
Increasing the Density of Active Appearance Models.∗

Krishnan Ramnath
ObjectVideo, Inc.

Simon Baker
Microsoft Research

Iain Matthews
Weta Digital Ltd.

Deva Ramanan
UC Irvine

Abstract
Active Appearance Models (AAMs) typically only use

50-100 mesh vertices because they are usually constructed
from a set of training images with the vertices hand-labeled
on them. In this paper, we propose an algorithm to increase
the density of an AAM. Our algorithm operates by itera-
tively building the AAM, refitting the AAM to the training
data, and refining the AAM. We compare our algorithm with
the state of the art in optical flow algorithms and find it to be
significantly more accurate. We also show that dense AAMs
can be fit more robustly than sparse ones. Finally, we show
how our algorithm can be used to construct AAMs auto-
matically, starting with a single affine model that is subse-
quently refined to model non-planarity and non-rigidity.

1. Introduction
Active Appearance Models (AAMs) [8] are deformable

models of the human face. AAMs have been used success-
fully in a wide variety of applications from head pose esti-
mation, face recogntion, and expression recognition [16], to
lip-reading [19] and gaze estimation [14].

The triangulated mesh in an AAM typically only has
around 50-100 vertices because AAMs are usually con-
structed from a collection of training images with the AAM
mesh hand-labeled [8] on them. Besides the fact that hand-
labeling is laborious, it is very difficult to accurately label
corresponding points in largely textureless regions such as
the cheeks. In practice, AAM meshes are best defined on
the few facial landmarks that are easy to locate.

In this paper we propose an algorithm to increase the
density of an AAM, initially assuming a sparse AAM has
been constructed in the usual manner [8]. On the highest
level, our algorithm iterates 3 steps: (1) building the AAM,
(2) refitting the AAM to the training images thereby updat-
ing the training meshes, and (3) refining the AAM.

The third of these steps is divided into three subparts.
(3a) Consists of adding more vertices to increase the mesh
density. (3b) Refines the mesh connectivity using image-
consistent triangulation [20]. Even when combined, how-
ever, (3a) and (3b) are insufficient to build a more accu-

∗Research conducted at Carnegie Mellon University.

Initial Training Images
Sparse Landmark Points

1. Model Construction

2. Model Fitting

3(a). Adding Mesh
Vertices

3(b). Image Consistent
Triangulation

3(c). Shape Mode
Refinement

Final Dense Models

3. Model Refinement
Iterate

Figure 1. An overview of our algorithm. The algorithm is ini-
tialized using a set of sparse hand-labeled mesh points. The al-
gorithm then iteratively: (1) builds an AAM, (2) refits it to the
training images, and (3) refines the AAM. AAM refinement is
split into three steps: (3a) the mesh is subdivided to add ver-
tices, (3b) the mesh connectivity is refined using image-consistent
re-triangulation [20], and (3c) the AAM shape modes and cor-
responding mesh vertex locations are optimized to minimize the
model reconstruction error.

rate AAM. The piecewise affine warps in an AAM can be
thought of as modeling 3D planes in the world. Since nei-
ther steps (3a) nor (3b) change the locations of the original
sparse mesh in the training data, the implicit 3D shape and
motion of these vertices is not changed. The main insight
in our algorithm is to augment (3a) and (3b) with step (3c)
which refines the AAM shape modes and the corresponding
mesh vertex locations in the training data to minimize the
model reconstruction error in a similar manner to [3]. This
optimization allows the implicit 3D model to change shape
and move differently; e.g. the cheeks to protrude, etc.

As the AAM is refined, our algorithm builds an increas-
ingly accurate model of appearance variation effects such
as illumination variation and the appearance and disappear-
ance of facial structures such as eyes and teeth. In steps (2)

1

and (3c), the appearance variation model is used in a similar
way that models of appearance variation have been used in
face tracking algorithms [5, 10, 9]. The key difference in
our algorithm is that the model of appearance variation is
repeatedly updated as the model is refined.

An additional benefit of our algorithm is that it can help
decide how dense an AAM needs to be. The algorithm can
be terminated when the reduction in reconstruction error is
too small to merit the introduction of more vertices.

We first evaluate our algorithm quantitatively with a set
of ground-truth data using a form of hidden markers. In
the computation of dense 3D Morphable Models [6], optical
flow is used to compute dense correspondence. We there-
fore compare with a number of optical flow algorithms, in-
cluding the overall best performer [7] in a recent evaluation
of optical flow algorithms [4]. We find that none of the opti-
cal flow algorithms yields any noticable improvement in the
accuracy of hidden marker correspondence prediction. On
the other hand, our densification produces a significant im-
provement. We also perform comparisons to show improve-
ment in fitting robustness and present a number of tracking
results to qualitatively illustrate our algorithm.

Finally, we show how our algorithm can be used to
construct AAMs automatically, starting with a rigid planar
model of the face that is subsequently refined to model the
non-planarity and the non-rigid components. Our results
are a significant improvement over previous unsupervised
AAM construction algorithms such as [3].

2. Background: AAMs
2.1. Construction

Active Appearance Models (AAMs) are usually con-
structed from a set of training images with the AAM mesh
vertices hand-labeled on them [8]. The training mesh ver-
tices are first aligned with Procrustes and then Principal
Component Analysis (PCA) is used to build a 2D lin-
ear model of shape variation [8]. The 2D shape s =
(x1, y1, . . . , xM , yM)T can be represented as a base shape
s0 plus a linear combination of m shape vectors sj :

s = s0 +
m∑

j=1

pj sj (1)

where the coefficients pj are the shape parameters. The
AAM model of appearance variation is obtained by first
warping all the training images onto the mean shape and
then applying Principal Component Analysis on the shape
normalized appearance images [8]. The appearance of an
AAM A(u) can be represented as a mean appearance A0(u)
plus a linear combination of l appearance vectors Aj(u):

A(u) = A0(u) +
l∑

j=1

λj Aj(u) (2)

where the coefficients λj are the appearance parameters and
u runs over all pixels in the base mesh. For notational con-
venience we denote the set of pixels inside the mesh s0.

An AAM model instance with shape parameters pj and
appearance parameters λj can then be generated by warping
the appearance A(u) from the base mesh s0 to the model
shape mesh s. In particular, we define a piecewise affine
warp from s0 to s and denote it as W(u;p). Following
[18], we also incorporate the 2D similarity transformation
that is used to normalize the shape [8] into W(u;p).

2.2. Fitting

Fitting an AAM to an input image I can be posed [18]
as minimizing the following non-linear criterion:

∑
u∈s0

A0(u) +
l∑

j=1

λjAj(u) − I(W(u;p))

2

(3)

with respect to the 2D shape p and appearance λj param-
eters. In [18] it was shown that the optimization in Equa-
tion (3) can be solved at over 200 frames per second using
the inverse compositional algorithm [2].

3. AAM Densification
We now describe our algorithm to increase the density of

an AAM. See Figure 1 for a flow diagram. In the outer loop,
our algorithm iterates three steps: (1) Model Construction
(see Section 2.1), (2) Model Fitting (see Section 2.2) and
(3) Model Refinement (see below.) We refine the model
in three ways: (3a) the mesh is subdivided to add vertices.
(3b) the mesh connectivity is refined using image-consistent
re-triangulation [20], and (3c) the AAM shape modes and
corresponding mesh vertex locations are optimized to mini-
mize the model reconstruction error. We now describe each
of these steps in turn.

(3a) Adding Mesh Vertices

The first step in the iterative refinement process is to add
more mesh vertices. There are a number of ways to choose
a mesh triangle and the location within the triangle to add
the points. We adopt a simple but effective way to ensure
that we end up with similarly sized triangles. At each iter-
ation, we choose the mesh triangle with the longest edge.
A new point is then added on the mid-point of this edge.
Choosing the longest edge in this way avoids the creation
of “long thin” triangles. Figure 2 illustrates the addition
of two points to the mesh. We chose to maintain symmetry
and add a pair of points simultaneously to both halves of the
face mesh at each step. Maintaining symmetry is optional
but we found it reduced the tendency to overfit the data and
also results is more visually appealing models.

Figure 2. A pair of images showing the mesh before and after two
new mesh points have been added to the longest edges. The newly
added points and edges are highlighted. Note that adding a new
vertex causes two adjacent triangles to split.

One extension of this algorithm might be to explore other
heuristics to choose where to add the new points such as
choosing the triangle with the largest average coding er-
ror, and trying to place points on structural discontinuities.
However, it should be noted that as the mesh gets more and
more dense, the choice of a specific heuristic becomes less
important as there are vertices close to any point on the face.

(3b) Image-Consistent Re-Triangulation

The next step is to refine the mesh connectivity using
image-consistent re-triangulation[20]. We look at each pair
of adjacent triangles in turn and flip the common edge (i.e.
replace the edge with the other diagonal edge in the quadri-
lateral defined by the two trianlges.) We look at the RMS
model reconstruction error:vuut 1

N

NX
i=1

" X
u∈s0

"
A0(u) +

lX
j=1

λi
jAj(u)− Ii(W(u;p))

##2

(4)
across the training data to determine whether the flip re-
sulted in a reduction in reconstruction error or not. If the
flip did result in a reduction in reconstruction error, we per-
form the flip on the mesh and proceed to the next pair of
triangles. The current appearance model for estimating the
reconstruction error is obtained by fitting the AAM to the
image data. In Figure 3 we show the mesh before and af-
ter performing image-consistent re-triangulation. Note that
again we enforce symmetry, for the same reasons as above.

(3c) Shape Mode Refinement

Even when combined, steps (3a) and (3b) are insufficient
to build a significantly more accurate AAM. The piecewise
affine warps in an AAM can be thought of as modeling 3D
planes in the world. Since neither steps (3a) nor (3b) change
the locations of the original sparse mesh in the training data,
the implicit 3D shape and motion of these vertices is not
changed. In order to allow the implicit 3D shape of the
AAM to change and new shape deformations to be possible,
the shape modes must be refined.

In step (2) of our algorithm, the model is refit to the train-
ing data, but the motion of the mesh vertices is limited to the

Figure 3. A pair of images showing the mesh before and after
performing an image-consistent re-triangulation of the mesh [20].
The symmetric pair of edges that were flipped are highlighted.

shape subspace of the face model. To allow the shape modes
to change when the model is rebuilt the next time step (1)
is applied, we must repeat the refitting in step (2) but allow
the mesh vertices to move outside the current shape sub-
space. We can then possibly learn new deformations that
better explain the training imagery. In particular, we per-
form a model fit similar to the one described in Section 2.2
except that we replace the shape modes with identity bases
that span the entire 2D space:

[s1 . . . s2M] =


1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
...

...
...


2M×2M

(5)

where M is the number of mesh vertices. This optimization
is very high dimensional and ambiguities may appear in re-
gions with insufficient texture (a form of generalized aper-
ture problem.) In order to avoid this problem, we regularize
this optimization with two priors. The first is a smoothness
constraint on newly added vertices. The second is a con-
straint that the initial sparse vertices cannot move too far
from the input (hand-marked) locations (to avoid the model
collapsing to a single pixel in each training image.)

The smoothness prior encourages newly added points to
be not too far away from their initial position relative to the
vertices of the triangle that they were added to. Denote the
vertices of a triangle which has had a vertex added to it by
v1, v2, v3, and denote the added vertex v4. The smoothness
prior is given by:

‖v1 + λ (v2 − v1) + µ (v3 − v1) − v4‖2 (6)

summed over all newly added mesh vertices v4. The λ and
µ coefficients are the barycentric coordinates of the added
vertex v4 with respect to the triangle v1, v2, v3.

The second prior penalizes points that move too much
from their initial hand specified locations:

‖s0 +
m∑

j=1

pj sj − ŝ‖2 (7)

where the mean shape s0, 2D shape parameters p and the
eigenvectors sj are all defined over the number of initial
vertices and ŝ are the initial hand-labeled vertex locations.

The final optimization criterion is a combination of the
terms in Equations (3), (6) and (7) and is given by:

N∑
i=1

∑
u∈s0

I i
(
W

(
u;pi

))
−

A0 (u) +
l∑

j=1

λi
jAj (u)

2

+K1 ·
N∑

i=1

‖s0 +
m∑

j=1

pi
j sj − ŝi‖2+

K2·
N∑

i=1

M2∑
j=1

‖vij
1 +λj

(
vij

2 − vij
1

)
+µj

(
vij

3 − vij
1

)
−vi

4‖2

(8)
where there are i = 1, . . . , N training images Ii, j =
1, . . . ,M2 new vertices have been added, λj , µj are the
Barycentric coordinates of the jth new vertex in the mean
shape, vij

4 is the location of the jth new vertex in image i,
and (vij

1 , vij
2 , vij

3) are the vertices of the triangle to which
the jth new vertex was added in image i. Equation (8) is
optimized using the inverse compositional algorithm with
priors [1]. The weights K1 and K2 are currently chosen by
trial and error.

Termination Criterion

An additional benefit of our algorithm is that it can help
decide how dense an AAM needs to be to explain all the
training data with a certain degree of fidelity. In particular,
a natural termination criterion is to threshold the reduction
in the image coding error (first term in Equation (3)).

4. Experimental Results
There are two ways to initialize our algorithm. One way

is to start with an existing sparse AAM and then increase the
mesh density. In Sections 4.1, 4.2 and 4.3 we present results
for this case. We can also automatically construct a dense
AAM using the output of a blob tracker as initialization. In
Section 4.4 we present results using this approach.

4.1. Quantitative Evaluation

In this section we present quantitative comparisons to
demonstrate the improved accuracy of our algorithm in
building dense models. We collected high resolution data
with hidden markers, manually locate the markers, and use
the resulting correspondences as ground-truth. See Sec-
tion 4.1.1. We then evaluate an AAM using the dense corre-
spondence between the training images implied by the loca-
tions of the training mesh vertices. We use this correspon-
dence to warp all the hidden markers into the mean shape
and then evaluate how consistent they are.

We compare dense models constructed with our algo-
rithm against those estimated using optical flow. Optical

Figure 4. Left: An example of the high resolution images used to
generate the ground-truth. The hand-marked ground-truth points
on the face are highlighted using dark circles. Right: Two exam-
ples of down sampled images. Notice that the ground-truth points
are almost invisible in the down sampled images.

flow is used to build dense models in an analogous man-
ner to [6]. For any given AAM density, the optical flow
is used to predict the locations of the added mesh vertices
in the training images. A dense AAM is then constructed
in the usual manner using the extra vertex locations. We
compare our algorithm with 4 different optical flow algo-
rithms [12, 17, 21, 7] one of which [7] was the top overall
performer in a recent evaluation of flow algorithms [4].

4.1.1 Ground-Truth Data Collection

We collected high-resolution face data using a 6 megapixel
Canon EOS SLR camera. We obtained facial ground-truth
data using a form of hidden markers on the face. See [22, 4]
for two different ways of embedding hidden ground-truth.
We mark a number of very small black dots on the face
with a fine tip marker. We then hand locate the markers
in the high resolution images. Figure 4 shows one such
high resolution image with ground-truth points marked on
it along with a zoomed in version highlighting the ground-
truth point locations. The input data to all algorithms con-
sists of all the high resolution images (3072 x 2040) down
sampled to one fourth their size (768 x 510.) The ground-
truth points are no longer visible in these low resolution im-
ages and hence do not influence the working of the algo-
rithms. Two down sampled images are shown in Figure 4.

Note that we use only a single person’s ground-truthed
data for the quantitative comparisons. The notion of corre-
sponding points is not well defined across different people.
We cannot estimate where a point on the face of person A
should correspond to a point on the face of person B. Also
note that we cannot use range data to help with this process
since the important aspect of the ground-truth is the non-
rigid mapping from frame to frame.

4.1.2 Optical Flow Computation

Optical flow can be particularly hard when the motion is
large. In our case, the head moves around quite a bit in
the input image. Our densification algorithm keeps track
of where the original head locations were and so implicitly

(a) (b) (c)

Figure 5. (a) An example of the mesh used to warp input images
onto the mean shape for computing optical flow. The face mesh is
extended to eliminate boundary effects for optical flow algorithms.
(b) The original input images to our algorithm. It is difficult for
optical flow algorithms to work on these images with varying head
locations. (c) The two images from (b) warped onto the mean
shape using the mesh from (a). By warping the images onto the
mean shape we reduce the search space to 4–5 pixels.

avoids this large search space. We provide equivalent in-
formation to the optical flow algorithms by warping all the
input images into the coordinate frame of the mean face for
the initial sparse model. This means that the maximum flow
for all of the images is of the order of 4–5 pixels, well within
the search ranges of most optical flow algorithms. Another
issue that can cause difficulty for optical flow algorithms is
boundary effects. We avoid this by also warping a bound-
ary region around the face. We present examples of the face
mesh and the original and warped images in Figure 5. Ob-
serve that the warped images are closer to each other and
hence makes it easier for the optical flow algorithms.

4.1.3 2D Ground-Truth Points Prediction Results

We compare our algorithm with four optical flow algo-
rithms: (1) Horn-Schunck [12], (2) Lucas-Kanade [17],
(3) diffused connectivity (Openvis3D) [21], and (4) com-
bined local and global (CLG) [7]. The fourth of these algo-
rithms is the best overall performer in a recent evaluation of
optical flow algorithms [4]. We use the authors implemen-
tation of (1), the OpenCV implementations [13] of (2) and
(3), and Stefan Roth’s implementation of (4) [4].

To evaluate the optical flow algorithms, we first compute
AAMs using the output of the flow algorithms. For any
given size of AAM, we use the optical flow to generate esti-
mates of where the extra vertices are in the training images.
We then use the computed AAMs to predict the correspon-
dence between the hidden-marker ground-truth points in the
training images by warping each point into the other im-
ages using the AAM vertex locations and piecewise affine
interpolation. Once we have the predicted locations of the
ground-truth points in all images we compute the RMS spa-
tial error between the predicted and the actual ground-truth
point locations. We compare the results of the flow algo-
rithms with the corresponding results for the dense AAMs
constructed using our algorithm.

We present the results for two different people in Fig-
ure 6. We plot the RMS ground-truth prediction error vs the

0 69 79 88 98 108 118 128 138 148 158 1682.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

Number of Mesh Vertices

G
ro

un
d

Tr
ut

h
Po

in
t L

oc
at

io
n

Er
ro

r (
RM

S)

Hand!labeled landmarks
Optical Flow ! Openvis3D
Optical Flow ! Lucas and Kanade
Optical Flow ! Horn and Schunck
Densification Algorithm Output
Optical Flow ! 2D CLG

Person 1

0 69 79 88 98 108 118 128 138 148 158 168 1781

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of Mesh Vertices

G
ro

un
d

Tr
ut

h
Po

in
t L

oc
at

io
n

Er
ro

r (
RM

S)

Person 2

Figure 6. A comparison of the algorithms in terms of their ability
to predict the correspondence between the hidden markers. On
the x-axis we plot the number of mesh vertices in the AAM (each
iteration of our algorithm adds 10 mesh points). On the y-axis
we plot the RMS ground-truth point prediction error. Our AAM
densification algorithm clearly outperforms the flow algorithms.

number of mesh points in the AAM. The results show that
our densification algorithm results in an AAM that is bet-
ter able to predict the ground-truth data the more vertices
are used; i.e. the AAM gets more accurate the more mesh
vertices are used. On the other hand, the performance of
all four of the optical flow algorithms barely improves as
the density of the AAM is increased. This means that the
locations of the extra vertices in the training data that are
predicted using the optical flow is no better than that which
would be obtained by interpolating the sparse mesh using
the piecewise affine warp; i.e. the optical flow algorithms
add little new information over the hand-labeled vertices.
Since none of the flow algorithms gives any substantial im-
provement, their relative performance is somewhat random
and essentially depends on the various sources of noise.

4.1.4 3D Ground-Truth Points Prediction Results

We now perform comparisons similar to the ones in the pre-
vious section to evaluate the 3D consistency of the corre-

1 2 3 4 5 6 10

15

20

25

30

35

Image

Di
st

an
ce

 in
 m

m

Sparse Correspondence
Dense Correspondence

Figure 7. The distance of the triangulated 3D ground truth points
from the 3D mesh plane for each 3-frame. The values were com-
puted for six 3-frames. The smallest triangle in which the ground-
truth point lies in 2D was computed. The distance was com-
puted between the triangular plane (formed by the 3D mesh ver-
tices) and the corresponding 3D ground truth points. The average
distance across images for the sparse correspondence (68 mesh
points) is 27.84 mm whereas for the dense correspondence (168
mesh points) it is 13.625 mm.

spondence computed by our algorithm with respect to the
ground-truth. In this case we evaluate our algorithm on
trinocular stereo data. We repeat the experimental setup de-
scribed in Section 4.1.1 except that now we have a stereo
rig with calibrated cameras [15]. We use the initial sparse
correspondence (the input to our algorithm) and the dense
correspondence from our algorithm and triangulate them
to obtain 3D point locations. We also triangulate the 2D
ground-truth points to obtain 3D ground-truth points.

We compare the 3D fidelity of the sparse and the dense
correspondences by computing the distance of each 3D
ground-truth point from the corresponding triangular plane
comprised of the sparse and dense mesh vertices. We find
that the ground-truth points are closer (in the depth direc-
tion) to the dense triangular mesh planes than the sparse
ones, indicating that our densification algorithm generated
mesh vertices with higher 3D fidelity. We include the results
of our 3D quantitative comparison in Figure 7.

4.2. Fitting Robustness

In Figure 8 we show quantitative results to demonstrate
the increased robustness of our dense AAMs. In experi-
ments similar to those in [18], we generated 1800 test cases
(20 trials each for 90 images) by randomly perturbing the
2D shape model from a ground-truth obtained by tracking
the face in video sequences and allowing the algorithms to
converge. The 2D shape and similarity parameters obtained
from the dense AAM tracks were perturbed and the pertur-
bations were projected on to the ground-truth tracks of the
sparse AAMs. This ensures that the initial perturbation is

0 1 2 3 4
50

60

70

80

90

100

Avg. Shape Sigma Perturbation

Pe
rc

en
ta

ge
 o

f T
ria

ls
Co

nv
er

ge
d

Sparse model
Dense model

Figure 8. Fitting robustness results comparing the sparse AAM
(68 vertices) and the dense AAM (168 vertices). An increase in
frequency of convergence is obtained using the dense AAM.

a valid starting point for all algorithms. We then run each
algorithm (one using the dense AAM and the other with the
sparse AAM) from the same perturbed starting point and
determine their convergence by computing the RMS error
between the mesh location of the fit and the ground-truth
mesh coordinates. The algorithm is considered to have con-
verged if the RMS spatial error is less than 2.0 pixels. The
magnitude of the perturbation is chosen to vary on average
from 0 to 4 times the 2D shape standard deviation. The per-
turbation results were obtained on the trinocular stereo data
(Section 4.1.1) for each of the three camera views and the
average frequency of convergence is reported in Figure 8.

The results show that the dense AAM converges to
ground truth more often than the sparse AAM. The in-
creased robustness of the dense AAM may be surprising
given its apparent increased flexibility. But note that both
the sparse and dense AAMs have the same number of shape
modes. The increased robustness of the dense AAM is be-
cause it is a better (more compact) coding of the training
face images, and has a refined appearance model. Also note
that since both the sparse and the dense AAMs have the
same number of parameters that are optimized during the
fit, the dense AAM fitting is as fast as the sparse AAM fit-
ting. The additional overheads such as in computing the
affine warp for composition hardly affect the speed of fitting
which is dominated by dot-producting the error image with
a steepest descent image for each shape parameter [18].

4.3. Face Tracking

In Section 4.1 we used single-person data to allow a
quantitative comparison with ground-truth. Our algorithm
can of course be applied to data of any number of people. In
this section we present a qualitative evaluation of the track-
ing ability of the dense AAM constructed using our algo-
rithm. We collect tracking data of five different subjects
using a video camera and use our algorithm to compute a

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

Figure 9. Although to obtain quantitative results in Figure 6 we had to build AAMs for a single person, our algorithm can naturally be
applied to data of multiple people. It is just not possible to generalize the procedure in Figure 6 to multiple people. Here we show a few
frames of a dense multi-person AAM being used to track five different people. See face track.mov for the complete sequences.

dense multi-person AAM. We then use the dense AAM thus
computed to track test data with varied facial expressions
across multiple subjects. The AAM tracker is initialized by
hand. We find that the dense AAM can be used to reliably
track the test data that we presented. In particular, the dense
model generalizes well to unseen expressions. The video
face_track.mov illustrates the tracking. A few snap
shots of the tracking video are presented in Figure 9.

4.4. Application to Blob Tracker Output

We now illustrate how our densification algorithm can
be used to perform unsupervised AAM construction. Our
algorithm is different from previous automatic construction
algorithms such as [3] in two important ways: 1) Our al-
gorithm does not need a hand specified mesh; the mesh
topology is computed by our algorithm and 2) Our algo-
rithm works far better because of the progressive model re-
finement. The results obtained by previous authors [3] were
fairly limited and mostly consisted of simple rigid motions.
In comparison, we apply our densification algorithm to face
data with substantial non-rigid deformations.

We used a blob tracker based on a skin color model to
detect and track the faces in the video sequences. We use
the output of this blob tracker (a roughly face shaped affine-
warped planar grid) as the initialization to our algorithm.

To illustrate the computed AAM, we used them to track
the faces in two different video sequences. The two video
sequences were captured under different illumination con-
ditions. A few snaps shots from the tracking video are
shown in Figures 10 and 11. The complete tracking se-
quences are included in auto1.mov and auto2.mov.
Note that the AAMs used in these sequence are computed in
a completely unsupervised manner with absolutely no hand-
labeling.

5. Conclusion
In this paper, we have addressed the task of increasing

the density of AAMs. Although we work with AAMs, it is

possible that the same ideas could be re-applied to the 3D
range scan and texture map data used to build more accu-
rate 3DMMs [6]. We also restricted to frontal models. It is
possible that the algorithm in this paper can be extended to
also model occlusion using the algorithm in [11]. Is is also
possible that it can be applied to other data besides human
faces.

Our algorithm operates by iterating AAM construction,
fitting, and refinement. Refinement itself consists of three
steps: adding mesh vertices, re-triangulation, shape mode
refinement. Note that any one of these steps on its own
would not be sufficient. If we just refine the shape modes,
the AAM has no more representational power and does not
get any more dense. Similarly, if we just re-triangulate
with image-consistent re-triangulation, the representational
power does not change much. The average size of the pla-
nar triangular elements of the mesh cannot change much
and so the AAM has very little more power to model faces
more accurately. If we just add vertices, then we can only
add them on the planar faces already implicit in the model.
It is the combination of the three techniques that gives our
algorithm its power. An additional benefit is that our algo-
rithm provides a measure that can be used to decide when
to stop increasing the mesh density. Finally, besides being
used to increase the density of of a hand constructed AAM,
our algorithm can also be used to automatically construct an
AAM using no hand-labels by starting from a single planar
model of a face obtained with a blob tracker.

Acknowledgements

We would like to thank Stefan Roth for providing the
implementation of Bruhn et al. [7] that was used in [4].

References

[1] S. Baker, R. Gross, and I. Matthews. Lucas-Kanade
20 years on: Part 4. Technical Report CMU-RI-TR-

Figure 10. Leftmost image: An example of the rigid tracker inputs to our AAM construction algorithm. Right: A few frames of a face
being tracked with an AAM computed in a fully unsupervised manner with no hand labeling. Instead, the AAM was built by running our
densification algorithm initialized with the blob tracker. Note that the tracking is fairly accurate especially the mesh region around the
mouth deforms well according to the change in expression.

Figure 11. Leftmost image: A second example of the rigid tracker inputs to our AAM construction algorithm. Right: A few frames of a face
being tracked with an AAM computed in a fully unsupervised manner with no hand labeling. Tracking with an automatically constructed
AAM is far harder task than using a hand-constructed AAM. These results should be compared with the fairly more limited ones in [3].

04-14, Carnegie Mellon University Robotics Institute,
2004.

[2] S. Baker and I. Matthews. Lucas-Kanade 20 years on:
A unifying framework. IJCV, 56(3):221 – 255, 2004.

[3] S. Baker, I. Matthews, and J. Schneider. Automatic
construction of active appearance models as an image
coding problem. PAMI, 26(10):1380–1384, 2004.

[4] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J.
Black, and R. Szeliski. Database and evaluation
methodology for optical flow. In ICCV, 2007.

[5] M. Black and Y. Yacoob. Tracking and recognising
rigid and non-rigid facial motions using local paramet-
ric models of image motion. In ICCV, pages 374–381,
1995.

[6] V. Blanz and T. Vetter. A morphable model for the
synthesis of 3D faces. In SIGGRAPH, pages 187–194,
1999.

[7] A. Bruhn, J. Weickert, and C. Schnorr. Lucas/Kanade
meets Horn/Schunck: Combining local and global op-
tic flow methods. IJCV, 61(3):211–231, 2005.

[8] T. Cootes, G. Edwards, and C. Taylor. Active appear-
ance models. PAMI, 23(6):681–685, 2001.

[9] D. DeCarlo and D. N. Metaxas. Optical flow con-
straints on deformable models with applications to
face tracking. IJCV, 38(2):99–127, 2000.

[10] I. A. Essa and A. Pentland. Facial expression recog-
nition using a dynamic model and motion energy. In
ICCV, pages 360–367, 1995.

[11] R. Gross, I. Matthews, and S. Baker. Active appear-
ance models with occlusion. Image and Vision Com-
puting, 24(6):593–604, 2006.

[12] B. Horn and B. Schunck. Determining Optical Flow.
Technical report, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, April 1980.

[13] Intel Corporation. Intel Open Source Computer Vision
Library. http://opencvlibrary.sourceforge.net, 2005.

[14] T. Ishikawa, S. Baker, I. Matthews, and T. Kanade.
Passive driver gaze tracking with active appearance
models. In Proceedings of the 11th World Congress
on Intelligent Transportation Systems, 2004.

[15] J.-Y.-Bouquet. Camera calibration toolbox for Matlab.
http://www.vision.caltech.edu/bouguetj/calib doc,
2005.

[16] A. Lanitis, C. Taylor, and T. Cootes. Automatic in-
terpretation and coding of face images using flexible
models. PAMI, 19(7):742–756, 1997.

[17] B. Lucas and T. Kanade. An iterative image regis-
tration technique with application to stereo vision. In
DARPA Image Understanding, pages 121–130, 1981.

[18] I. Matthews and S. Baker. Active Appearance Models
revisited. IJCV, 60(2):135–164, 2004.

[19] I. Matthews, T. Cootes, A. Bangham, S. Cox, and
R. Harvery. Extraction of visual features for lipread-
ing. PAMI, 24(2):198–213, 2002.

[20] D. D. Morris and T. Kanade. Image-consistent surface
triangulation. PAMI, 1:332 – 338, 2004.

[21] A. Ogale and Y. Aloimonos. Shape and the stereo cor-
respondence problem. IJCV, 65(1):147–162, 2005.

[22] M. F. Tappen, E. H. Adelson, and W. T. Freeman. Es-
timating intrinsic component images using non-linear
regression. In CVPR, volume 2, 2006.

