sampled to generate new examples. VAEs typically approxi-
mate the latent space with a Gaussian distribution for its simplicity
and efficiency. However, a simple Gaussian may lack the expres-
siveness to accurately capture the complex true latent distribution,
which can impact on the generative capacity of the model [Cre-
mer et al. 2018; Mescheder et al. 2017]. Flow Variational Autoen-
coders (Flow-VAEs) [Bhattacharyya et al. 2019] overcome this lim-
itation by use normalising flows [Kingma and Dhariwal 2018] to
model the distribution of the variational latent space.

Normalising flows transform a complex distribution to a simpler,
typically Gaussian, distribution through a chain of bijective and
differentiable transformations, and have recently been successfully
applied to speech gesture estimation [Alexanderson et al. 2020].
However, flows are relatively computationally demanding. By em-
bedding flows in an autoencoder framework, we are able to speed up
training time and reduce model complexity while achieving human-
like gesturing.

We extend monologue approaches and introduce conditional
Flow-VAEs for estimating speech gestures from dyadic speech by
augmenting the control signal with an indication of conversational
role. Our model predicts body gestures relating to speaking and
listening, as well as cross-talk and the ambient movements between
speech activity. Our main contributions can be summarised as: 1)
We introduce a speech body gesture model for conversational agents,
which estimates upper body motion for both talking and listening;
2) We introduce a speech activity indicator input which allows us
to control for conversational role; 3) We propose a new Flow-VAE
architecture with a novel loss term for speech gesture generation; and
4) We propose a set of summary statistics for qualitatively evaluating
the behaviour of conversational agents.

Our results can be seen in the supplementary material and our
code is available at {withdrawn for anonymity}.

2 RELATED WORK
2.1 Audio-Driven Body Pose Estimation
The first automated approaches for driving body pose from speech
were rule-based [Cassell et al. 1994, 2004; Hartmann et al. 2005;
Marsella et al. 2013]. Rule-based techniques were mostly concerned
with semantic aspects of human gesturing. With limited fidelity,
these approaches tended to lack realism.

Early data-driven approaches were based on probabilistic mod-
elling. Neff et al. [Neff et al. 2008] computed the probability that
a body gesture from a library of gestures is to be generated, con-
ditioned on context. Chiu and Marsella [Chiu and Marsella 2014]
used Gaussian process latent variable models to learn a mapping
from speech to hand gestures through an intermediate representation
of gesture annotation. Levine et al. [Levine et al. 2009] trained a

hidden Markov model on prosody features. This idea was later inte-
grated into a reinforcement learning framework [Levine et al. 2010].
Exposing the underlying probability distribution of body motion
conditioned on speech is desirable as sampling this distribution gen-
erates non-deterministic output. However, the Gaussian assumptions
of these prior works are limiting.

Naturally, a new wave of solutions arrived as deep learning algo-
rithms developed. For example, Long Short Term Memory (LSTM)
models were trained to animate a skeleton along with audio from a
music signal originating from piano and violin in [Shlizerman et al.
2018], and a recurrent network with an encoder-decoder structure
was used for gesture generation in [Ferstl and McDonnell 2018].
Generative Adversarial Networks (GANs) have been used to train
co-speech gesture models in a variety of ways. Pang et al. [Pang et al.
2020] trained a GAN using an autoregressive generator and a sinu-
soidal activation function to mimic periodic behaviour [Sitzmann
et al. 2020]. A Recurrent Neural Network (RNN) based generator
was trained using multiple adversaries in work by Ferstl et al. [Ferstl
et al. 2019]. They additionally classified gesture phase, which was
subsequently used to train one of the discriminators. The adversarial
training paradigm by Ginosaur et al. [Ginosar et al. 2019] learned
to automatically control 2D keypoints. They used data taken from
in-the-wild videos. Yoon et al. [Yoon et al. 2020] used an adversarial
training scheme to learn body motion given inputs corresponding to
speech text, audio, and speaker identity.

The recent GENEA Gesture Generation Challenge [Kucherenko
et al. 2020], delivered a competitive array of methods for predicting
body gesture from audio speech, and evaluated them against one-
another in a fixed evaluation framework. One of the best performing
techniques [Korzun et al. 2020] used both audio and text input to
train an attention-based sequence-to-sequence translation model, and
was based on the work of [Kucherenko et al. 2019; Yoon et al. 2019].
Another of the best-performing methods was based on normalising
flows [Alexanderson 2020; Alexanderson et al. 2020]. This was an
auto-regressive technique for estimating the probability distribution
of the next pose in a sequence conditioned on characteristics of the
motion (eg. hand height, speed and radius). Our approach is inspired
by this work, and we discuss more details in Section 3.2.

Most work has been limited to estimating co-speech gestures
for a single speaker. However, recent work by Ahuja et al.[Ahuja
et al. 2020] instead learned a gesture space and a per-speaker style
embedding. To estimate body pose, the gesture space was sampled
conditioned on some speech and a style embedding. We instead
focus on modelling body motion during conversational interaction
between two speakers.

There has been previous work on predicting gesture in dyadic set-
tings. For example [Greenwood et al. 2017] train bi-directional LSTMs
for predicting head pose, and [Jonell et al. 2020] use normalising
flows for estimating facial gesture in conversational speech. For
body pose, [Yang et al. 2020] construct a motion graph that is
searched based on characteristics of the target audio speech and
[Ahuja et al. 2019] propose an attention-based model for switch-
ing between monadic and dyadic functions. Instead, our method
augments the control signal with an indication of conversational
role.

2
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2.2 Normalising Flows and VAEs
Normalising Flows and VAEs have previously been combined in
different ways. For example, Gritsenko et al. [Gritsenko et al. 2019]
proposed a variational denoising autoencoder in which the encoder
takes the form of a normalising flow. [Ziegler and Rush 2019] used
normalising flow-based priors in the latent space of unconditional
variational autoencoders for discrete distributions. [Mahajan et al.
2020] used normalising flows for modelling joint complex distribu-
tions in the latent space for image captioning. The conditional flow
variational autoencoder developed by Bhattacharyya et al. [Bhat-
tacharyya et al. 2019] learns conditional priors based on normalising
flows to model distributions in the latent space of Conditional Vari-
ational Autoencoders (CVAEs). Our model is most similar to this
architecture, and we provide details of the key differences in Sec-
tion 3.

3 METHOD
In this section we introduce a conditional Flow Variational Autoen-
coder (Flow-VAE) for speech-driven gesture animation. We include
related work to provide technical background.

3.1 Variational Autoencoders
Variational Autoencoders (VAEs) are generative variants of an au-
toencoder that describe observations in the latent space in a prob-
abilistic manner. Given inputs x, the encoder, 𝑞𝜙 (h|x), learns the
parameters of a Gaussian distribution that is used to approximate
the posterior distribution 𝑝 (h|x); where 𝜙 are the encoder network
weights and biases, and h is the latent space. The decoder, 𝑑𝜃 (x|h),
maps a sample ℎ from the variational distribution back to a distribu-
tion on the input domain, with network weights and biases 𝜃 .

VAEs are powerful generative models. However, a major limita-
tion is that it is not possible to realise the true posterior distribution
using a Gaussian variational distribution [Hoffman 2017; Rezende
and Mohamed 2015]. Instead, Flow-VAEs use normalising flows for
variational inference in an autoencoder framework.

3.2 Normalising Flows
Normalising flows provide a highly flexible method for transform-
ing a simple distribution (E.g. Gaussian) to a more complex dis-
tribution through a series of invertible and differentiable transfor-
mations [Bhattacharyya et al. 2019; Kingma and Dhariwal 2018;
Rezende and Mohamed 2015]. The goal is to learn a transformation
𝑓 : R𝐷 −→ R𝐷 , of a complex distribution H to a simple base distribu-
tion Z ∼ N(0, I), that is typically Gaussian. The transformation 𝑓
is non-linear and bijective, and is constructed by chaining together
a flow of 𝐾 simpler sub-transformations: 𝑓𝑘 : R𝐷 −→ R𝐷 , where
𝑘 ∈ 1, . . . , 𝐾 .

z ≈ z𝐾 = 𝑓𝐾 (𝑓𝐾−1 (...𝑓1 (z0))) (1)

h = 𝑓 −1 (z) = 𝑓 −11

(
𝑓 −12

(
...𝑓 −1𝐾 (z)

))
(2)

In Equation 1, z0 = h, the latent distribution. One can efficiently
sample from the normal distribution, Z, and transform to the domain
of H using Equation 2. Since 𝑓 is invertible, the exact log-likelihood
of a data sample h may be computed using the change-of-variables

formula [Henter et al. 2020]:

ln𝑝𝜓 (h) = ln𝑝N (z𝐾 ) +
𝐾∑︁
𝑘=1

ln
����det

𝛿z𝑘
𝛿z𝑘−1

���� , (3)

where 𝑝N is the probability density of the base distribution, 𝜓 are
the model parameters, and z𝑘 is the result of the sub-transformation
𝑓𝑘 . The parameters of the flow can be trained using a gradient-based
optimisation framework by maximising the log-likelihood of the
training data.

The set of transformations used in this work are called Motion
Glow (MoGlow), which were developed by [Kingma and Dhariwal
2018] and extended to an autoregressive architecture by [Henter
et al. 2020]. Each flow step, 𝑓𝑘 , has three sub-steps. The first two,
Actnorm and Linear, are parametric affine transformations, and the
third, Affine Coupling, is a non-linear transformation of which the
parameters are learned using a neural network (Figure 3). Alexander-
son et al. [Alexanderson et al. 2020] opted for LSTMs in this final
sub-step, which we also adopt in this work.

MoGlow is an autoregressive model used for estimating the next-
step distribution of a sequence, h = [h0, . . . , h𝑇 ]. Autoregression is
achieved by feeding previous poses, h𝑇−𝜏 :𝑇−1 as additional inputs to
the LSTM in each step of the flow. Other conditioning variables can
also be fed into the LSTM for controlling properties of the output.

3.3 Conditional Flow-VAEs
Flow-VAEs combine VAEs and conditional normalising flows. They
achieve variational inference by directly maximising maximising
the log-likelihood in the latent space using a normalising flow. Since
the encoder is trained with the flow, it generates a distribution that
is more easily transformed to a Gaussian distribution, allowing for
a simpler and shorter flow (with faster training) to achieve realistic
results. Figure 2 shows the Flow-VAE framework during training.
Given input x, the encoder, 𝑞𝜙 (h|x), learns a compressed latent rep-
resentation, h, from which the decoder, 𝑑𝜃 (x|h), maps back to the
input space. Simultaneously, a normalising flow, 𝑓𝜓 , is trained to
transform the distribution of the latent space, H, to a normal distri-
bution Z = N(0, I). Conditioning is performed by feeding a control
signal to the affine coupling sub-transformation in each step of the
flow, following the implementation of MoGlow [Alexanderson 2020;
Henter et al. 2020]. Figure 3 illustrates this process for flow step
𝑓𝑘 . Note that, unlike regular conditional VAEs and previous work
on Flow-VAEs [Bhattacharyya et al. 2019], there is no condition-
ing input to the autoencoder in our model, and all conditioning is
performed by the flow,

To produce temporally cohesive gestures, the Flow-VAE is au-
toregressive. The model is trained to estimate the next pose given
speech, conditioning and pose information from the previous 𝜏
frames (together with speech and conditioning from the future 𝛾
frames). During training time the control signal at frame 𝑡 , c𝑡 , is
composed of the previous 𝜏 frames of gesture data, x𝑡−𝜏,...,𝑡−1, a win-
dow of speech, s𝑡−𝜏,...,𝑡+𝛾 , and a window of conditioning variables
a𝑡−𝜏,...,𝑡+𝛾 (see Section 4.3). The control signal is fed into the affine
coupling sub-step in each flow step (Figure 3). Since speech and ges-
ture production may be asynchronous [Butterworth and Hadar 1989],
the model must take a window of audio speech with look-ahead to
trigger motions that occur ahead of the audio.

3
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⇠ N (0, I)

Figure 2: Flow-VAE at training time. The encoder generates
a latent representation, h, of body pose x. A normalising flow
transforms H to a Gaussian distribution, Z, conditioned on the
control signal, c. The sampled latent variables h′ are fed to the
decoder.

Figure 3: A forward flow step. The input z𝑘−1 is transformed
to z𝑘 via three sub-transformations. The control signal, c, is fed
to the final, affine coupling sub-transformation, illustrated on
the right. The input is split and one half is used for computing a
translation and scaling of the other half through an LSTM [Hen-
ter et al. 2020].

The Flow-VAE is trained by minimising the objective:

𝐿(x, c|𝜙, 𝜃,𝜓 ) = 𝛼 · NLL(h) + 𝐷rec (h) + 𝐷rec (h′) (4)

NLL(h) = − ln𝑝𝜓 (𝑞𝜙 (h|x, c)) (5)
𝐷rec (h) = MSE(x, 𝑑𝜃 (x|h)) (6)
𝐷rec (h′) = MSE(x, 𝑑𝜃 (x|h′)) (7)

The first term (Equation 5) is the negative log-likelihood of 𝑍 given
the encoded latent variables h and is computed using Equation 3.
This term is weighted by 𝛼 to account for the difference in scale to the
other loss terms. The second term (Equation 6) is the reconstruction
loss of the autoencoder, computed as the Mean Squared Error (MSE)

Figure 4: Flow-VAE at test time. Z is sampled to generate a
latent vector h′ conditioned by the input speech which is fed to
the decoder and converted to x′.

between input x and the decoded h, x′. The final term (Equation 7)
is another reconstruction loss, this time between input x and decoded
h′, which is sampled from the flow. This final term is novel to our
approach, and we observe that it improves the stability of training
and acts a form of regularisation.

Figure 4 shows the model at test time. A sample, zK, is randomly
generated from Z. Together with the control signal, c, the sample
is transformed through the inverse flow, 𝑓 −1, to h′, which is fed to
the decoder to get a prediction, x′. At test time, the control signal
is composed of the previous 𝜏 frames of estimated gesture data,
x′𝑡−𝜏,...,𝑡−1, along with the speech and conditioning information
(Section 4.3).

4 DATA AND PREPROCESSING
There are no conversational speech and 3D motion datasets that
are publicly available for training our model. Existing speech and
body datasets contain monologue [Ferstl and McDonnell 2018].
We collected a rich speech and gesture dataset, with humble non-
specialist hardware and a setup that is easy to replicate for future
collaborative growth.

4.1 Dataset
A male speaker (Speaker A) was filmed conversing with a female
speaker (Speaker B) who was off-camera. Speaker A was filmed be-
fore a green backdrop from three synchronised views (see Figure 5).
The video was recorded at 25fps and 1080p resolution with 48kHz
audio.

The dataset contains ≈3.5 hours of dialogue and is made up of
three parts: Part 1 (1 hour) contains unscripted conversation between
the two speakers. Part 2 (1 hour) is a debate on a topic that was
chosen from a list by Speaker A. Speaker B argued the opposing
view to Speaker A to incite a heated discussion. Part 3 (1.5 hours)
is a performance of scripted emotional monologue vignettes, which
were included to provoke a broader range of affective states.

4.2 Body Pose Representation
We locate 2D keypoints independently in each of the three cam-
era views using the monocular body pose detection system Open-
Pose [Cao et al. 2019]. We calibrate the cameras using a checker-
board target, and project the 2D keypoints from each view into 3D
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Figure 5: A frame from each camera view (top), and the corre-
sponding pose at 0 and ±30 degrees from frontal pose (bottom)
shown on a reference skeleton.

world space by triangulation. If a keypoint does not appear in all
three views, it is omitted. We remove lower body keypoints, and we
discard the hand keypoints as these were not reliably tracked. The
head is considered a rigid object, so we reduce the rotations of the
eyes and ears to a single rotation. We represent body gesture using
the 9 remaining keypoints as illustrated in Figure 5: sternum; left and
right shoulders, elbows and wrists; nose; and head. Poses are trans-
lated so that the base of the spine rests at the world origin, (0, 0, 0).
Since the data were recorded over multiple sessions (on the same
day), the speaker’s global orientation varies over time. We frontalise
the pose by using orthogonal procrustes alignment [Schönemann
1966] to compute the rotation, R, that minimises the distance be-
tween the hip and shoulder landmarks of a clip, to the corresponding
landmarks of a frontal reference skeleton. R is computed and applied
once per clip, and a clip is defined as a natural break in the capture
or a 13 minute segment, whichever is shortest.

For representing pose, Cartesian coordinates [Ahuja et al. 2020;
Ginosar et al. 2019], or a transformation of these (eg. using PCA [Shliz-
erman et al. 2018]), are often used. However, keypoints explicitly
encode the body proportions of the speaker. Whilst we believe it
valuable to model the gestural style of a speaker, we do not wish to
encode physical attributes. Instead, we define pose as the angle of
each joint with respect to a reference neutral pose.

At frame 𝑡 , we represent pose by 9 joint rotations that represent
the shortest angle between each limb and the corresponding limb on
a reference skeleton in a T-pose. Euler angles suffer from gimbal
lock, and quaternions are discontinuous [Zhou et al. 2019], so we
use the 6DoF rotations used by [Pang et al. 2020]. In practice, the 6
elements are the first two rows of the 3 × 3 rotation matrix. We stack
these elements to form a pose vector, xraw

𝑡 = [𝑥0,0, . . . , 𝑥8,5] which is
of dimension 9 (joints)× 6 (elements) = 54. The final three elements
of the rotation matrix can be recomputed as the cross product of the
two rows.

Not all keypoints are visible in all three camera views in all frames.
We postprocess the joints, xraw, using a denoising autoencoder [Lu
et al. 2013], which both temporally smooths the joint trajectories

and imputes these missing rotations. At training time we ignore
frames with missing joints and only use those with all keypoints
visible in all views. The autoencoder takes a stacked window of 5
frames of rotations as input. 10% of these rotations are set to zero
and the autoencoder is trained to reconstruct the complete set of
rotations by minimising the MSE between the reconstructed and
the original rotations. We slide the 5-frame window, shifting by one
frame at a time. The encoder is a feed-forward network with three
layers containing 70, 50 and 30 nodes respectively, and the decoder
mirrors this structure. We use batch normalisation after the first layer,
and Rectified Linear Unit (ReLU) activations between layers. The
model was trained for 250 epochs using the Adam optimiser and
a learning rate of 0.001. The trained model is used for processing
all of the raw joint rotations to generate a complete set of rotations,
x = [x0, . . . , x𝑇 ], where 𝑇 is the number of frames in the dataset,
which forms the training data for all subsequent models. Two 300s
segments are held out for testing and validation.

4.3 Control Signal
To generate co-speech gestures that are synchronous with Speaker
A’s speech and that exhibit natural behaviour throughout the inter-
action with Speaker B we must provide the system with acoustic
information that is sufficiently rich for learning the speaker’s dy-
namics, and an indication of the speaker’s conversational role. Poses
from previous frames must also be included to enable the model to
estimate temporally consistent motion. Thus, the control signal is
a concatenation of the previous gesture data, speech and speaker
activity features, c = [x; s; a], which are defined below.

4.3.1 Speech Audio. We extract 27-channel mel-frequency spec-
trograms from 40ms windows of speech to match the frame rate of
the video. This gives a set of speech vectors s = [s0, . . . , sT]𝑇 , of
dimension 𝑇 × 27 that align with the gesture data x.

4.3.2 Speech Activity Indicator. We provide the system with
a single audio track that contains the dialogue between Speakers
A and B. The speech activity indicator specifies, for each frame,
which speaker the audio belongs to. This information is represented
as a 4D one hot encoding with channels corresponding to: Speaker
A; Speaker B; Both or; None, and results in a set of vectors a =

[a0, . . . , aT]𝑇 with dimension 𝑇 × 4.

4.4 Data Augmentation
We augment our dataset by mirroring the gesture data along the
vertical y-axis. The control signal is duplicated for the mirrored joint
rotations.

5 FLOW-VAE DESIGN AND OPTIMISATION
We optimised our the Flow-VAE by evaluating performance on the
validation set. We first tuned the hyperparameters of the autoencoder.
This was performed independently of the flow by removing the
variational inference step and finding an autoencoder architecture
that accurately reconstructs the input gesture data. A symmetric
feed-forward network with two layers, respectively containing 105
and 35 ReLUs, was sufficient.

The autoencoder architecture was fixed and a grid search was
used to tune the flow. The flow was initialised on the implementation
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of MoGlow by [Alexanderson et al. 2020], which contained 𝐾 = 16
flow steps and 𝑁 = 800 units in the LSTM of the affine-coupling
transformation in each sub-step. We varied 𝐾 and 𝑁 and reviewed
both the loss and animation quality of the validation set, and observed
good results with 𝐾 = 8 and 𝑁 = 400. This is half the size of the
MoGlow model, yet we achieved no clear improvement using a
larger model.

The flow is autoregressive and is fed a 5 frame (200ms) window
of gesture data that leads up to but does not include the current
frame. This is concatenated with a 30 frame window of the control
signal, spanning 5 frames (200ms) of the past and 25 frames (1s) of
the future. Previous work found that 1s of future audio context was
necessary for capturing the asynchronous production of speech and
gesture [Alexanderson et al. 2020]. Data dropout was applied to the
gesture data elements of the control signal at a rate of 0.4.

We trained all components of the Flow-VAE simultaneously us-
ing the Adam optimiser with Noam learning rate decay. Maximum
and minimum learning rates were set to 1.5 × 10−3 and 1.5 × 10−4
respectively. Models were trained for 300 epochs and 𝛼 was set to
5 × 10−4 when computing the loss (Equation 4).

6 EXPERIMENTS
We make an evaluation by comparing our method against contem-
porary approaches on a 300𝑠 held out sequence. The sequence is a
continuous conversational exchange that contains Speaker A speak-
ing and Speaker B speaking (while Speaker A is listening). There
are also periods of cross-talk, where both speakers are speaking, and
periods of silence.

It is difficult to quantitatively evaluate speech-driven gesture es-
timation since the output must display the characteristics of the
speaker’s motion rather than match a ground truth sequence frame-
by-frame. We make a qualitative comparison and present summary
statistics in Section 6.2.

6.1 Baseline Systems
6.1.1 MoGlow. We compare against the normalising flow ap-
proach taken by MoGlow [Alexanderson et al. 2020]. Although
originally developed for monologue, the authors demonstrated that
their system can be controlled by various conditioning signals such
as speed, symmetry, and spatial coverage. We replace these condi-
tioning signals with speech activity indicators, matching the inputs
to our system defined in Section 4.3. The model was trained for 300
epochs, using the original MoGlow hyperparameters and optimisa-
tion schedule.

6.1.2 CVAE. We also compare against a CVAE. The encoder and
decoder both have 5 LSTM layers, each with 200 hidden units with
20% dropout. The conditioning signal is the combined audio features
and the speech activity described in Section 4.3. The reconstruction
loss is MSE, and the total loss adds the Kullback–Leibler Divergence
(𝐷𝐾𝐿). The CVAE network is trained using Adam, with a learning
rate of 10−4. Training continues until no further loss reduction with
a patience of 10 epochs, a total of 50 epochs.

6.2 Qualitative Evaluation
Making judgements on the quality of an animation is difficult by
comparing time series alone. One would not expect a model to

predict a motion close in value to a ground truth sequence. Rather,
one would expect the characteristics of the motion to be faithful to
the ground truth. We present a qualitative comparison of the time
series and a set of summary statistics to evaluate the performance of
the systems against ground truth motion (GT).

We evaluate motion of the 3D joint keypoints since it is arguably
more intuitive to consider the distance between points than rotation
angles. We find the mean pose for all ground truth data and calculate
the Euclidean distance from each landmark to its mean, and report
that distance in real world centimetres. Figure 6 shows the time series
plots for each of GT (a), our method Flow-VAE (d), MoGlow (g),
and finally CVAE (j). In the same order, we show waisted box plots
for each comparative method to display summary statistics for each
joint involved in the motion. Finally, in the right most column of
Figure 6, we render a perspective projection of the skeleton hierarchy
at every second in the test sequence, that is, 300 frames of motion
each overlaid to give a visual impression of the physical space that
the motion occupies.

By examining Figure 6, we can make some observations regarding
the character of the motion. Our first observation is that CVAE does
not appear to be as expressive as the ground truth sequence, or the
other comparative methods. Comparing Figures 6(c) and 6(l) clearly
shows the body as a whole is less active, whereas the comparison
with our method in Figure 6(f) shows we are able to model motion
that occupies a very similar space.

It is not surprising that the largest space is occupied by the most
active joints, the shoulders to wrists. Viewing the interquartile range
in Figures 6(b) and 6(e) shows our method makes gestures at a simi-
lar scale to the ground truth. Interestingly, the ground truth shows
a bias to left handed gesturing, yet our result reverses this. Recall
from Section 4.4 that we augment the motion data by mirroring, so
left right biases may exchange sides. Particularly large gestures are
recognised as outliers in the box plots, and high points in the time
series plots. We note that MoGlow does not appear to perform as
well in this regard.

An important mode of dyadic visual speech is rigid head pose.
The time series plots in Figures 6(a) and 6(d) show rigid head pose
from our method matching the characteristics of the ground truth
very closely. The baseline CVAE performs least well here, with
rather limited head pose.

6.3 Speaking and Listening
When listening, the avatar must realistically transmit back-channel
signals to give the appearance of engagement with the off camera
interlocutor. This is an important part of the behaviour of a conver-
sational agent [Greenwood et al. 2017], so we further explore the
behaviour of our model during listening.

Our held out data is labelled for speech activity. We separate the
Speaker A activity to speaking and listening modes. For each of these
modes we then take the first derivative of the distance from the mean
pose. The derivative is chosen here to properly show the difference
in motion activity rather than the space occupied by the speaker. For
example, while Speaker B is talking the subject may hold a pose for
a number of seconds. We show this view for GT in Figure 7, and
for our method in Figure 8. Our model shows very similar statistical
changes when switching from speaking and listening modes, when

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Speech-Driven Conversational Agents using Conditional Flow-VAEs Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0 50 100 150 200 250 300
time (s)

0

10

20

30

40

50

di
st

an
ce

 (c
m

)

(a)

0 10 20 30 40 50
distance (cm)

sternum
l_shoulder

l_elbow
l_wrist

r_shoulder
r_elbow
r_wrist

nose
head

(b)

gr
ou

nd
 tr

ut
h

(c)

0 50 100 150 200 250 300
time (s)

0

10

20

30

40

50

di
st

an
ce

 (c
m

)

(d)

0 10 20 30 40 50
distance (cm)

sternum
l_shoulder

l_elbow
l_wrist

r_shoulder
r_elbow
r_wrist

nose
head

(e)

flo
w-

va
e

(f)

0 50 100 150 200 250 300
time (s)

0

10

20

30

40

50

di
st

an
ce

 (c
m

)

(g)

0 10 20 30 40 50
distance (cm)

sternum
l_shoulder

l_elbow
l_wrist

r_shoulder
r_elbow
r_wrist

nose
head

(h)

m
og

lo
w

(i)

0 50 100 150 200 250 300
time (s)

0

10

20

30

40

50

di
st

an
ce

 (c
m

)

(j)

0 10 20 30 40 50
distance (cm)

sternum
l_shoulder

l_elbow
l_wrist

r_shoulder
r_elbow
r_wrist

nose
head

(k)

cv
ae

(l)

Figure 6: Qualitative assessment sequence. For each of ground truth, Flow-VAE, MoGlow and CVAE, we show the distance from the
mean pose as a time series, the summary statistics box plot, and a perspective projection of the pose at every 1 second interval. These
views give a good impression of the comparative approaches in our experiments. They show the scale of the motion, timing of events
and frequency of activity. It is immediately apparent that the CVAE model is less active than the other models and the ground truth.
We can also see our method produces animation close to the ground truth, particularly for the most active lower arms.
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Figure 7: Comparing statistics for speaking and listening in the
ground truth. Using the speech activity label, we divide the data
to speaking and listening segments. Here we show box plots
for the first derivative of the distance to the mean pose. This
provides a sense of the level of activity for during each speaking
mode.
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Figure 8: Comparing statistics for speaking and listening for
Flow-VAE. Again we show box plots for the first derivative of
the distance to the mean pose for both speaking and listening
modes. Here we can see, in a similar manner to the ground truth,
activity differs between the two modes.

we compare to the same ground truth sequence. In particular, when
listening to Speaker B, the actor moves towards the mean pose, so
the gradients (in both cases) become negative.

7 DISCUSSION
An example of the retargeted motion can be seen in Figure 1, which
shows the animated pose at every 38 frames of a 15s duration clip
along with the audio waveform and a transcription of the speech.
Video examples of the animated results can be found in our supple-
mentary material. It is clear that the Flow-VAE successfully repli-
cates gesturing style from the ground truth and produces new mo-
tions with recognisable characteristics of the speaker. Our model
generates animation that is expressive, and gestures that are diverse
but plausible for the speech. Our model generates smaller move-
ments that are closer to the mean pose on Speaker A when Speaker
B is speaking, which is both intuitively correct and consistent with
ground truth behaviour.

There are 34M, 180M and 3M trainable parameters in the Flow-VAE,
MoGlow and CVAE respectively. Our Flow-VAE contains 80% fewer

trainable parameters than MoGlow, and this introduces a substan-
tial reduction on training time. CVAE has fewer parameters, but
generates less realistic animation.

7.1 Limitations
Since the model lacks any notion of semantics, it typically produces
beat gestures that coincide with the timing and intensity of speech.
On occasion it also generates head nodding at plausible locations, but
typically misses head nods during the short statements of agreement
when Speaker B is talking. Our dataset is biased towards Speaker A,
and does not contain many long sequences of Speaker B’s speech.
We expect that a more balanced dataset might further improve the
diversity of gestures that our model generates during listening.

8 CONCLUSION
We have presented a technique for automatically animating speech
gestures from audio for conversational agents using a Flow-VAE
architecture. Flow-VAEs overcome the limitations of conventional
VAEs by using normalising flows for variational inference. By em-
bedding normalising flows in an autoencoder framework, we are
able to speed up training time and reduce model complexity com-
pared to using normalising flows in isolation, and generate more
expressive animation than conventional VAEs. Flow-VAEs are non-
deterministic and generate natural looking speech gestures for both
speaking and non-speaking segments of a dyadic conversation. A
qualitative evaluation indicated that the estimated behaviours are
consistent with ground truth motion.
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