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Kronecker-Markov Prior
for Dynamic 3D Reconstruction

Tomas Simon, Jack Valmadre, Iain Matthews, Yaser Sheikh

Abstract—Recovering dynamic 3D structures from 2D image observations is highly under-constrained because of projection and
missing data, motivating the use of strong priors to constrain shape deformation. In this paper, we empirically show that the
spatiotemporal covariance of natural deformations is dominated by a Kronecker pattern. We demonstrate that this pattern arises as the
limit of a spatiotemporal autoregressive process, and derive a Kronecker Markov Random Field as a prior distribution over dynamic
structures. This distribution unifies shape and trajectory models of prior art and has the individual models as its marginals. The key
assumption of the Kronecker MRF is that the spatiotemporal covariance is separable into the product of a temporal and a shape
covariance, and can therefore be modeled using the matrix normal distribution. Analysis on motion capture data validates that this
distribution is an accurate approximation with significantly fewer free parameters. Using the trace-norm, we present a convex method to
estimate missing data from a single sequence when the marginal shape distribution is unknown. The Kronecker-Markov distribution, fit
to a single sequence, outperforms state-of-the-art methods at inferring missing 3D data, and additionally provides covariance
estimates of the uncertainty.

Index Terms—Matrix normal distribution, Kronecker, trace-norm, spatiotemporal, missing data, generalized trace-norm.
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1 INTRODUCTION

D YNAMIC 3D reconstruction is the problem of recovering the
time-varying 3D configuration of points from incomplete ob-

servations. The theoretical and practical challenges in this problem
center on the issue of missing data. In theory, dynamic 3D recon-
struction is often an ill-posed problem because of projection loss
due to the imaging of 3D information to 2D. In practice, a number
of additional sources of missing data arise. First, occlusions, self-
occlusions, and imaging artifacts (such as motion blur) can cause
detection loss where points of interest are simply not detected
in particular frames. Second, if points are not re-associated to
their earlier detection, the system may break one trajectory into
two separate trajectories, causing correspondence loss. While
missing data issues are present in static 3D reconstruction, they
are of greater significance in dynamic 3D reconstruction, as the
observation system has only one opportunity to directly measure
information about the structure at a particular time instant. Thus,
the question at the core of dynamic 3D reconstruction is what
internal model a system should refer to when there is insufficient
information.

Ideally, a good model should capture all available correlations
in the data—spatial, temporal, and spatiotemporal—as these cor-
relations allow us to reason about the information that is missing.
Because dynamic structure is high dimensional (e.g., 100 points
over 120 frames is 36,000 degrees of freedom), the number of
possible correlations is very large (i.e., ∼648 million parameters),
and learning these correlations therefore requires a large quantity
of samples, where each sample is a full spatiotemporal sequence.
For most applications, such large numbers of sequences are not
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accessible. In this paper, we present a probabilistic model of
3D data that captures most salient correlations and can still be
estimated from a few or even one sequence.

The correlations present in spatiotemporal sequences are pri-
marily a result of separable correlations across time and corre-
lations across structure or shape [1], [2]. Our model represents
these correlations as a Matrix Normal Distribution (MND) over
dynamic structure, which translate into a Kronecker pattern in the
spatiotemporal covariance matrix. We show that this pattern is ob-
served empirically for human motion sequences, and demonstrate
that this pattern arises as the limit of a spatiotemporal random
process under two simple assumptions. This limit explains why
DCT-based bilinear basis models [2] capture a large percentage
of the covariance of natural motions and provides guarantees of
optimality of an analytical trajectory basis under certain condi-
tions. However, an analytical expression for shape covariance is
generally not available. Instead, we place a prior over the shape
covariance and derive a convex maximum a posteriori (MAP)
solution to the dynamic 3D reconstruction problem in terms of the
trace-norm. The model presented here applies to many dynamic
3D reconstruction problems, including nonrigid structure from
motion, stereo, and multi-view trajectory reconstruction.

Contributions. (1) We are the first to identify the Kronecker
pattern in time-varying 3D point cloud covariance matrices, and
present a generative, probabilistic model of time-varying 3D
points clouds based on the MND that explains this pattern.
(2) We demonstrate that this model unifies a number of shape and
trajectory models, both probabilistic and algebraic, used in prior
art. (3) We establish a connection between MND and the trace-
norm that leads to a convex MAP objective for reconstruction
in the presence of missing data and show how the objective can
be optimized using the Alternating Direction Method of Mul-
tipliers (ADMM). Empirically, our model outperforms previous
approaches in handling missing data.
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2 PRIOR ART

The literature on reconstructing dynamic 3D structure is large and
we focus our review on methods that directly deal with issues of
information loss, either in the monocular or multi-camera case.
There are largely two approaches: physically-based approaches,
where ill-posed systems are conditioned according to a physically-
grounded model, and statistically-based methods, where expected
statistical properties of the data are used to regularize the ill-posed
system without explicitly appealing to any physical grounding.

The earliest physically-based representation, in this con-
text, was by Terzopoulos et al. [3]; subsequent work [4] pre-
sented a physically-based approach using nonlinear filtering
over a superquadratic representation. Concurrently, Pentland and
Horowitz [5] presented an approach where a finite element model
described deformations in terms of a small number of free vibra-
tion modes, equivalent to a Kalman filter accounting for dynamics.
Taylor et al. [6] revisited the idea of using rigidity but at a local
scale using a minimal configuration orthographic reconstruction.
Salzmann and Urtasun [7] described a number of physically-based
constraints on trajectories of points that could be applied via
convex priors. Investigation into statistically-based methods began
with Tomasi and Kanade’s rank 3 theorem [8], which established
that image measurements of a rigidly rotating 3D object lay
in a three dimensional subspace. The associated factorization
algorithm was extended by Bregler et al. for nonrigid objects [9],
positing that a shape space spanned the set of possible shapes.
Unlike the rigid case, where the bilinear form could be solved
using singular value decomposition (SVD), this formulation had
a trilinear form. Bregler et al. proposed a nested SVD routine,
which proved to be sensitive to initialization and missing data.
A series of subsequent papers investigated various constraints to
better constrain the solution or relax the optimization (a sample
of major work includes [10], [11], [12], [13]). Recently, Dai et
al. [14] presented a method that uses a trace-norm minimization
to enforce a low rank shape space, and Garg et al. [15] showed that
the method can be applied to recover dense, non-rigid structure.
Lee et al. [16] expanded on the shape distribution model by
explicitly including procrustes alignment as part of a probabilistic
parameterization they call the Procrustean Normal Distribution
(PND), later extended to PND mixtures by Cho et al. [17].

In conjunction, trajectory space representations were proposed
by Sidenbladh et al. [18], which they referred to as eigenmotions.
Akhter et al. [19] noted that, in trajectory space, a predefined basis
could be used, which reduced the trilinear form to a bilinear form
and allowed the use of SVD once again to recover the nonrigid
structure. Unfortunately, the solution was shown to be sensitive to
missing data and cases where the camera motion is smooth [20].
Park et al. [20] used static background structure to estimate camera
motion, reducing the optimization into a linear system, and were
able to handle missing data. Valmadre and Lucey [21] presented
various priors on trajectories in terms of 3D point differentials,
showing better noise performance than using a truncated basis.

A number of approaches have combined spatial and temporal
constraints [1], [4], [5], [22], [23]. Torresani et al. [23] presented
a probabilistic representation, using probabilistic PCA within a
linear dynamical system, and, similarly, Lee et al. [24] combined
the PND shape distribution with a temporal Markov process. The
shape basis and trajectory basis approaches were combined within
a single estimation procedure by Gotardo and Martinez [1], and
later developed as a bilinear basis by Akhter et al. [2].

The model presented here is a probabilistic formulation of
spatiotemporal bilinear basis models and was first published as
[25], which we have updated here to include new theoretical
insights and experiments. In contrast to prior work, our model
describes an explicit parametric distribution over spatiotemporal
data that can be estimated from a single sequence. This allows us
to define a spatiotemporal covariance matrix relating any point in
time to any other point in time, including covariance matrices for
missing data. As summarized in Table 1 (Sect. 3.4), we take a step
towards reconciling a number of recent statistically-based linear
representations in nonrigid structure from motion [1], [9], [14],
[19], [21], [22], [23], [26].

3 MODELING TIME-VARYING 3D STRUCTURES

The time-varying structure of a configuration of P 3D points
across F frames can be represented by a matrix X ∈ RF×3P .
The row t corresponds to the 3D shape in frame t, and is formed
by the horizontal concatenation of points Xt

p ∈ R1×3, denoting
the p-th 3D point. We will denote by x = vec(X) the column-
major vectorization of the matrix X, and we will interchangeably
use lowercase bold letters to denote the vectorized matrices.

3.1 Observation Model
In practice, due to missing data and camera projection, only
a reduced set of measurements of X are observed. We model
observations linearly as

y = O vec(X) + ε, (1)

where y is a vector of observations of size nobs (the number of
observations), O ∈ Rnobs×3FP is the observation matrix, and ε is
noise sampled from a normal distribution. In the simplest case of
fully observed data, O is an identity matrix of size 3FP × 3FP .
For entries x, y, or z that are missing, we would remove the
corresponding rows of the identity matrix, yielding a matrix Omiss

containing a subset of the rows.
The action of camera projection can also be modeled by O.

For ease of notation, let us briefly consider the row-major vector-
ization vec(XT ). For this arrangement, the effect of orthographic
projection from a single camera can be expressed as a matrix
Oortho such that each of the P points in frame f is transformed by
the first two rows of a rotation matrix, Rf ∈ R2×3,

y =

R1 ⊗ IP
. . .

RF ⊗ IP

 vec(XT ) + ε, (2)

The case of a single camera observing the scene with unknown
rotations Rf is the problem of non-rigid structure from motion
(NRSfM). For multiview reconstruction, several Oortho matrices
can be stacked, one for each camera observing the scene. If some
of the projected points are missing, we can concatenate the effect
of the matrices: O = OmissOortho. In this paper, we assume
that the observation matrix O is known (e.g., via rigid SfM [27]
or inertial measurements); simultaneous recovery of the camera
matrices (as in NRSfM) is not the focus of this paper. However,
we will relax this constraint in Section 5.2 and jointly optimize
the rotation matrices.

Our objective is to estimate the most likely spatiotemporal
structure X̂ given the observations y. Note that nobs � 3FP ,
and the problem

min.
X

σ−2‖y −O vec(X)‖22 (3)
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Fig. 1. We define the Kronecker Shape-Trajectory GMRF as resulting from the Kronecker product of independent shape and trajectory precision
matrices, describing shape-only and trajectory-only GMRF models of deformation respectively.

is therefore severely under constrained. We take a Bayesian
approach to the estimation problem,

X̂ = argmax
X

p(X|y) ∝ p(y|X)p(X), (4)

where p(y|X) = N
(
O vec(X), σ2I

)
from Eq. (1). Inference

from Eq. (4) requires designing a prior for the dynamic 3D struc-
ture, p(X), that models the data well while remaining amenable to
global optimization. To allow for arbitrary objects and shapes, we
decompose the time-varying structure X ∈ RF×3P as the sum of
a mean component M (modeling the object’s translation and mean
shape) and a zero-mean matrix with any remaining deformations,
which we call the non-rigid component Z:

X = M + Z. (5)

This decomposition allows us to set a prior over non-rigid defor-
mations while leaving the mean shape unconstrained.

3.2 Shape, Trajectory, and Shape-Trajectory Priors
In the following, we will show how several widely-used temporal
and spatial non-rigid priors can be unified into a single spatiotem-
poral prior over the non-rigid structure Z. Similarly to X, the
arrangement of Z is such that each row is the non-rigid component
of 3D shape at a particular time instant, zt ∈ R3P , (the tth row
arranged as a column vector), and each column zp ∈ RF is
the non-rigid time-trajectory of the x, y, or z coordinate of a
particular point. Previous literature has considered shape priors
(e.g., Torresani et al. [23]), temporal (or trajectory) priors (e.g.,
Ahkter et al. [19]), and spatiotemporal basis models (e.g., Gotardo
and Martinez [1]). These approaches differ primarily in their inde-
pendence assumptions; for example, shape basis methods assume
that individual frames (i.e., rows of Z) are conditionally inde-
pendent, whereas temporal priors assume independence between
point trajectories (columns of Z). To expose these differences, we
characterize each model in terms of the Markov Random Field
(MRF) [28] structure that is implied by the assumptions made.

3.2.1 Trajectory MRF

Points move smoothly over time as a direct consequence of objects
having mass and following physical laws of motion. This intuition
has been variously modeled as an autoregressive (AR) process
(e.g., [23], [24]), temporal smoothing or filtering (e.g., [21], [29],
[30]), physically-based energy minimization (e.g., [7]) or smooth
basis approximations (e.g., [19], [20]). All of these examples
can be expressed as an MRF where nearby frames are linked;

t=1 t=2 t=3 t=4
p=1

p=2

p=3

p=4

for example, as depicted in the
inset for 4 frames. Here, each node
represents a location variable (a coordinate x, y, or z) at a
particular point in time. This MRF forms an auto-regressive or-
der 1 (AR(1)) model where the conditional dependence between
adjacent frames is Gaussian, i.e., Ztp = φZt−1p + ε, where φ
represents the partial correlation between frames and ε is Gaussian
with variance σ2, representing deviations from the model. This
Gaussian MRF (GMRF) [28] modeling a single trajectory is
completely defined by its precision matrix, Σ−1 ∈ RF×F .

Recall that the precision matrix is the inverse of the covari-
ance matrix, and an entry (i, j) indicates the partial correlation
between variables i and j. Consequently, the precision matrix is
zero everywhere except between points that are connected in the
graphical model (see Rue and Held [28]). If we now consider a set
of P independent points, we can similarly express the model as
a GMRF where only variables that are temporal neighbors are
linked. This is illustrated in Fig. 1(a) for 4 point coordinates
over 4 time instants. Each node represents an entry t, p in the
spatiotemporal matrix Z and the lack of connections between
different points indicates that this is a purely temporal prior. The
corresponding GMRF describes a joint distribution over Z that is
completely specified by the 3PF × 3PF covariance matrix Φ
(or, equivalently, the precision matrix Φ−1). Because we assumed
spatial independence between points, the log-likelihood for a set
of points is the sum of the P likelihoods, and so, the matrix is
block diagonal where each block is the precision matrix of a single
point. This can be expressed algebraically as Φ−1 = I3P ⊗Σ−1
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where I3P is the 3P × 3P identity and ⊗ denotes the Kronecker
product, and the choice of trajectory precision matrix Σ−1 gives
rise to different trajectory priors.

For a single point with the 4-link chain above, the
matrix Σ−1 is depicted in the inset, where white entries

1
2

2
1

-1
-1

-1
-1

-1
-1

0 0
0

0
0
0

correspond to 0 and are independent when condi-
tioned on the remaining variables. Ahmed, Natarajan,
and Rao [31] proved that, for an AR(1) process
where φ tends to 1, the blue entries tend to become
proportional to −1 as the black entries become proportional to 2.
This corresponds to a DCT−2 matrix [31] (a tri-diagonal matrix
with 2 on the diagonal and −1 on the off-diagonals, except the
first and last entries). Therefore, for temporal processes where
φ ≈ 1, the optimal trajectory basis in the L2 sense is given by
the eigenvectors of this matrix, which correspond to cosines of
different frequencies. This explains the effectiveness of trajectory-
basis methods that use a truncated DCT basis (e.g., [1], [19], [20]).

More recently, Valmadre et al. [21] showed improved perfor-
mance over a truncated DCT basis when using a filtering-based
temporal smoothness prior. Interestingly, the model of Valmadre
et al. is equivalent to minimizing the negative log-likelihood of the
GMRF model given above, i.e.,

− log(p(zp)) ∝ zTp Σ−1zp,

in the limit of φ → 1. In this case, the precision matrix
corresponds to Σ−1 = DTD, with D the forward differences
matrix1. The second-order differences model of [21] (an AR(2)
model) would in turn correspond to a GMRF with links to
the adjacent frame and to the frame adjacent to that, (i.e.,
Σ−1 = DTDDTD).

3.2.2 Shape MRF
However, the assumption that points move independently is in-
tuitively wrong: nearby points on a surface will tend to move
similarly, and their positions will therefore be correlated. A pop-
ular approach to capture this intuition is to model the covariance
between shape coordinates as a Point Distribution Model, or PDM.
Cootes et al. [32] described the standard procedure of combining
generalized Procrustes analysis with PCA to model a distribution
over shapes, but there exist many variants of essentially the same
technique: shape basis models (e.g., [9], [23]), morphable models
(e.g., [33]), low-rank priors (e.g., [14]), the Procrustean Normal
Distribution (PND) [34], and modal analysis (e.g., [35]).

Assuming aligned shapes, the PDM prior models
the shape distribution as a Gaussian and can therefore
be expressed as a GMRF as well. As an illustrative
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example in the inset, we show links between adjacent
points and between points 2 and 4, with the pattern
of non-zero entries in the shape precision matrix as
shown right. In this matrix, an entry i, j indicates
the partial correlation between point coordinates i
and j, and white entries represent zeroes. In general,
the connectivity between points in this MRF can be
full, for example, when the shape precision matrix is
computed via PCA (or PPCA) on Procrustes aligned

1. A matrix with 1 on the diagonal (except the last entry) and −1 on the
upper diagonal. This matrix is rank deficient and the precision matrix and PDF
do not (strictly) exist. However, note that this defines a proper distribution over
a subspace that excludes the null-space of the matrix (which corresponds to
a constant shape, explicitly excluded in Eq. (5)). Keeping this in mind, the
inverses may be replaced with pseudo-inverses without affecting the results.

shapes. In this case, the matrix is the inverse of the sample
covariance matrix with ∆−1 = UTS−1U, where U is the set
of eigenvectors or deformation modes, and S is the diagonal
matrix of the corresponding eigenvalues. For a single frame, the
negative log-likelihood of the PDM prior at time t is proportional
to ztT∆−1zt.

For a set of F independent frames, the connectivity is given
by the MRF in Fig. 1(b) and the 3PF × 3PF GMRF precision
matrix is Φ−1 = ∆−1⊗IF . This matrix is visualized in Fig. 1(b).
Note the symmetry with respect to the temporal model’s precision
matrix—indeed, this structure is also block-diagonal, but, in this
case, for a row-major arrangement vec(ZT ), and would have
matrices ∆−1 along the diagonal.

3.2.3 Kronecker-Markov MRF
In the following, we show that by relaxing the independence
assumptions of the above models, the natural combination of these
priors results in an approximately Kronecker spatiotemporal co-
variance matrix. This result follows from simultaneously applying
the shape and temporal priors:
1) At any time instant t, the configuration of points follows a

zero-mean PDM:

zt = Bct with ct ∼ N (0, I) (6)

where zt is the tth row of matrix Z arranged as a column vector,
∆ = BBT ∈ RD×D is the shape covariance and ct a vector
of coefficients.

2) The dynamic evolution of the system follows a vector-valued
AR(1) process:

zt = φzt−1 + vt with vt ∼ N (0,K) (7)

where φ ∈ RD×D describes the temporal dynamics, and K ∈
RD×D describes i.i.d. Gaussian deviations from the model.
Later, we will demonstrate that the matrix K is a scaled version
of the spatial covariance matrix of the corresponding PDM.

From Eq. (7), using the Markov property and the chain rule we
can write the joint distribution over a set of frames [1, . . . , F ] as,

p(Z) = p(· · · , zt−1, zt, zt+1, zt+2, · · · ) =

· · · p(zt+1|zt)p(zt|zt−1)p(zt−1|zt−2) · · · ,
where each conditional distribution is independently Gaussian and
is given by

p(zt|zt−1) =
1

C
exp

(
−1

2
(zt − φzt−1)TK−1(zt − φzt−1)

)
.

Taking the negative log-likelihood of the joint model, the general
form is

− log(p(Z)) = · · ·+(zt+1 − φzt)TK−1(zt+1 − φzt)

+(zt − φzt−1)TK−1(zt − φzt−1)

+ · · · − log(C),

for some normalizing constant C. Letting J = (K−1 +
φTK−1φ), and H = −φTK−1, the negative log-likelihood of
the set of frames can be written as a block tri-diagonal quadratic
form,

...
zt+1

zt

zt−1

...



T 

. . .
HT J H

HT J H
HT J H

. . .





...
zt+1

zt

zt−1

...

 . (8)
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Fig. 2. Human spatiotemporal point cloud data exhibits a Kronecker structured covariance matrix, allowing us to model the distribution over
sequences as matrix normal. (Left) The spatiotemporal covariance computed from 5402 vectorized sequences shows a distinct block structure,
highlighted in the inset. (Right) The corresponding covariance of the matrix normal model, where the full (3FP ) × (3FP ) matrix is separable into
two smaller covariance matrices, the F × F trajectory (row) and 3P × 3P shape (column) covariances respectively. Here, F = 30 frames and
P = 16 points.

When the transition matrix tends to φ → I, then J ≈ 2K−1,
and H ≈ −K−1, and, in the limit, we can re-write the negative
log-likelihood as vec(ZT )TΨ−1 vec(ZT ) with

Ψ−1 ≈ α





? −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2 −1
...

...
0 0 0 −1 ?


︸ ︷︷ ︸

Σ−1

⊗K−1


, (9)

where the entries marked ? depend on the boundary conditions
chosen for the first and last time instants (see [36]), and α is
a normalizing constant. This is a generalization of the result of
Ahmed, Natarajan, and Rao (see Sect. 3.2.1), but for multivariate
AR(1) processes: the optimal (in the L2 sense) spatiotemporal
basis for a vector-valued AR(1) process with constant noise
covariance will be given by the eigenvectors of Eq. (9) when
φ→ I.

In general, we will say that a vector-valued AR(1) process
zt with φ ≈ I has a spatiotemporal covariance Ψ that is ap-
proximately Kronecker-Markov, with covariance Ψ ≈ Σ⊗K, for
some matrix K, or equivalently Φ ≈ K⊗Σ for the corresponding
column-major arrangement.

The relationship between K and the PDM shape covariance
∆ can be derived by taking the marginal probability p(zt), i.e.,
the probability of observing a particular shape at time t after
marginalizing out all other time instants. In this case, we can see
that the marginal shape distribution is

zt ∼ N (0,Σt,tK). (10)

From the assumption that individual frames follow a PDM dis-
tribution (Eq. (6)), we can conclude that K = Σ−1t,t ∆, i.e., K
is equal to the shape covariance up to a constant scale factor2.
Note, however, that Σ and ∆ are not uniquely identifiable since
Σ ⊗∆ = 1

αΣ ⊗ α∆ for any non-zero scalar; we will therefore
assume that we can find a scale factor such that Σt,t = 1.

2. In practice, the first and last time instants can be scaled differently
depending on the boundary conditions, see Eq. (9).

We define the Kronecker-Markov prior as a GMRF with a
precision matrix Φ−1 = ∆−1⊗Σ−1, where Σ−1 is the DCT−2
matrix. Its connectivity diagram is shown in Fig. 1 (c), where we
link a point p1 at time instant t1 and point p2 at time instant t2 iff
there exists a link between p1 and p2 in the shape MRF, and a link
between t1 and t2 in the temporal MRF. This can be generalized to
higher order Markov chain models by allowing arbitrary temporal
precision matrices Σ−1.

Fig. 2 illustrates the intuition for choosing this prior for
dynamic 3D structures: the spatiotemporal covariance matrix of
natural human motions is dominated by a Kronecker product
block pattern (the specifics of this experiment are described
in Sect. 6.1). This is a significant finding for the purposes of
estimation because it allows us to parameterize the spatiotemporal
covariance of a dynamic 3D structure with far fewer free variables
than are needed for a general, unstructured covariance matrix. The
number of covariance parameters in the Kronecker covariance is
approximately (3P )2

2 + (F )2

2 , versus (3FP )2

2 for a full covariance
matrix. Even for small values of F=30 frames and P=31 points,
this results in ∼5000 variables for the Kronecker versus ∼3.9
million for a full spatiotemporal covariance.

3.3 Matrix Normal Distributions for 3D Point Clouds

The Kronecker GMRF described above corresponds to a Matrix
Normal Distribution (MND) [37]. We use this relationship to
specify the prior over dynamic 3D structure, p(X), in terms of
distributions over Z (the non-rigid component) and M (the rigid,
mean component), with X = M + Z.

3.3.1 Modeling the Non-rigid Component Z

From Eq. (9), the dynamic 3D structure will have an approxi-
mately Kronecker structured covariance matrix, and

vec(Z) ∼ N (0,∆⊗Σ). (11)

Equivalently, this model corresponds to a matrix normal distribu-
tion [38], [37] over the non-rigid component Z, which we can
write as

Z ∼MN (0,Σ,∆), (12)

where MN denotes an MND with row covariance ∆=BBT

(describing shape correlations) and column covariance Σ=ΘΘT
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(describing trajectory correlations). This formulation exposes the
relationship to bilinear spatiotemporal basis models [2], with

Z = ΘCBT , (13)

where C ∈ RF×3P is a matrix of mixing coefficients, B ∈
R3P×3P is a complete shape basis and Θ ∈ RF×F a complete
trajectory basis such that B = B̃Wb and Θ = Θ̃Wt where B̃
and Θ̃ are orthonormal and Wb,Wt are diagonal weighting ma-
trices. When the distribution over coefficients C is c ∼ N (0, I),
then the distribution over Z is matrix normal as in Eq. (12).

This probabilistic formulation subsumes the bilinear basis
models of [1] and [2], where truncated versions of the orthonormal
basis matrices B̃ and Θ̃ are used. The limit of Eq. (9) explains
the effectiveness of using a truncated DCT trajectory basis in
a bilinear formulation. In fact, as φ → 1 (e.g., if we sample
at increasing rates) the optimal L2 spatiotemporal basis vectors
will be the eigenvectors of ∆ ⊗ Σ, which are3 {B̃p ⊗ Θ̃t}
for p ∈ {1, . . . , 3P} and t ∈ {1, . . . , F}. This set corresponds
directly to a bilinear basis model [2], with Θ the DCT basis.

3.3.2 Modeling the Mean Component M

In addition to the non-rigid component Z described above,
we model the rigid shape of the object and its translational
motion as a mean component M. This component is M =
1Fmshape + MtransPtrans, where the zero-centered mean 3D shape
is mshape ∈ R1×3P , and the mean 3D trajectory is Mtrans ∈
RF×3 (containing the per-frame translation of the object), where
Ptrans = blkdiag(1TP ; 1TP ; 1TP ) ∈ R3×3P , with 1P denoting a
column vector of ones of size P , and blkdiag produces a block
diagonal matrix.

We do not have a preferred shape of objects, and so we do not
set a prior over the mean shape mshape. However, the translational
motion Mtrans is necessarily smooth, and we will therefore favor
smooth trajectories of the object using the trajectory prior4:

Mtrans ∼MN (0,Σ, I3), (14)

where the row covariance I3 reflects that there are no a priori
correlations between the x, y, and z components of motion.

3.4 Relationship to Previous Work

The model over dynamic 3D structure described in this paper can
be related to shape, trajectory, and shape-trajectory representations
used in prior art [1], [9], [18], [19], [21], [23], [32], [40]
(see Table 1). In the following, consider the MND prior over
point cloud data X ∼ MN (M,∆,Σ) with known distribution
parameters M, ∆, and Σ.
Trajectory Methods. The MND describes a joint shape-trajectory
distribution, but the marginal distribution it induces for a partic-
ular trajectory xp (a column p of X) independent of all other
points corresponds to a basis representation over trajectories, as
described by Sidenbladh et al. [18]. The marginal distribution
is xp ∼ N (Mp,∆p,pΣ), where Σ=ΘΘT is the trajectory
covariance matrix, and ∆p,p loosely corresponds to the mass of
each point. This expression is equivalent to the filtering solution
proposed by Valmadre and Lucey [21], who observe that a com-
bination of first and second-order differences fit natural motions

3. See [39] for properties of the Kronecker product.
4. We use the same trajectory covariance Σ as for the non-rigid component,

but, more generally, a different covariance matrix could be used.

TABLE 1
Comparison of linear methods for structure reconstruction. The

symbols are explained in Section 3.2.

Truncation Probabilistic Low Rank

Shape Bregler et al. [9]
Z = ΩB̃T

Torresani et al. [23]
Z ∼MN (0, I,BBT ) Dai et al.

[14] ‖Z‖∗Trajectory Akhter et al. [19]
Z = Θ̃A

Valmadre et al. [21]
Z ∼MN (0,ΘΘT , I)

Shape-
Trajectory

Gotardo and
Martinez [1]
Z = Θ̃CB̃T

(This Paper)
Z ∼MN (0,ΘΘT ,BBT )

or ‖Θ+XP⊥‖∗

well. See also [7] for a physically-based formulation of the same
model.

Shape Methods. The marginal distribution of a particular shape
xt (a row t of X arranged as a column) independent of all other
time instants corresponds exactly to shape-only distributions used
in prior art, such as the Point Distribution Model (PDM) of Cootes
et al. [32], and the shape basis model of Torresani et al. [23]. It
follows from the matrix normal model that xt ∼ N (Mt,Σt,t∆),,
where Σt,t is the entry (t, t) in Σ and ∆=BBT is the shape
covariance matrix. An equivalent shape covariance is estimated
using PCA by Cootes et al., where B is a shape basis [9], [19],
[23], [40].

Similarly, the PND model of Lee et al. [16] is related in the
same way save for two distinctions: firstly, the shape covariance in
the PND model is restricted to exclude the subspace of small-angle
rotations, scaling, and translation of the mean shape (i.e., adding
the constraints that PT

N∆ = 0, where PN is that subspace,
||mshape|| = 1 and mshape1 = 0, see [16]); secondly, the shape
covariance is rotated into the coordinate system of every frame
(i.e., the PND models rotated shapes, whereas we model aligned
shapes). While the Procrustean constraints can be incorporated
into the MND model, this would prohibit the convex solution
presented in Sect. 4.2. Similarly, modeling rotated shapes would
make the H and J matrices in Eq. 8 become time-dependent,
and we would loose the compact Kronecker expression of the
covariance.

Spatiotemporal Methods. The model we present is a probabilistic
formulation of the shape-trajectory basis models described in [1],
[2]. These models describe spatiotemporal sequences as a linear
combination of the outer product of a reduced set of trajectory ba-
sis vectors and a set of shape basis vectors. They rely on truncation
of the basis to achieve compaction, while the probabilistic MND
model describes the relative variance of each spatiotemporal mode
with the weighting matrices Wt and Wb. Additionally, the MND
allows us to compute a confidence bound on the imputed missing
data. We visualize this distribution in Fig. 10 on a facial motion
capture sequence from [2].

As with the shape-only model, the PND Markov process
(PMP) [24] is very closely related. With the same distinctions
about the rotated coordinate space for the shape covariance dis-
cussed above, the Markov PND process is essentially the same as
the Kronecker-Markov process in Sect. 3.2.3 but with a stationarity
constraint Φ = αI rather than α → 1. The PMP model is there-
fore more general, but the trade-off is a non-convex optimization
that requires careful initialization and explicitly solving for the
parameter α.
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4 CONVEX MAP RECONSTRUCTION
FOR THE KRONECKER-MARKOV PRIOR

In this section, we derive convex estimation procedures to re-
cover the most likely dynamic structure X given the mea-
surements y using the Kronecker-Markov shape-trajectory prior,
p(y|X)p(X) = p(y|Z,M)p(Z)p(M), where the non-rigid and
mean components are distributed according to Eqs. (12) and (14).

4.1 Known Distribution Parameters

With known covariance matrices Σ and ∆, the negative log-
likelihood of the MND is quadratic, and inference under an
MND prior is straightforward and can be posed as a least-squares
problem:

argmax
M,Z

p(y|Z,M)p(Z)p(M) =

argmin
M,Z

σ−2||y −O vec(M + Z)||2F

+ tr
[
∆−1ZTΣ−1Z

]
︸ ︷︷ ︸
− log(p(Z))+c1

+ λ tr
[
Mtrans

TΣ−1Mtrans

]
︸ ︷︷ ︸

− log(p(M))+c2

, (15)

where λ is a scaling factor related to the mass of the object and
the variance of its translational motion.

4.2 Unknown Distribution Parameters

We can approximate the trajectory distribution using a DCT−2
matrix Σ−1 (Sect. 3.2.3). However, the PDM shape distribution
∆ covariance depends on the object and is typically unknown
a priori, and therefore needs to be estimated as well. The least-
squares problem of Eq. (15) now becomes bilinear in Z and ∆,
and seemingly non convex.

In the following, we show that there exists a convex solution
when we set a hierarchical Wishart covariance [41] prior over ∆.
Using the bilinear parameterization (Eq. (13)), Z = ΘCBT ,

p(X|y) = p(C,B,M|y) ∝
p(y|C,B,M)p(B|C)p(C)p(M). (16)

In this parameterization, p(B|C) is the only prior that remains
to be specified. To obtain a convex solution, we assume that
p(B|C) = p(B), i.e., the distribution over shape covariance is
independent of the particular shape configurations observed. We
use a normal prior over the entries of B ∼ MN (0, I3P , I3P ),
equivalent to a Wishart prior over the covariance ∆. Intuitively,
this captures the low-rank characteristic of shape covariance ma-
trices: that the singular values of the covariance matrix should
decrease rapidly (see Sect. 6.1 for an illustration of this prior).
Combining these priors and writing this optimization in terms of
the component negative log-likelihoods,

argmax
X

p(X|y) =

argmin
M,C,B

σ−2||y−O vec(M + ΘCBT )||2F

+‖C‖2F + ‖B‖2F + λ‖Θ+Mtrans‖2F
s.t. X = M+ΘCBT . (17)

This expression is bilinear in C and B. However, we can transform
this bilinear equation into a convex problem using the matrix
trace-norm ‖·‖∗, where ‖R‖∗ = min.U,V{ 12‖U‖

2
F + 1

2‖V‖
2
F }

subject to R = UVT with R ∈ Rm×n, U ∈ Rm×r and
V ∈ Rn×r. Mazumder et al. [42] show the equivalence of these
two formulations when r ≥ rank(R), and we can transform
Eq. (17) by writing5 A = CBT and so

argmin
M,A

σ−2||y −O vec(M + ΘA)||2F + ‖A‖∗

+λ‖Θ+Mtrans‖2F (18)

By definition, X is parameterized into a mean shape compo-
nent, mshape = 1

F 1TFX, a translational component, Mtrans =
1
P XPT

trans, and the remaining non-rigid component Z = ΘA
where

Z = X−M = (IF −
1

F
1F1TF )X (I3P −

1

P
PT

transPtrans)︸ ︷︷ ︸
P⊥

.

(19)

Finally, note that 1F is in the left null-space of Z, and right null-
space of Θ+, and so Z = ΘΘ+Z. We can therefore write the
change of variables Θ+XP⊥ = A resulting in

argmin
X

1

2σ2
||O vec(X)− y||22︸ ︷︷ ︸

observations

+ ||Θ+XP⊥||∗︸ ︷︷ ︸
shape-trajectory prior

+λ
1

2
||Θ+XPT

trans||22︸ ︷︷ ︸
translational regularizer

. (20)

Relationship to Trace-norm Methods. The convex MAP min-
imization of Eq. (20). when using a normal prior over B can
be related to the use of the trace-norm in rigid and non-rigid
structure from motion [14], [43]. Note that the shape-trajectory
prior component of this objective function is similar to the trace-
norm energy term of Dai et al. [14], if we set Θ+ to the identity.
This amounts to assuming that every frame is independent and
there exist no temporal correlations. The trace-norm method of
Dai et al. can then be interpreted as a prior of non-rigid shape
that corresponds to CBT with normal priors over coefficients C
and shape basis B. The effect of this is most easily understood
for the case of interpolation: frames (rows) for which all points
are missing will be set to zero by the ‖X‖∗ penalizer. This
effect can result in abrupt changes in the reconstruction, and can
be seen in the spiked blue curves in Fig. 7 (right). Making a
similar observation, Angst et al. [43] proposed the “generalized
trace-norm” for rigid SfM to incorporate temporal smoothness
constraints in trace-norm approaches to SfM, resulting in a similar
prior term. Compared to the rigid model of Angst et al., our work
draws an explicit connection between the row and column spaces
of an MND distribution of dynamic 3D structure.

5 OPTIMIZATION VIA ADMMS

The objective of Eq. (20) lends itself to optimization by the
Alternating Direction Method of Multipliers (ADMM) [44]. We
discuss two cases: the convex solution, where the observation
matrix O is fixed (and consequently, the camera rotation matrices
are fixed), and a non-convex procedure that additionally optimizes
the rotation matrices.

5. In this case, m = F , n = 3P , and r = 3P ≥ rank(A) = min(F, 3P ).
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5.1 Fixed Camera Matrices
Let F = Ptrans ⊗Θ+ and G = PT

⊥ ⊗Θ+. Re-writing Eq. (20)
in ADMM form (see Boyd et al. [44]),

minimize
x,z

f(x) + g(z)

subject to Gx− z = 0

f(x) =
1

2σ2
||Ox− y||22 +

λ

2
||Fx||22

g(z) = ||unvec(z)||∗ (21)

where x = vec(X), f(x) and g(z) are convex, unvec(·) reshapes
the argument into the desired matrix6 of size F ×3P , and σ is the
observation noise variance. Written in this more general form, we
identify this as a trace-norm regularized least squares problem.
The ADMM method iteratively updates the variables in two steps,
according to the following subproblems:

xk+1 = argmin
x

(
f(x) +

ρ

2
||Gx− zk + uk||22

)
(22)

zk+1 = argmin
z

(
g(z) +

ρ

2
||Gxk+1 − z + uk||22

)
(23)

uk+1 = uk +
(
Gxk+1 − zk+1

)
(24)

with u the scaled dual variables of the augmented Lagrangian.
The xk+1 update Eq. (22) is a least-squares problem and is

readily solvable. The zk+1 update Eq. (23) involves the nuclear
norm and is more difficult to solve, but there exists a closed form
solution [44] for problems of the form

proxλ(W) = argmin
Z∈Rm×n

1

2
||Z−W||22 + λ||Z||∗. (25)

Define the shrinkage or soft-thresholding operator,

sλ(x) = max(x− λ, 0)−max(0,−x− λ), (26)

which we will apply entry-wise to vectors. The solution to this
type of problems is then proxλ(W) = Sλ(W), where the matrix
soft-thresholding operator Sλ(W) will be

Sλ(W) = UΣλV
T , (27)

where W = UΣVT , and Σλ is diagonal with (Σλ)ii =
sλ (Σii), the soft-thresholded singular values of W [44]. The
solution to Eq. (23) is then

Zk+1 ← prox 1
ρ

(
unvec(Gxk+1 + uk)

)
zk+1 ← vec

(
Zk+1

)
,

5.2 Optimizing the Camera Matrices
The ADMM procedure described in the preceding section suggests
a simple way to incorporate the estimation of camera (or object)
rotation into the optimization, at the cost of making the problem
non-convex. For fixed camera matrices, we wrote the observation
cost in matrix form as 1

2σ2 ||Ox − y||, where the matrix O was
assumed to be constant. This expression only appears in the xk+1

update equation, which we can now rewrite more generally as

{xk+1,pk+1} = argmin
x,p

(
f(x,p) +

ρ

2
||Gx− zk + uk||22

)
(28)

6. The development is valid even if Z is not the same size as X. In particular,
the two arrangements described by Dai et al. [14], 3F × P and F × 3P , are
options to consider.

3PF 3PF

cov(vec(X))cov(vec(XT ))

F3P

Fig. 3. Empirical spatiotemporal covariance matrix for a subset of face
motion capture data (P=10, F=10), shown for two possible vectoriza-
tions of the matrix X. (Left) The row-major arrangement shows blocks
that are approximately scaled versions of the spatial or row covariance.
(Right) The column-major arrangement shows more clearly the trajec-
tory or column covariance.

where pk is the current estimate of the camera parameters, and
we redefine f as

f(x,p) = P(x,p,y) +
λ

2
||Fx||22 (29)

where the function P measures the total observation cost and
can be any smooth differentiable function. Without going into
the verbose particulars of how to index each observation and its
corresponding camera parameters, we parameterize each camera at
each time instant as an axis-angle rotation vector and a translation
vector (when camera and object motion are not ambiguous).
The function P computes the reprojection error residuals for
each of the observed points. We solve the ADMM xk+1 update
Eq. (28) for both {x,p} using Levenberg-Marquadt and the ceres-
solver [45] within the ADMM framework. As in [44], we use the
previous xk and pk to warm-start the optimization, and only run
a few iterations (5, in our experiments) for each xk+1 update.

5.3 Implementation details

The choice of the augmented Lagrangian parameter ρ greatly
affects the convergence. We follow the heuristic described in Boyd
et al. [44], halving or doubling ρ when the r-norm and s-norm
ratios are greater than 2, and we use a maximum of 500 iterations
with the stopping criteria described in Section 3.3.1 of [44].

The algorithm relies on two crucial operations: solving a large
linear system of equations, and computing an SVD. For typical
matrix completion problems, it is usually assumed that computing
the SVD is the most time consuming operation. For our problem,
it is typically the case that solving the system of equations is more
difficult: our problem size is one with 3FP unknowns, and the
matrices F, G, and O are not necessarily sparse. The matrices
G and F do have a limited number of non-zero entries: Θ+ is
the forward differences matrix (each residual involves at most two
time instants) and Ptrans has bandwidth 3P (each row involves
summing over P points at a single time instant).

To solve each linear problem, we therefore either pre-compute
the Cholesky-factors for quicker per-iteration solves, or, if the
factors are too large to build, we use an iterative solver relying
on matrix-vector products. In particular, we use Matlab’s lsqr:
for a problem of size F=2000 frames and P=49 points, there are
294000 unknowns, and each linear solve dominates the ADMM
iteration time and takes 4 to 8 seconds on an Intel Core i7 at
2.7GHz, for a total runtime of 38 min. or 1.1 s per frame.
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Fig. 4. (Left) Empirical and predicted model parameter distributions.
(a) Top, the empirical trajectory precision matrix. Below, the DCT−2
matrix from Sect. 3.2.3. (b) Each plot corresponds to a coefficient Ci,j

in the matrix C. The red curve shows the predicted standard normal
pdf, the histogram shows the empirical distribution. (c) Distribution of
singular values for empirical shape covariances (black), compared to
the predicted fall-off induced by p(B) (red).

6 RESULTS

6.1 Validation on Natural Motions

We validate the proposed distribution and the four components of
our model by computing statistics on a large set of natural motions.
We use the CMU Motion Capture database, where we subsample
the data to retain point tracks for 15 joint locations on the body,
yielding N = 5402 30-frame sub-sequences Xn which we also
align using Procrustes analysis and center around the mean.
I. Kronecker-Markov Covariance Structure. (Sect. 3.2)
Fig. 2(left) shows the empirical sample covariance matrix
1
N

∑
n vec(Xn) vec(Xn)T computed on the full set of se-

quences. On the right, we show the covariance associated with
the matrix normal distribution, i.e., ∆ ⊗ Σ, where ∆ is com-
puted7 as the covariance of the rows ∆ = 1

NF

∑
n XT

nXn, and
Σ = 1

vN3P

∑
n XnXT

n , with v = 1
3P tr(∆). Note that this

separable approximation captures most of the structure and energy
in the covariance using far fewer parameter than a full covariance
matrix. Fig. 3 shows the empirical covariance matrix for a dataset
of face motion capture data (an example frame can be seen in
Fig. 10), for a subset of P = 10 points and F = 10 frames at
30Hz sampled from 158s of data.
II. Analytical Trajectory Distribution. (Sect. 3.2.1, 3.2.3)
Fig. 4(a) shows that the empirical precision matrix computed over
trajectories (the inverse of the sample covariance, Σ−1) closely
resembles the regularizer predicted by the DCT−2 matrix. Most
correlations in the data are captured by the analytical model.
III. Distribution of Coefficients. (Sect. 3.3)
The matrix normal model assumes a standard normal distribution
over the latent coefficients, i.e., Ci,j∼N (0, 1). Given a large set
of natural motion sequences, we can verify the accuracy of this
assumption by fitting the model coefficients Cn ∈ RF×3P to each
sequence Xn, and plotting the resulting histogram of coefficient
values. Fig. 4(b) shows that the empirical distribution can be more
spiked, closer to Laplacian or Cauchy in practice.
IV. Hierarchical Prior on Shape Covariance. (Sect. 4.2)
We sample shape covariance matrices from the prior
B∼MN (0, I3P , I3P ) and compute their singular values (SVs).
Fig. 4(c) compares the energy fall-off in SVs from sampled

7. ML estimates of the parameters for noiseless data can be obtained using
a “flip-flop” algorithm [38], but in practice we obtained better results with the
described procedure.
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Fig. 5. Inference of missing data with learned distribution parameters.
Subscript tr indicates an orthonormal truncation method.

matrices to that of empirically computed covariance matrices. The
plot shows the mean SVs and ±3 standard deviations. The fall-off
in energy of the singular values by the prior on B is not as quick
as observed in data, but the choice allows convex optimization.

6.2 Missing Data in Motion Capture
To characterize the models’ resilience to the patterns of missing
data encountered in dynamic reconstruction, we simulate different
patterns of occlusion, and we decouple the problem from that of
projection loss and reconstructibility [21] by studying inference in
3D. The task is to infer or complete a dynamic 3D point cloud
from a reduced set of 3D observations—a practical application
would be filling in missing markers in motion capture data. We
use the observation model Omiss as per Sect. 3.1.
I. Known Distribution Parameters. (Sect. 4.1)
When 3D training data is available, we can learn the parameters for
MND distribution and perform inference with Eq. (15). We com-
pare with the models corresponding to probabilistic and truncated
versions of shape, trajectory, and shape-trajectory distributions
(summarized in Table 1). Additionally, we evaluate against a
probabilistic PCA model trained on the vectorized spatiotemporal
sequences, i.e., y = Φ vec(X) + ε. We report mean 3D error in
Fig. 5. As a reference, the error incurred when using the mean
shape at every frame as an estimation is ∼175 cm.

For this experiment, we use data from the CMU Motion
Capture database. We take 50 random sequences of 20 s in
duration, sample them at 30 Hz and Procrustes align and mean
center them. There are 31 markers on the body, and we subdivide
each sequence into 1s chunks resulting in F=30 and P=31. We
train all models on 49 of the sequences, and test on a random 1s
segment of the left out sequence. We simulate random occlusion
on a percentage of the points and report the average over 50
trials. For the probabilistic models, we set the noise variance to 0.
For models relying on truncation of the basis, we sweep over all
possible levels of truncation and pick the best number a posteriori.
Note that the MND model with factored covariance performs
equally well or better than PCA on the vectorized sequences, while
requiring less training data (50 times less in this experiment). This
allows us to train a local model only on subsequences neighboring
the test data; the model is more specific and results in lower error.
II. Unknown Distribution Parameters. (Sect. 4.2)
When no training data is available, we perform inference with
Eq. (20). In Figure 6, we compare our approach with three differ-
ent priors: (1) a trajectory-only prior, (2) a trace-norm prior, and
(3) an additive combination of the trace-norm and trajectory priors.
We assume Gaussian observation noise with standard deviation
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Fig. 6. Inferring missing data under three different occlusion patterns when the shape distribution is unknown. The graphs show mean Euclidean
error in the reconstruction under the occlusion models discussed in Section 6.2. The bottom two results correspond to the method of Sect. 4.2. We
investigate two different arrangements for the data matrix, 3F ×P and F ×3P , which capture different correlations of the data. For this experiment,
3F × P usually offered better performance, which we report on our method. The data is from dense human motion capture originally intended to
measure non-rigid skin deformation while running in place.

σ=1 mm for all methods. We use dense motion capture data from
Park and Hodgins [46]. The sequences are captured at 120 Hz
with a dense spatial sampling across the body. We downsample by
four spatially and temporally, yielding a point cloud of 118 points
at 30 Hz across 162 frames. We measure reconstruction error
as mean Euclidean distance over all points, under three different
patterns of missing data: (a) Random: We occlude points (x,y,z)
at random until we achieve a percentage of missing data. This
pattern of occlusion is not common in practical situations, but is
of interest theoretically: theorems about performance of the trace
norm as an approximation to the rank are based on this pattern.
(b) Detection loss: We model detection loss by occluding spatially
proximal points during 1 second durations (30 frames), simulating
an occlusion. We superimpose these simulated occlusions to in-
crease the amount of missing data. (c) Correspondence loss: We
duplicate every point trajectory. Each of the resulting trajectories
is observable during a non-overlapping duration, resulting in a
pattern similar to that observed when tracking from visual features.

The resulting occlusion patterns are shown as insets in Fig. 6.
We note that correspondence loss results in a much harder
problem. Independently of the occlusion pattern, the proposed
approach shows improved results. The performance drop when
additionally optimizing rotations (Sect. 5.2) is explained by the
nature of the data, which contains almost no rotation and very little
translation. We expect the reduced performance of PND8 in this
experiment is for the same reason. Because there is no temporal
smoothness constraint on the rotations, for high percentages of
missing data the rotation estimation overfits the observed points.

6.3 Non-rigid Structure from Motion

We compare the performance of our time-varying point cloud
reconstruction method using Eq. (20) on a standard set of structure
from motion sequences, where the only data loss is from projec-
tion. In Table 2, we report normalized mean 3D error as computed
in [1] for four methods, (1) KSTA [1], a non-linear kernelized
shape-trajectory method, (2) Dai et al. [14], (3) a trajectory-only
prior, (4) PND [16], and (5) our approach. For our methods (MND
and MND+R), we compute the camera matrices as in Dai et

8. The original code was modified to compensate for translations of the
object. Large amounts of missing data also proved problematic, resulting in
numerical issues for some data points in the graph.

TABLE 2
Comparison on zero-noise standard NRSfM sequences using

normalized mean 3D error [1], [14].

Dataset KSTA Dai Traj. PND MND MND+R

Drink 0.0156 0.0266 0.0102 0.0868 0.0099 0.0898
Pick-up 0.2322 0.1731 0.1707 0.1188 0.1707 0.0935

Yoga 0.1476 0.1150 0.1125 0.1040 0.1114 0.1084
Stretch 0.0674 0.1034 0.0972 0.0908 0.0940 0.1213
Dance 0.2504 0.1842 0.1385 0.6394 0.1347 0.1598
Face2 0.0339 0.0303 0.0408 0.0306 0.0299 0.0333

Walking2 0.1029 0.1298 0.3111 0.2948 0.1615 0.705
Shark2 0.0160 0.2358 0.1380 0.6166 0.1297 0.0684

al. [14] 9, and set σ=1 and λ=0 (the sequences are translationally
mean-centered). For Dai et al. and KSTA, the optimal parameter
k was chosen for each test.

We also evaluated the robustness with respect to missing data
compared to the Procrustean Normal Distribution (PND) of Lee
et al. [16]. We report these results in Table 3 using the metric
used in [16]. Note that this metric is different from that used
in [14], computing normalized mean 3D error on the mean-
centered trajectories including camera motion (see [16]). When
using the camera matrix optimization procedure of Sect. 5.2
(MND+R), we see similar or a slight improvement in performance
for most sequences. However, the improvements using MND+R
are much smaller than we expected; and the solutions have larger
error variance. We attribute this to two factors: (1) the estimated
rotations are completely unconstrained and may not be smooth,
and (2) the optimization procedure of Sect. 5.2 is no longer being
convex and the solution can stagnate at a poor local minimum.

6.4 Multiview Dynamic Reconstruction
We perform a qualitative evaluation of the method of Sect. 4.2
on a dynamic reconstruction sequence from Park et al. [20]. This
sequence is observed very sparsely by multiple cameras taking
snapshots of the scene at a rate of around 1 per second. We aim to
reconstruct the original motion at 30 Hz. Because the observations

9. For KSTA [1], the camera matrices are computed as per Akhter et al. [19].
Our method shows improved performance on 5 of 8 sequences, while the non-
linear KSTA method can achieve better performance on some sequences. The
implementation of Dai et al. and KSTA was provided by the respective authors.
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TABLE 3
Comparison with the PND method of Lee et al. [16] for 0%, 30%, and 60% missing data. We show results using fixed cameras (MND), and

optimized using the algorithm of Section 5.2 (MND+R).

0% missing data

Name PND PMP MND MND+R

yoga 0.0140 0.0128 0.0137 0.0145
pickup 0.0372 0.0127 0.0154 0.0142
stretch 0.0156 0.0124 0.0116 0.0170
drink 0.0037 0.0018 0.0021 0.0022
dance 0.1834 0.1278 0.1035 0.1205
face 0.0165 0.0166 0.0177 0.0195

walking 0.0465 0.0424 0.1360 0.3756
jaws 0.0134 0.0099 0.0882 0.0687

30% missing data

Name PND MND MND+R

yoga 0.0324 0.0430 0.0179
pickup 0.0366 0.0141 0.0145
stretch 0.0151 0.0138 0.0173
drink 0.0055 0.0027 0.0024
dance 0.1768 0.1020 0.1205
face 0.0177 0.0200 0.0251

walking 0.0459 0.1256 0.3567
jaws 0.0154 0.0825 0.0696

60% missing data

Name PND MND MND+R

yoga 0.0277 0.0519 0.0246
pickup 0.0267 0.0675 0.0161
stretch 0.0308 0.0447 0.0236
drink 0.0169 0.0519 0.0051
dance 0.1512 0.1072 0.1212
face 0.0208 0.0279 0.0487

walking 0.0608 0.1293 0.3564
jaws 0.0139 0.0813 0.0713

Filtering only 

Reference

MND

Trace-norm only

x
y

2 4 6 8 10
t (s)

z

Fig. 7. Multiview reconstruction on the “Rock Climbing” sequence
from [20]. Annotated labels are shown in white. (Left) Qualitative com-
parison. The top row shows a result on the full data (104 camera
snapshots of 45 points). All methods perform similarly for fully observed
frames. The bottom row shows a result on a simulated occlusion (see
text). (Center) Reconstructed 3D trajectories of the points, side view
of the climbing wall. The arrows denote the direction of motion of the
climber. (Right) x,y,z-plot of the mean trajectories of the imputed points.

are now 2D image measurements under 3D-to-2D perspective
projection, we use an observation model Oproj corresponding to a
matrix re-arrangement of the observation model described in [20].

Fig. 7 shows reconstructions on a climbing sequence, where
we have simulated occlusion of the left foot. Because ground truth
is not available, to obtain a reference reconstruction we first run all
methods on the full data and average the resulting structure. This
result is shown in black. Fig. 7(left) shows a simulated occlusion
of the points on the left foot during the first 6 seconds of the
sequence. The trajectory-only prior ‖Θ+X‖2F gives a smooth
solution, but the foot is not at a coherent location with respect
to the body. Conversely, all trace-norm based methods are able
to infer the position of the left foot (bottom row of images)
fairly plausibly in the shape domain. However, when we look
at the temporal domain Fig. 7(right), we observe that the trace-
norm penalization ‖X‖∗ results in temporal artifacts—rows in
the matrix with no observations are set to zero. This model is
not adequate for data interpolation: as observed in the matrix
completion literature, the non-uniformity of the missing entries (as
happens when interpolating a sparsely observed signal at 30 Hz)
negatively affects the performance of trace-norm methods. Our
method is able to combine both properties and achieve a smoother
interpolation while maintaining a low-rank structure.

Fig. 8. Reconstructing a dynamic face from a frontal view. The top row
shows frames from a video with superimposed detected 2D landmarks
(green circles). We reconstruct the face in full 3D using Eq. (20) and
show the reprojection onto three other (held out) views for comparison
(yellow). Bottom: ground truth (black), MND (red), trace-norm (blue).

6.5 Monocular reconstruction
In Fig. 8 we show a 3D point cloud reconstruction example from
a frontal view of a face using 2D landmark detections provided by
IntraFace [47]. The original video is around ∼1500 frames long,
which we reconstruct simultaneously. Only a subset of frames is
shown here. We directly use the model of Sect. 4.2 and build an
observation matrix Oortho using the head pose estimation matrices
provided by IntraFace. Our method recovers a time-varying 3D
point cloud of the face, which we can project onto three other
views (not used during reconstruction) to evaluate the accuracy. As
a quantitative comparison, the ground truth was computed by run-
ning the face detector on all views and triangulating the position
of each point. The mean 3D error after Procrustes alignment to the
ground truth shape was 3.3 mm for MND (λ=1e−3), compared
to 3.8 mm for the trace-norm prior (choosing the best weight
λ=0.025), and 5.4 mm for MND+R.

6.6 3D Time-varying Point Cloud Reconstruction
In Fig. 9 we show a reconstruction of the baseball sequence ac-
quired by Joo et al. [48]. The input is a set of 3D point trajectories
obtained from a multi-camera system. Each trajectory is only
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Fig. 9. Reconstructing a baseball motion sequence. Black lines indicate observed points, red lines are inferred trajectories. Two motion trail diagrams
of 30-frame overlapping parts of a baseball swing are shown. The graphs show a close up reconstruction for different subsets of the points.

partially observed (i.e., once a point cannot be tracked forwards
or backwards, its coordinates in subsequent frames are missing).
These sequences are 30-frames in duration and have around ∼800
points, which where occluded on average ∼15% of the time.
The goal is to obtain complete trajectories for the entire duration
of the video. Here, we show two qualitative reconstructions for
two overlapping 30-frame subsets of these sequences. The graphs
show the trajectories for subsets of points. Note how the recovered
trajectories are smooth, and motion occurs in groups because of
the low-rank effect of the shape prior.

7 CONCLUSIONS

We have identified the Kronecker-Markov structure of the co-
variance of time-varying 3D point cloud data and presented a
generative, probabilistic model based on the MND that explains
this pattern. The model unifies a number of shape and trajectory
models, both probabilistic and algebraic, used in prior art. When
training data is available, the prior is easy to use in a least-
squares framework and greatly outperforms using either shape or
trajectory models independently.

When no training data is available, we show how a connec-
tion between the MND and the trace norm leads to a convex
MAP objective for missing data reconstruction. The advantage
of our convex method is that finding a good solution to the
shape factorization problem is guaranteed—however, this comes
at the expense of employing a prior over shape covariance that
is not as concentrated as observed in practice (see Fig. 4(c)),
and not being able to optimize rotations within the same con-
vex framework. Determining under precisely which conditions
a generalized trace norm regularization implies a Kronecker-
Markov covariance structure is a possible direction of future work.
Conversely, the PND-based optimization procedures, particularly
the closely related Markov PND [24] prior, show very good results
in practice, despite requiring a non-convex optimization and being
sensitive to initialization. Ideally, a combination of the properties
of both models would result in a stable, highly accurate prior for
spatiotemporal data that can be estimated reliably. Along these
lines Cabral et al. [49] have shown that under certain conditions a
bilinear factorization approach using a non-convex procedure can
still converge to the global optimum, and that this optimization
can also be simpler and faster. This seems to suggest that, at least
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Fig. 10. The matrix normal model allows us to compute the expected
value and spatiotemporal covariance of missing data. For this 30 frame
sequence, points have been removed completely from frames 10–20.
Observed points are marked by red dots. We infer missing values and
visualize the mean and 95% confidence bound.

for 3D dynamic reconstruction problems, procedures for finding
good solutions with guarantees that are laxer than convexity might
be found.
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