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ABSTRACT

This paper introduces a method for automatic redubbing of
video that exploits the many-to-many mapping of phoneme
sequences to lip movements modelled as dynamic visemes [1].
For a given utterance, the corresponding dynamic viseme se-
quence is sampled to construct a graph of possible phoneme
sequences that synchronize with the video. When composed
with a pronunciation dictionary and language model, this pro-
duces a vast number of word sequences that are in sync with
the original video, literally putting plausible words into the
mouth of the speaker. We demonstrate that traditional, many-
to-one, static visemes lack flexibility for this application as
they produce significantly fewer word sequences. This work
explores the natural ambiguity in visual speech and offers in-
sight for automatic speech recognition and the importance of
language modeling.

Index Terms— Audio-visual speech, dynamic visemes,
acoustic redubbing.

1. INTRODUCTION

Redubbing is the process of replacing the audio track in a
video. This paper focuses on redubbing speech, which in-
volves substituting an utterance with another that, when com-
posited with the original video, appears to be in sync and con-
sistent with the movements of the visible articulators. The pri-
mary application of speech redubbing is translating movies,
television shows and video games for audiences that speak a
different language to the original recording. It is also com-
mon to replace speech with different dialogue from the same
language. For example, a movie may be edited for television
by redubbing offensive phrases. Typically, the new dialogue
is meticulously scripted in an attempt to select words that ap-
proximate the lip-shapes in the video, and a skilled voice ac-
tor ensures that the new recording synchronizes well with the
existing video. Humans are tuned to subtle discrepancies be-
tween audio and video, so this is a challenging task.

Automatic speech redubbing is an unexplored area of
research. It shares similarities to automatic recognition of
visual speech in that it involves decoding word sequences
from a visual speech signal. However, the goal of this work
is to suggest visually consistent alternative word sequences

rather than predict the original speech. This paper proposes a
novel method for automatic speech redubbing using dynamic
visemes to represent the relationship between visible artic-
ulator motion and the underlying acoustic units. Dynamic
visemes capture distributions of phonemes, so are a more
accurate and richer source of information than the traditional,
static visemes. A phoneme graph is constructed from the dy-
namic viseme sequence of an utterance, which is searched for
word sequences. The word sequences are ranked using a lan-
guage model. We compare this approach to using traditional,
static visemes for redubbing.

2. REPRESENTING VISUAL SPEECH

2.1. Static Visemes

Until recently, visemes (“visual phonemes”) were proposed
as the units of visual speech [2]. They were identified by
grouping phonemes based on their visual similarity such that
phonemes that are produced with a similar visible articulator
configuration formed a single viseme class. Typical viseme
groupings include the closed mouth class, /p, b, m/, and the
lower lip tuck class, /f, v/. See Table 1 for some example
viseme mappings. Viseme classes are formed either subjec-
tively [2–9] or objectively [10–14] using a range of different
speakers, stimuli, and recognition/classification tasks. How-
ever, no unequivocal mapping from phonemes to visemes
exists in terms of both the number and composition of the
classes. This is because there is no simple many-to-one map-
ping from phonemes to visual speech. Visemes defined as
phoneme clusters do not account for visual coarticulation,
which is the influence of neighboring speech on the position
of the articulators. Coarticulation causes the lip pose for the
same sound to appear very different visually depending on the
context in which it is embedded and at times the articulation
of some sounds may not be visible at all. For this reason, the
traditional definition of a viseme functions as a poor unit of
visual speech.

2.2. Dynamic Visemes

A better model of visual speech is dynamic visemes [1]. Dy-
namic visemes are speech movements rather than static poses



and they are derived from visual speech independently of
the underlying phoneme labels. Given a video containing
a talking face, dynamic visemes are learned as follows: 1)
Track the visible articulators and parameterize into a low-
dimensional space. 2) Automatically segment the parameter-
ization by identifying salient points to give a series of short,
non-overlapping gestures. The salient points identified in this
step are visually intuitive and fall at locations where the artic-
ulators change direction, for example as the lips close during
a bilabial, or the peak of the lip opening during a vowel. 3)
Cluster the gestures identified by Step 2 to form dynamic
viseme groups such that movements that look very similar
appear in the same class. More details can be found in [1].
Identifying visual speech units in this way is beneficial as the
set of dynamic visemes describes all of the distinct ways in
which the visible articulators move during speech. Addition-
ally, dynamic visemes are learned entirely from visual data
and no assumptions are made regarding the relationship to
the acoustic phonemes.

Taylor et al. [1] found that dynamic visemes are a good
unit of visual speech for generating realistic speech anima-
tion. This paper uses dynamic visemes to look at the problem
of redubbing. For the remainder of this paper static visemes
refers to traditional units formed by clustering phonemes
(Section 2.1) and dynamic visemes refers to those described
in this section as defined by Taylor et al. [1].

2.3. The Many-to-Many Relationship between Phoneme
Sequences and Dynamic Visemes

There is a complex many-to-many mapping between phoneme
sequences and dynamic visemes. Different gestures that cor-
respond to the same phoneme sequence can be clustered
into multiple classes since they can appear distinctive when
spoken at variable speaking rates or in different contexts.
Conversely, a dynamic viseme class contains gestures that
map to many different phoneme strings. A valuable property
of dynamic visemes is that they provide a probabilistic map-
ping from speech movements to phoneme sequences (and
vice-versa) by evaluating the probability mass distributions.
Fig. 1 shows sample distributions for three dynamic viseme
classes. The work described in this paper takes advantage of
this property by sampling the phoneme string distributions
for a known sequence of dynamic visemes.

2.4. Phonetic Boundary Context

A dynamic viseme class represents a cluster of similar visual
speech gestures, each corresponding to a phoneme sequence
in the training data. Since these gestures are derived indepen-
dently of the phoneme segmentation, the visual and acous-
tic boundaries need not align due to the natural asynchrony
between speech sounds and the corresponding facial move-
ments. Taylor et al. [1] found that 90% of the visual speech
gestures spanned between two and seven phones or partial
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Fig. 1: A sampling of the phoneme string distributions for
three dynamic viseme classes. Labels /sil/ and /sp/ respec-
tively denote a silence and short pause.

m- ey+

ey- b+ b- iy+ iy- n+ n- k l ow+ ow- z+ z- d uh n+ n- dh ah l+ l- eh t er+ er-

101 24 97 110 81 19 125 145 110 68

76 90 56 115 14 133 84 140 10 99 124 12 145 115 14 28 84 140 10 61 35

ae hh+ hh ah l p p f f uh l iy iy f f l l eh t m m ey ey b b iy n n k l l ow ow z z d uh uh n dh dh ah ah l l eh eh t t er er

     ae        hh     ah  l        p            f        uh        l             iy           f             l        eh             t             m       ey        b         iy            n            k       l           ow            z       d   uh   n      dh  ah      l             eh        t         er 

DV

DV

AAM Parameter 1 AAM Parameter 2 AAM Parameter 3

AAM Parameter 1 AAM Parameter 2 AAM Parameter 3
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ae- hh ah l p+

14898
ae+ p- f uh+ uh- l iy+ iy- f+ f- l eh+ eh- t

69 97 14 116 20

     ae        hh     ah  l        p            f        uh        l             iy           f             l        eh             t             m       ey        b         iy            n            k       l           ow            z       d   uh   n      dh  ah      l             eh        t         er 

Fig. 2: Phonemes (PH) and dynamic visemes (DV) for the
phrase “a helpful leaflet”. Note that PH and DV boundaries
need not align, so phonemes that are intersected by the DV
boundaries are assigned a context label.

phones. For better modeling in situations where the bound-
aries are not aligned, the boundary phonemes are annotated
with contextual labels that signify whether the gesture spans
the beginning of the phone (p+), the middle of the phone (p∗)
or the end of the phone (p−) (see Fig. 2).

3. DATA CAPTURE AND PREPARATION

3.1. Audio-Visual Speech Database

In this work dynamic visemes were learned from the KB-2k
dataset, which contains an actor reciting 2542 phonetically
balanced sentences from the TIMIT sentences. The video
was captured in full-frontal view at 29.97 fps at 1080p using
a Sony PMW-EX3 camera over 8 hours. The actor was asked
to talk in a neutral speaking style and maintain, as far as pos-
sible, a fixed head pose. All sentences were annotated manu-
ally using the phonetic labels defined in the Arpabet phonetic
transcription code. The jaw and lips were tracked and param-
eterized using active appearance models (AAMs) providing a
20D feature vector describing the variation in both shape and
appearance at each video frame. These were automatically
segmented into ≈50000 visual speech gestures and clustered
to form 150 dynamic viseme classes using the approach in [1].



4. GENERATING ALTERNATIVE DIALOGUE

Given a viseme sequence, v = v1, . . . , vn, the goal is to pro-
duce a set of visually consistent word sequences, W , where
Wk = w(k,1), . . . , w(k,m), that when played back with the
original video of a person speaking, appear to synchronize
with the visible articulator motion.

4.1. Dynamic Visemes to Phonemes

The first step involves constructing a (directed acyclic) graph
which models all valid phoneme paths through the dynamic
viseme sequence. A graph node is added for every unique
phoneme sequence in each dynamic viseme in the sequence.
Edges are then positioned between nodes of consecutive dy-
namic visemes where a transition is valid, constrained by the
contextual labels assigned to the boundary phonemes as de-
scribed in Section 2.4. For example, if contextual labels sug-
gest that the beginning of a phoneme appears at the end of one
dynamic viseme, the next should contain the middle or end of
the same phoneme, and if the entire phoneme appears, the
next gesture should begin from the start of a phoneme. The
probability of the phoneme string with respect to its dynamic
viseme class is also stored in each node.

4.2. Alternative Dialogue from Static Visemes

For comparison, the use of traditional, many-to-one static
visemes for redubbing was also explored. Each phoneme in
a sequence is substituted with another from the same static
viseme class to generate a phoneme graph similar to that de-
scribed Section 4.1. A node is added for every phoneme that
appears in each static viseme class in the sequence and edges
are placed between each pair of consecutive nodes.

Unfortunately, most phoneme-to-static viseme mappings
are incomplete and only consider a subset of the phonemes,
typically clustering only consonants under the assumption
that vowels form their own class. Table 1 shows the two
(mostly) complete but very different mappings used in this
work as defined by Jeffers and Barley [3] and Parke and Wa-
ters [15] who identified 11 and 18 viseme classes respectively.

4.3. Phonemes to Words

The next step is to search the phoneme graphs for sequences
that form complete strings of words. For efficient phoneme
sequence-to-word lookup a tree-based index is constructed of-
fline, which allows any phoneme string, p = p1, . . . , pj , as a
search term and returns all matching words. This is created
using the CMU Pronouncing Dictionary [16].

A left-to-right breadth first search algorithm is used to
evaluate the phoneme graphs. At each node, all word se-
quences that correspond to all phoneme strings up to that node
are obtained by exhaustively and recursively querying the dic-
tionary with phoneme sequences of increasing length up to a

Author Static Viseme Mapping
/p b m/ /f v/ /dh th/ /ch jh sh zh/

Parke and /s z/ /d n t/ /l/ /g k ng hh er/
Waters [15] /r/ /w uh/ /uw/ /ao/ /iy

/aa/ /ae/ /ah/ /ih y/ /eh/
Jeffers and /p b m/ /f v/ /dh th/ /ch jh sh zh/
Barley [3] /s z/ /d n t l/ /g k ng/ /aw/ /oy ao/

/er ow r w uh uw/ /aa ae ah ay eh ey ih iy y/

Table 1: Many-to-one phoneme-to-static viseme mappings
defined by Parke and Waters [15] and Jeffers and Barley [3].

specified maximum. The probability of a word sequence is
calculated using:

P (w | v) =
m∑
i=1

logP (wi | wi−1) +

n∑
j=1

logP (p | vj). (1)

P (p | v) is the probability of phoneme sequence p with re-
spect to the viseme class and P (wi | wi−1) is calculated using
a word bigram language model trained on the Open American
National Corpus [17]. To account for data sparsity, the proba-
bilities are smoothed using Jelinek-Mercer interpolation [18].
The second term in Equation 1 is constant when evaluating
the static viseme-based phoneme graph.

A breadth first graph traversal allows for Equation 1 to
be computed for every viseme in the sequence allowing op-
tional thresholding to prune low scoring nodes and increase
efficiency. The algorithm also allows for partial words to
appear at the end of a word sequence when evaluating mid-
sentence nodes. The probability of a partial word is the max-
imum probability of all words that begins with the phoneme
substring [19], P (wp) = maxw∈wp P (w), where wp is the
set of words that start with the phoneme sequence wp, wp =
{w | w(1...k) = wp}. If all paths to a node cannot comprise a
word sequence, it is removed from the graph. Complete word
sequences are required when the final nodes are evaluated,
which can be ranked on their probability.

5. RESULTS

A set of short phrases ranging in length from 5 to 14 phonemes
were identified in the KB-2k dataset for which the dynamic
viseme sequence is known, and 50 of each length were sam-
pled. The number of unique word sequences was calcu-
lated using the methods described in Section 4 with dynamic
visemes (DV) and static visemes as defined by Jeffers and
Barley (JB) and Parke and Waters (PW). Phoneme-to-word
search was performed with no graph pruning such that a com-
prehensive list of word sequences could be attained for each
method. Fig. 4 shows the average number of word sequences
retrieved for variable length phrases using each method. It is
clear that DV produces orders of magnitude greater alterna-
tive word sequences than either static viseme approaches.



Fig. 3: Video frames from the phrase “clean swatches” and a sample of visually consistent alternative phrases identified by the
dynamic viseme-to-word sequence algorithm. The redubbed video can be seen at http://www.iainm.com/icassp2015-2377.mp4.

Fig. 4: The average number of word sequences retrieved
for variable length phrases for Parke visemes (red), Jeffers
visemes (green) and dynamic visemes (blue) on a log scale.

When using PW static visemes, 58% of the time the algo-
rithm fails to find any complete word sequences because the
search space is too small. Fail cases also occur using the JB
mapping 17% of the time. On average, mapping JB contains
3.5 phonemes per class, and PW just 1.9. For an average 10
phoneme phrase, JB allows ≈ 2.8 × 105 phoneme permu-
tations in which to search for word sequences, whereas PW
allows only 357 permutations, providing a more constrained
search space. The efficacy of this approach therefore depends
highly on the phoneme-to-viseme mapping used. Both map-
pings contain classes that are a mixture of vowels and conso-
nants, increasing the likelihood of producing a linguistically
invalid phoneme sequence since replacing a vowel with a con-
sonant can produce a long string of consecutive consonants,
which is uncommon in the English language. This is less
likely to occur using DV as the distribution of naturally occur-
ring phoneme sequences are contained within the units, and
phonetic boundary context labels support valid DV transitions
if the boundary intersects a phoneme.

To gauge how well a word sequence generated from dy-
namic visemes synchronizes with lip motion in the video the
Festival Speech Synthesis System [20] is used to generate an
audio track containing the phoneme string corresponding to
the word sequence. Phone durations are calculated by re-
timing the original phoneme durations corresponding to the
visual gestures in the training data such that they sum to the
length of the dynamic viseme segment in the video. The audio
track is composited with the video for visualization. The lips

appear to move in sync with the audio, despite the new word
sequence being completely different to the original dialogue.
For example, the phrase “clean swatches” can be redubbed
with word sequences such as “likes swats”, “then swine”,
“need no pots”, “tikes rush” and many others (see Fig. 3).
The generated word sequences contain a variable number of
phonemes and syllables yet remain visually consistent with
the video. This demonstrates the complex relationship be-
tween what we hear during speech and what we see. See the
supplementary online video to see this example and others.

6. DISCUSSION AND FUTURE WORK

This paper describes a method for automatically generating
alternative dialogues that synchronize with a video of a per-
son speaking. Dynamic visemes capture the many-to-many
mapping of visual to acoustic speech and are a data-driven
approach that explain this phenomena. The dynamic visemes
corresponding to a speaker’s lip movements are used to con-
struct a graph that describes a sampling of the phoneme
strings that could be produced with the articulator motion in
the video. A pronounciation dictionary is then used to find
the possible word sequences that correspond to each phoneme
string, and a language model is used to rank them. An acous-
tic speech synthesizer generates audio tracks corresponding
to the generated word sequences, which can be composited
with the original video, producing a synchronous, redubbed
video for inspection. The dynamic viseme-to-word search is
able to suggest thousands of alternative word sequences for
a video, which is far more than if traditional, many-to-one
static viseme clusters are used.

Dynamic visemes are a more accurate model of visual
speech that can generate visually plausible phonetic se-
quences with far greater linguistic diversity that maintain
audio-visual integrity and look perceptually correct.

An interesting insight of this work is that it highlights the
extreme level of ambiguity in visual-only speech recognition.
A sequence of lip motions can legitimately correspond to a
vast array of phoneme strings, so recognition is highly de-
pendent on the language model and contextual information.
Dynamic visemes are a more representative model of visual
speech that may in future be useful when incorporating visual
information for audio-visual speech recognition.

http://www.iainm.com/icassp2015-2377.mp4
http://www.iainm.com/icassp2015-2377.mp4
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