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Abstract Active Appearance Models (AAMs) are genera-
tive, parametric models that have been successfully used in
the past to model deformable objects such as human faces.
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The original AAMs formulation was 2D, but they have re-
cently been extended to include a 3D shape model. A variety
of single-view algorithms exist for fitting and constructing
3D AAMs but one area that has not been studied is multi-
view algorithms. In this paper we present multi-view algo-
rithms for both fitting and constructing 3D AAMs.

Fitting an AAM to an image consists of minimizing the
error between the input image and the closest model in-
stance; i.e. solving a nonlinear optimization problem. In the
first part of the paper we describe an algorithm for fitting
a single AAM to multiple images, captured simultaneously
by cameras with arbitrary locations, rotations, and response
functions. This algorithm uses the scaled orthographic imag-
ing model used by previous authors, and in the process of
fitting computes, or calibrates, the scaled orthographic cam-
era matrices. In the second part of the paper we describe
an extension of this algorithm to calibrate weak perspective
(or full perspective) camera models for each of the cameras.
In essence, we use the human face as a (non-rigid) calibra-
tion grid. We demonstrate that the performance of this algo-
rithm is roughly comparable to a standard algorithm using
a calibration grid. In the third part of the paper, we show
how camera calibration improves the performance of AAM
fitting.

A variety of non-rigid structure-from-motion algorithms,
both single-view and multi-view, have been proposed that
can be used to construct the corresponding 3D non-rigid
shape models of a 2D AAM. In the final part of the pa-
per, we show that constructing a 3D face model using non-
rigid structure-from-motion suffers from the Bas-Relief am-
biguity and may result in a “scaled” (stretched/compressed)
model. We outline a robust non-rigid motion-stereo algo-
rithm for calibrated multi-view 3D AAM construction and
show how using calibrated multi-view motion-stereo can
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eliminate the Bas-Relief ambiguity and yield face models
with higher 3D fidelity.

Keywords Active appearance models · Multi-view 3D face
model construction · Multi-view AAM fitting · Non-rigid
structure-from-motion · Motion-stereo · Camera calibration

1 Introduction

Active Appearance Models (AAMs) (Cootes et al. 1998,
2001; Cootes and Kittipanyangam 2002; Edwards 1999),
and the related concepts of Active Blobs (Sclaroff and
Isidoro 1998, 2003) and Morphable Models (Blanz and
Vetter 1999; Jones and Poggio 1998; Vetter and Poggio
1997), are generative models of a certain visual phenom-
enon. AAMs are examples of statistical models that are
used to characterize the shape and the appearance of the
underlying object by a set of model parameters. Though
AAMs are useful for other phenomena (Gross et al. 2006;
Hu et al. 2004), they are commonly used to model faces. In
a typical application, once an AAM has been constructed,
the first step is to fit it to an input image, i.e. model parame-
ters are found to maximize the match between the model in-
stance and the input image. The model parameters can then
be passed to a classifier. Many different classification tasks
are possible.

Although AAMs were originally formulated as 2D, there
are other deformable 3D models (3D Morphable Models
(Blanz and Vetter 1999)) and AAMs have also been ex-
tended to 3D (2D+3D AAMs (Xiao et al. 2004a)). A number
of algorithms have been proposed to build deformable 3D
face models and to fit them efficiently (Xiao et al. 2004a;
Romdhani and Vetter 2003; Ahlberg 2001; Sung and Kim
2004; Wen and Huang 2003; Pighin et al. 1999; Dornaika
and Ahlberg 2004). Deformable 3D face models have a wide
variety of applications. Not only can they be used for tasks
like pose estimation, which just require the estimation of the
3D rigid motion, but also for tasks such as expression recog-
nition and lipreading, which require, explicitly or implicitly,
estimation of the 3D non-rigid motion.

Most of the previous algorithms for AAM fitting and con-
struction have been single-view. One area that has not been
studied much in the past (an exception is Cootes et al. 2000)
is the development of simultaneous multi-view algorithms.
Multi-view algorithms can potentially perform better than
single-view as they can take into account more visual infor-
mation. In this paper we present multi-view algorithms to
both fit and build 3D AAMs.

In the first part of the paper we study multi-view fitting
of AAMs. Fitting an AAM to an image consists of mini-
mizing the error between the input image and the closest

model instance; i.e. solving a nonlinear optimization prob-
lem. Face models are usually fit to a single image of a face.
In many application scenarios, however, it is possible to set
up two or more cameras and acquire simultaneous multiple
views of the face. If we integrate the information from mul-
tiple views, we can possibly obtain better application per-
formance. For example, Gross et al. (2004) demonstrated
improved face recognition performance by combining mul-
tiple images of the same face captured from multiple widely
spaced viewpoints. In Sect. 3, we describe how a single
AAM can be fit to multiple images, captured by cameras
with arbitrary locations, rotations, and response functions.

The main technical challenge is relating the AAM shape
parameters in one view with the corresponding parameters
in the other views. This relationship is complex for a 2D
shape model but is straightforward for a 3D shape model.
We use 2D+3D AAMs (Xiao et al. 2004a) in this paper.
A 2D+3D AAM contains both a 2D shape model and a 3D
shape model. Besides the requirement of having a 3D shape
model, the main advantage of using a 2D+3D AAM is that
2D+3D AAMs can be fit very efficiently in real-time (Xiao
et al. 2004a). Corresponding multi-view fitting algorithms
could also be derived for other 3D face models such as 3D
Morphable Models (Blanz and Vetter 1999). We could eas-
ily have used a 3D Morphable Model instead to conduct the
research in this paper, but the fitting algorithms would have
been slower.

To generalize the 2D+3D fitting algorithm to multiple im-
ages, we use a separate set of 2D shape parameters for each
image, but just a single, global set of 3D shape parameters
as represented in Fig. 1. We impose the constraints that for
each view separately, the 2D shape model for that view must
approximately equal the projection of the single 3D shape
model. Imposing these constraints indirectly couples the 2D
shape parameters for each view in a physically consistent
manner. Our algorithm can use any number of cameras, po-
sitioned arbitrarily. The cameras can be moved and replaced
with different cameras without any retraining. The compu-
tational cost of the multi-view 2D+3D algorithm is only ap-
proximately N times more than the single-view algorithm
where N is the number of cameras. In Sect. 3 we present a
qualitative evaluation of our multi-view 2D+3D fitting algo-
rithm. We defer the quantitative evaluation to Sect. 5 where
we also compare it with a calibrated multi-view algorithm.

In the second part of the paper we study how our multi-
view fitting algorithm can be used for camera calibration.
The multi-view fitting algorithm of Sect. 3 uses the scaled
orthographic imaging model used by previous authors, and
in the process of fitting computes, or calibrates, the scaled
orthographic camera matrices. In Sect. 4 we describe an
extension of this algorithm to calibrate weak perspective
(or full perspective) camera models for each of the cam-
eras. In essence, both of these algorithms use the human face
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Fig. 1 A representation of the
experimental setup for
multi-view 2D+3D AAM
fitting. For each view we have a
separate set of 2D shape
parameters and camera
projection matrices, but just a
single, global set of 3D shape
parameters and the associated
global 3D rotation and
translation. Our fitting algorithm
imposes the constraints that for
each view separately, the 2D
shape model for that view must
approximately equal the
projection of the single 3D
shape model

as a (non-rigid) calibration grid. Such an algorithm may be
useful in a surveillance setting where we wish to install the
cameras on the fly, but avoid walking around the scene with
a calibration grid.

The perspective algorithm requires at least two sets of
multi-view images of the face at two different locations.
More images can be used to improve the accuracy if they
are available. We evaluate our algorithm by comparing it
with an algorithm that uses a calibration grid and show the
performance to be roughly comparable.

In the third part of the paper we show how camera cal-
ibration can improve the performance of multi-view face
model fitting. We present an extension of the multi-view
AAM fitting algorithm of Sect. 3 that takes advantage of
calibrated cameras. We use the calibration algorithm of
Sect. 4 to explicitly provide calibration information to the
multi-view fitting algorithm. We demonstrate that this algo-
rithm results in far better fitting performance than either the
single-view fitting (Sect. 2) or the uncalibrated1 multi-view
fitting (Sect. 3) algorithms. We consider two performance
measures: (1) the robustness of fitting—the likelihood of
convergence for a given magnitude perturbation from the
ground-truth, and (2) speed of fitting—the average number
of iterations required to converge from a given magnitude
perturbation from the ground-truth.

In the final part of the paper we study calibrated multi-
view construction of AAMs. A variety of non-rigid struc-

1Note that for the uncalibrated multi-view algorithm described in
Sect. 3, the calibration parameters are unknown and are estimated as
a part of the optimization. For the calibrated multi-view fitting algo-
rithm the calibration parameters are known and are obtained from a
calibration algorithm (possibly the algorithm of Sect. 4.)

ture-from-motion algorithms have be proposed, both non-
linear (Brand 2001; Torresani et al. 2001) and linear (Bre-
gler et al. 2000; Xiao et al. 2004b; Xiao and Kanade 2005)
that can be used for deformable 3D model construction
from both a single view (Brand 2001; Bregler et al. 2000;
Xiao et al. 2004b; Xiao and Kanade 2005) and multiple
views (Torresani et al. 2001).

In most cases, it is only practical to apply face model
construction algorithms to data with relatively little pose
variation. Tracking facial feature points becomes more diffi-
cult the more pose variation there is. Unfortunately, single-
view and multi-view algorithms such as non-rigid structure-
from-motion have a tendency to scale (stretch or compress)
the face in the depth-direction when applied to data with
only medium amounts of pose variation. The problem is
not the algorithms themselves, but the Bas-Relief ambigu-
ity between the camera translation/rotation and the depth
(Zhang and Faugeras 1992a; Szeliski and Kang 1997; Soatto
and Brockett 1998; Hartley and Zisserman 2000). The Bas-
Relief ambiguity is normally formulated in the case of rigid
structure-from-motion, but applies equally in the non-rigid
case. As empirically validated in Sect. 6, the result is a com-
pressed/stretched face model, which gives erroneous esti-
mates of the 3D rigid and non-rigid motion.

One way to eliminate the ambiguity is to use a cali-
brated stereo rig instead of a single camera. The known,
fixed translation between the cameras then sets the scale
and breaks the ambiguity. The straightforward approach is
to use stereo to build a static 3D model at each time in-
stant and then build the deformable model by modeling
how the 3D shape changes across time. Two algorithms that
takes this approach are (Cootes et al. 1996; Gokturk et al.
2001), one in the uncalibrated case (Cootes et al. 1996),
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the other in the calibrated case (Gokturk et al. 2001). An
alternative approach is to extend the non-rigid structure-
from-motion paradigm of (Bregler et al. 2000; Brand 2001;
Torresani et al. 2001; Xiao et al. 2004b) and pose the face
model construction problem as a single large optimization
over the unknown shape model modes, in essence a large
bundle adjustment. In Sect. 6 of this paper we derive a cali-
brated multi-view non-rigid motion-stereo algorithm (Wax-
man and Duncan 1986; Zhang and Faugeras 1992b) to do
exactly this. Our multi-view algorithm explicitly incorpo-
rates the knowledge of the calibrated relative orientation of
the cameras in the stereo rig. In Sect. 6.5 we present quali-
tative results to validate these claims. We also use the multi-
view calibration algorithm described in Sect. 4 to quantita-
tively compare the fidelity of 3D models.

2 Background

In this section we review 2D Active Appearance Models
(AAMs) (Cootes et al. 2001) and 2D+3D Active Appearance
Models (Xiao et al. 2004a). We also revisit the efficient in-
verse compositional fitting algorithms (Baker and Matthews
2004; Xiao et al. 2004a).

2.1 2D Active Appearance Models

The 2D shape s of a 2D Active Appearance Model is a 2D
triangulated mesh. In particular, s is a column vector con-
taining the vertex locations of the mesh. AAMs allow linear
shape variation. This means that the 2D shape s can be ex-
pressed as a base shape s0 plus a linear combination of m

shape vectors si :

s = s0 +
m∑

i=1

pisi (1)

where the coefficients pi are the shape parameters. AAMs
are normally computed from training data consisting of a
set of images with the shape mesh (hand) marked on them
(Cootes et al. 2001). The Procrustes alignment algorithm
and Principal Component Analysis (PCA) are then applied
to compute the base shape s0 and the shape variation si

(Cootes et al. 2001).
The appearance of an AAM is defined within the base

mesh s0. Let s0 also denote the set of pixels u = (u, v)T that
lie inside the base mesh s0, a convenient notational short-cut.
The appearance of the AAM is then an image A(u) defined
over the pixels u ∈ s0. AAMs allow linear appearance varia-
tion. This means that the appearance A(u) can be expressed
as a base appearance A0(u) plus a linear combination of l

appearance images Ai(u):

A(u) = A0(u) +
l∑

i=1

λiAi(u) (2)

where the coefficients λi are the appearance parameters. The
base (mean) appearance A0 and appearance images Ai are
usually computed by applying Principal Component Analy-
sis to the shape normalized training images (Cootes et al.
2001).

Although (1) and (2) describe the AAM shape and ap-
pearance variation, they do not describe how to generate a
model instance. The AAM model instance with shape para-
meters p and appearance parameters λi is created by warp-
ing the appearance A from the base mesh s0 to the model
shape mesh s. In particular, the pair of meshes s0 and s de-
fine a piecewise affine warp from s0 to s denoted2 W(u;p)

(Matthews and Baker 2004).

2.2 Fitting a 2D AAM to a Single Image

The goal of fitting a 2D AAM to a single input image I

(Matthews and Baker 2004) is to minimize:

∑

u∈s0

[
A0(u) +

l∑

i=1

λiAi(u) − I (W(u;p))

]2

=
∥∥∥∥∥A0(u) +

l∑

i=1

λiAi(u) − I (W(u;p))

∥∥∥∥∥

2

(3)

with respect to the 2D shape p and appearance λi para-
meters. In Matthews and Baker (2004) it was shown that
the inverse compositional algorithm (Baker and Matthews
2004) can be used to optimize the expression in (3). The
algorithm uses the “project out” algorithm (Hager and Bel-
humeur 1998; Matthews and Baker 2004) to break the opti-
mization into two steps. The first step consists of optimizing:

‖A0(u) − I (W(u;p))‖2
span(Ai)

⊥ (4)

with respect to the shape parameters p where the subscript
span(Ai)

⊥ means project the vector into the subspace ortho-
gonal to the subspace spanned by Ai , i = 1, . . . , l. The sec-
ond step consists of solving for the appearance parameters:

λi = −
∑

u∈s0

Ai(u)[A0(u) − I (W(u;p))] (5)

where the appearance vectors Ai are orthonormal. Optimiz-
ing (4) itself can be performed by iterating the following two
steps. Step 1 consists of computing:

�p = −H−1
2D �pSD

2Note that for ease of presentation we have omitted any mention of the
2D similarity transformation that is used with an AAM to normalize
the shape (Cootes et al. 2001). In this paper we include the normalizing
warp in W(u;p) and the similarity normalization parameters in p. See
Matthews and Baker (2004) for a description of how to include the
normalizing warp in W(u;p).
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where

�pSD =
∑

u∈s0

[SD2D(u)]T[A0(u) − I (W(u;p))]

where the following two terms can be pre-computed (and
combined) to achieve high efficiency:

SD2D(u) =
[
∇A0

∂W
∂p

]

span(Ai)
⊥
,

H2D =
∑

u∈s0

[SD2D(u)]TSD2D(u)

where

∇A0 =
[
∂A0

∂x

∂A0

∂y

]
.

Step 2 consists of updating the warp by composing with the
inverse incremental warp:

W(u;p) ← W(u;p) ◦ W(u;�p)−1. (6)

The resulting 2D AAM fitting algorithm runs at over 200
frames per second. See Matthews and Baker (2004) for more
details.

2.3 2D+3D Active Appearance Models

Most deformable 3D face models, including 3D Morphable
Models (Blanz and Vetter 1999) and the models in (Bregler
et al. 2000; Brand 2001; Torresani et al. 2001; Xiao et al.
2004b), use a 3D linear shape variation model, essentially
equivalent to a 3D generalization of the model in Sect. 2.1.
The 3D shape s is a 3D triangulated mesh which can be
expressed as a base shape s0 plus a linear combination of m

shape vectors sj :

s = s0 +
m∑

j=1

pj sj (7)

where the coefficients pi are the shape parameters.
A 2D+3D AAM (Xiao et al. 2004a) consists of the 2D

shape variation si of a 2D AAM governed by (1), the appear-
ance variation Ai(u) of a 2D AAM governed by (2), and the
3D shape variation sj of a 3D AAM governed by (7). The
2D shape variation si and the appearance variation Ai(u) of
the 2D+3D AAM are constructed exactly as for a 2D AAM.
The construction of the 3D shape variation sj is the subject
of Sect. 6 of this paper.

To generate a 2D+3D model instance, an image forma-
tion model is needed to convert the 3D shape s into a 2D
mesh, onto which the appearance is warped. In Xiao et al.

(2004a) the following scaled orthographic imaging model
was used:

u = Psox = σ

(
ix iy iz
jx jy jz

)
x +

(
ox

oy

)
(8)

where x = (x, y, z) is a 3D vertex location, (ox, oy) is an
offset to the origin, σ is the scale and the projection axes
i = (ix, iy, iz) and j = (jx, jy, jz) are unit length and orthog-
onal: i · i = j · j = 1; i · j = 0. The model instance is then
computed by projecting every 3D shape vertex onto a 2D
vertex using (8). The 2D appearance A(u) is finally warped
onto the 2D mesh (taking into account visibility) to generate
the final model instance.

2.4 Fitting a 2D+3D AAM to a Single Image

The goal of fitting a 2D+3D AAM to an image I (Xiao et al.
2004a) is to minimize:

∥∥∥∥∥A0(u) +
l∑

i=1

λiAi(u) − I (W(u;p))

∥∥∥∥∥

2

+ K

∥∥∥∥∥s0 +
m∑

i=1

pisi − Pso

(
s0 +

m∑

j=1

pj sj

)∥∥∥∥∥

2

(9)

with respect to p, λi , Pso, and p where K is a large constant
weight. Equation (9) should be interpreted as follows. The
first term in (9) is the 2D AAM fitting criterion. The sec-
ond term enforces the (heavily weighted, soft) constraints
that the 2D shape s equals the projection of the 3D shape
s with projection matrix Pso. In Xiao et al. (2004a) it was
shown that the 2D AAM fitting algorithm (Matthews and
Baker 2004) can be extended to a 2D+3D AAM. The result-
ing algorithm still runs in real-time (Matthews et al. 2007).

As with the 2D AAM algorithm, the “project out” algo-
rithm (Matthews and Baker 2004) is used to break the opti-
mization into two steps, the first optimizing:

‖A0(u) − I (W(u;p))‖2
span(Ai)

⊥ +K
∑

i

F 2
i (p;Pso;p) (10)

with respect to p, Pso, and p, where Fi(p;Pso;p) is the er-
ror inside the L2 norm in the second term in (9) for each
of the mesh x and y vertices. The second step solves for
the appearance parameters using (5). The 2D+3D algorithm
has more unknowns to solve for than the 2D algorithm. As
a notational convenience, concatenate all the unknown pa-
rameters into one vector q = (p;Pso;p). Optimizing (10) is
then performed by iterating the following two steps. Step 1
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consists of computing3:

�q = −H−1
3D �qSD

= −H−1
3D

[(
�pSD

0

)
+ K

∑

i

(
∂Fi

∂q

)T

Fi(q)

]
(11)

where:

H3D =
(

H2D 0
0 0

)
+ K

∑

i

(
∂Fi

∂q

)T
∂Fi

∂q
. (12)

Step 2 consists of first extracting the parameters p, Pso, and
p from q, and then updating the warp using (6), and the other
parameters Pso and p additively (Matthews et al. 2007).

3 Fitting a Single 2D+3D AAM to Multiple Images

In the previous section we reviewed some of the efficient
algorithms to fit an AAM to a single image. If we have mul-
tiple, simultaneous, views of the face, the performance of
AAM fitting can be improved if we use all views. We now
describe an algorithm to fit a single 2D+3D AAM simulta-
neously to multiple images.

Suppose that we have N images In : n = 1, . . . ,N of a
face that we wish to fit the 2D+3D AAM to. In this sec-
tion we assume that the images are captured simultaneously
by synchronized, but uncalibrated cameras (see Sect. 5 for
a calibrated algorithm.) The naive algorithm is to fit the
2D+3D AAM independently to each of the images. This al-
gorithm can be improved upon by using the fact that, since
the images In are captured simultaneously, the 3D shape of
the face is the same in all views. We therefore pose fitting a
single 2D+3D AAM to multiple images as minimizing:

N∑

n=1

(∥∥∥∥∥A0(u) +
l∑

i=1

λn
i Ai(u) − In(W(u;pn))

∥∥∥∥∥

2

+K

∥∥∥∥∥s0 +
m∑

i=1

pn
i si − Pn

so

(
s0 +

m∑

j=1

pj sj

)∥∥∥∥∥

2)
(13)

simultaneously with respect to the N sets of 2D shape pa-
rameters pn, the N sets of appearance parameters λn

i (the
appearance may be different in different images due to dif-
ferent camera response functions, etc.), the N sets of cam-
era matrices Pn

so, and the one, global set of 3D shape para-
meters p. Note that the 2D shape parameters in each image

3To simplify presentation, in this paper we omit the additional correc-
tion that needs to be made to Fi(p;Pso;p) to use the inverse composi-
tional algorithm. See Xiao et al. (2004a) for details.

are not independent, but are coupled in a physically consis-
tent4 manner through the single set of 3D shape parameters
p. Optimizing (13) therefore cannot be decomposed into N

independent optimizations. The appearance parameters λn
i

can, however, be dealt with using the “project out” algorithm
(Hager and Belhumeur 1998; Matthews and Baker 2004), in
the usual way; i.e. we first optimize:

N∑

n=1

(
‖A0(u) − In(W(u;pn))‖2

span(Ai)
⊥

+K

∥∥∥∥∥s0 +
m∑

i=1

pn
i si − Pn

so

(
s0 +

m∑

j=1

pj sj

)∥∥∥∥∥

2)
(14)

with respect to pn, Pn
so, and p, and then solve for the appear-

ance parameters:

λn
i = −

∑

u∈s0

Ai(u)[A0(u) − In(W(u;pn))].

Organize the unknowns in (14) into a single vector
r = (p1;P1

so; . . . ;pN ;PN
so;p). Also, split the single-view

2D+3D AAM terms into parts from (11) and (12) that corre-
spond to the 2D image parameters (pn and Pn

so) and the 3D
shape parameters (p):

�qn
SD =

(
�qn

SD,2D

�qn
SD,p

)
,

Hn
3D =

(
Hn

3D,2D,2D Hn
3D,2D,p

Hn
3D,p,2D Hn

3D,p,p

)
.

Optimizing (14) can then be performed by iterating the fol-
lowing two steps. Step 1 consists of computing:

�r = −H−1
MV�rSD = −H−1

MV

⎛

⎜⎜⎜⎜⎜⎝

�q1
SD,2D
...

�qN
SD,2D∑N

n=1 �qn
SD,p

⎞

⎟⎟⎟⎟⎟⎠
(15)

4Note that directly coupling the 2D shape models would be difficult
due to the complex relationship between the 2D shape in one image
and another. Multi-view face model fitting is best achieved with a 3D
model. A similar algorithm could be derived for other 3D face mod-
els such as 3D Morphable Models (Blanz and Vetter 1999). The main
advantage of using a 2D+3D AAM (Xiao et al. 2004a) is the fitting
speed.
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Fig. 2 An example of using our uncalibrated multi-view fitting algo-
rithm to fit a single 2D+3D AAM to three simultaneous images of a
face. Each image is overlaid with the corresponding 2D shape for that
image in dark dots. The head pose (extracted from the camera matrix
PN

so) is displayed in the top left of each image as roll, pitch and yaw.

The single 3D shape p for the current ‘3-frame’ is displayed in the
top right of the center image. This 3D shape is also overlaid in each
image, using the corresponding PN

so , as a white mesh. See the movie
iterations.mpg for a video of the whole fitting sequence

where:

HMV =

⎛
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.
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3D,p,2D . . . HN
3D,p,2D

∑N
n=1 Hn

3D,p,p

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 2 consists of extracting the parameters pn, Pn
so, and

p from r, and updating the warp parameters pn using (6),
and the other parameters Pn

so and p additively.
The N image algorithm is very similar to N copies of

the single image algorithm. Almost all of the computation is
just replicated N times, one copy for each image. The only
extra computation is adding the N terms in the components
of �rSD and HMV that correspond to the single set of global

3D shape parameters p, inverting the matrix HMV, and the
matrix multiply in (15). Overall, the N image algorithm is
therefore approximately N times slower than the single im-
age 2D+3D fitting algorithm. (It is more than N times slower
due to the large matrix inversion and matrix multiplication
step, but in practice only slightly so.)

3.1 Experimental Results

An example of using our algorithm to fit a single 2D+3D
AAM to three simultaneously captured images5 of a face is
shown in Fig. 2. In the results in this paper, the translation

5Note that the input images for all experiments described in this paper
are chosen such that there is no occlusion of the face. For ways to
handle occlusion in the input data see Gross et al. (2006), Matthews
et al. (2007).
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Fig. 3 An example of our multi-view fitting algorithm being used to track a face in a trinocular sequence. As the face is tracked we compute a
single 3D shape and three estimates of the head pose using three independent camera matrices. See the movie tracking.mpg for the complete
sequence

and scale of the 2D face model in each view is initialized by
hand and the 2D shape set to be the mean shape. However,
2D+3D AAMs can easily be initialized with a face detector
(Matthews et al. 2007). See the movie iterations.mpg
for the fitting video sequence. The initialization is displayed
in the top row of the figure, the result after 5 iterations in the
middle row, and the final converged result in the bottom row.
In each case, all three input images are overlaid with the 2D
shape pn plotted in dark dots. We also display the recovered
pose angles (roll, pitch and yaw) extracted from the three
scaled orthographic camera matrices Pn

so in the top left of
each image. Each camera computes a different relative head
pose, illustrating that the estimate of Pn

so is view dependent.
The single 3D shape p for all views at the current iteration
is displayed in the top-right of the center image. The view-
dependent camera projection of this 3D shape is also plotted
as a white mesh overlaid on the face.

Applying the multi-view fitting algorithm sequentially
allows us to track the face simultaneously in N video se-
quences. Some example frames of the algorithm being using
to track a face in a trinocular sequence is shown in Fig. 3. We
also include the movie tracking.mpg for the complete
tracking sequence. The tracking remains accurate and stable
both over time and between views. In Sect. 5 we present a
quantitative evaluation of this multi-view algorithm.

4 Camera Calibration

4.1 Image Formation Model

The multi-view fitting algorithm in Sect. 3 uses the scaled
orthographic image formation model in (8). A more power-
ful model when working with multiple cameras (because it
models the coupling between the scales across the cameras
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through the focal lengths and average depths) is the weak
perspective model:

u = Pwp(x) = f

oz + z

(
ix iy iz
jx jy jz

)
x +

(
ou

ov

)
. (16)

In (16), oz is the depth of the origin of the world coordi-
nate system and z is the average depth of the scene points
measured relative to the world coordinate origin. The “z”
(depth) direction is k = i × j where × is the vector cross
product, i = (ix, iy, iz), and j = (jx, jy, jz). The average
depth relative to the world origin z equals the average value
of k · x computed over all points x in the scene.

The weak perspective model is an approximation to the
full perspective model:

u = Ppersp(x)

=
⎛

⎝
f 0 0
0 f 0
0 0 1

⎞

⎠

⎛

⎝
ix iy iz ou

jx jy jz ov

kx ky kz oz

⎞

⎠
(

x
1

)
(17)

where the depth of the scene k · x is assumed to be roughly
constant z. The calibration parameters of the two perspective
models in (16) and (17) are interchangeable. When evalu-
ating the calibration results in Sect. 4.6 below we use the
full perspective model. In the calibrated fitting algorithms
in Sect. 5 we use the weak perspective model because it is
reasonable to assume that the depth of the face is roughly
constant, a common assumption in many face modeling pa-
pers (Romdhani and Vetter 2003; Xiao et al. 2004a).

4.2 Camera Calibration Goal

Suppose we have N cameras n = 1, . . . ,N . The goal of our
camera calibration algorithm is to compute the 2×3 camera
projection matrix (i, j), the focal length f , the projection of
the world coordinate system origin into the image (ou, ov),
and the depth of the world coordinate system origin (oz) for
each camera. If we superscript the camera parameters with n

we need to compute Pn
wp = in, jn, f n, on

u, on
v , and on

z . There
are 7 unknowns in Pn

wp (rather than 10) because there are
only 3 degrees of freedom in choosing the 2 × 3 camera
projection matrix (i, j) such that it is orthonormal.

4.3 Calibration Using Two Time Instants

For ease of understanding, we first describe an algorithm
that uses two sets of multi-view images captured at two time
instants. Deriving this algorithm also allows us to show that
two sets of images are needed and derive the requirements
on the motion of the face between the two time instants. In
Sect. 4.4 we describe an algorithm that use an arbitrary num-
ber of multi-view image sets and in Sect. 4.5 another algo-
rithm that poses calibration as a single large optimization.

The uncalibrated multi-view fitting algorithm of Sect. 3
uses the scaled orthographic camera matrices Pn

so in (8) and
optimizes over the N scale parameters σn. Using (16) in-
stead of (8) and optimizing over the focal lengths f n and
origin depths on

z is ambiguous. Multiple values of f n and

on
z yield the same value of σn = f n

on
z +zn . However, the values

of f n and on
z can be computed by applying (a slightly modi-

fied version of) the uncalibrated multi-view fitting algorithm
a second time with the face at a different location. With the
first set of images we compute in, jn, on

u, on
v . Suppose that

σn = σn
1 is the scale at this location. Without loss of gen-

erality we also assume that the face model is at the world
coordinate origin at this first time instant. Finally, without
loss of generality we assume that the mean value of x com-
puted across the face model (both mean shape s0 and all
shape vectors si ) is zero. It follows that z is zero and so:

f n

on
z

= σn
1 . (18)

Suppose that at the second time instant the face has under-
gone a global 3D rotation R6 and 3D translation T. Both the
rotation R and translation T have three degrees of freedom.
We then perform a modified multi-view fit, minimizing:

N∑

n=1

(∥∥∥∥∥A0(u) +
l∑

i=1

λn
i Ai(u) − In(W(u;pn))

∥∥∥∥∥

2

+K

∥∥∥∥∥s0 +
m∑

i=1

pn
i si − Pn

so

(
R

(
s0 +

m∑

j=1

pj sj

)
+ T

)∥∥∥∥∥

2)

(19)

with respect to the N sets of 2D shape parameters pn, the N

sets of appearance parameters λn
i , the one global set of 3D

shape parameters p, the 3D rotation R, the 3D translation T,
and the N scale values σn = σn

2 . In this optimization all of
the camera parameters (in, jn, on

u, and on
v ) except the scale

(σ ) in the scaled orthographic model Pn
so are held fixed to

the values computed in the first time instant. Since the ob-
ject underwent a global translation T then zn = kn · T where
kn = in × jn is the z-axis of camera n. It follows that:

f n

on
z + kn · T

= σn
2 . (20)

Equations (18) and (20) are two sets of linear simultaneous
equations in the 2∗N unknowns (f n and on

z ). Assuming that

6Note that in the case of calibrated camera(s) it is convenient to think of
the relative motion between the object and the camera(s) as the motion
of the object R, T. In the single camera case (see (9)) and the multiple
cameras, single time instant case with uncalibrated camera matrix P
(see (13)) it is convenient to think of the relative motion as camera
motion.
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kn · T 	= 0 (the global translation T is not perpendicular to
any of the camera z-axes), these two equations can be solved
for f n and on

z to complete the camera calibration. Note also
that to uniquely compute all three components of T using the
optimization in (19) at least one pair of the cameras must be
verged (the axes (in, jn) of the camera matrices Pn

so must not
all span the same 2D subspace).

4.4 Multiple Time Instant Algorithm

Rarely are two sets of multi-view images sufficient to obtain
an accurate calibration. The approach just described can eas-
ily be generalized to T time instants. The first time instant
is treated as above and used to compute in, jn, on

u, on
v and to

impose the constraint on f n and on
z in (18). Equation (19) is

then applied to the remaining T − 1 frames to obtain addi-
tional constraints:

f n

on
z + kn · Tt

= σn
t for t = 2,3, . . . , T (21)

where Tt is the translation estimated in the t th time instant
and σn

t is the scale of the face in the nth camera at the t th

time instant. Equations (18) and (21) are then re-arranged to
obtain an over-constrained linear system which can then be
solved to obtain f n and on

z .

4.5 Calibration as a Single Optimization

The algorithms in Sects. 4.3 and 4.4 have the disadvantage
of being two stage algorithms. First they solve for in, jn, on

u,
and on

v , and then for f n and on
z . It is better to pose calibration

as the single large non-linear optimization of:

N∑

n=1

T∑

t=1

(∥∥∥∥∥A0(u) +
l∑

i=1

λ
n,t
i Ai(u) − In,t (W(u;pn,t ))

∥∥∥∥∥

2

+K

∥∥∥∥∥s0 +
m∑

i=1

p
n,t
i si

−Pn
wp

(
Rt

(
s0 +

m∑

j=1

pt
j sj

)
+ Tt

)∥∥∥∥∥

2)
(22)

summed over all cameras n and time instants t with respect
to the 2D shape parameters pn,t , the appearance parame-
ters λ

n,t
i , the 3D shape parameters pt , the rotations Rt , the

translations Tt , and the calibration parameters in, jn, f n, on
u,

on
v , and on

z . In (22), In,t represents the image captured by
the nth camera in the t th time instant and the average depth
z = kn ·Tt in Pn

wp given by (16). Finally, we define the world

coordinate system by enforcing R1 = I and T1 = 0.

The expression in (22) can be optimized by iterating two
steps: (1) The calibration parameters are optimized given the
2D shape and (rotated translated) 3D shape; i.e. the second
term in (22) is minimized given fixed 2D shape, 3D shape,
Rt , and Tt . This optimization decomposes into a separate 7
dimensional optimization for each camera. (2) A calibrated
multi-view fit (see Sect. 5) is performed on each frame in
the sequence; i.e. the entire expression in (22) is minimized,
but keeping the calibration parameters in Pn

wp fixed and just
optimizing over the 2D shape, 3D shape, Rt , and Tt . The
entire large optimization can be initialized using the multiple
time instant algorithm in Sect. 4.4.

4.6 Empirical Evaluation of Calibration

We tested our calibration algorithms on a trinocular stereo
rig. Two example images of the 1300 input images from
each of the three cameras are shown in Fig. 4. The complete
input sequence is included in the movie calib_input.
mov. We wish to compare our calibration algorithm with
an algorithm that uses a calibration grid. In Sects. 4.6.1
and 4.6.2 we present results for the epipolar geometry. We
compute a fundamental matrix from the camera parameters
in, jn, f n, on

u, on
v , and on

z estimated by our algorithm and use
the 8-point algorithm (Hartley 1995) to estimate the funda-
mental matrix from the calibration grid data. In Sect. 6.5.3
we present results for the camera focal length and relative
orientation of the cameras, while also comparing the 3D
model building algorithms.

4.6.1 Qualitative Comparison of Epipolar Geometry

In Fig. 5 we show a set of epipolar lines computed by the
algorithms. In Fig. 5(a) we show an input image captured by
camera 1, with a few feature points marked on it. In Fig. 5(b)
we show the corresponding points in the other image and
the epipolar lines. The solid dark colored epipolar lines are
computed using the 8-point algorithm on the calibration grid
data. The dashed black epipolar lines are computed using
the two stage multiple time instant algorithm of Sect. 4.4.
The solid light colored epipolar lines are computed using the
single large optimization algorithm of Sect. 4.5. Figures 5(d)
and (c) are similar for feature points marked in camera 3.
While all three sets of epipolar lines are very similar, the
epipolar lines for the single large optimization algorithm are
overall closer to those for the 8-point algorithm than those
of the two stage algorithm.

4.6.2 Quantitative Comparison of Epipolar Geometry

In Figs. 6 and 7 we present the results of a quantitative com-
parison of the fundamental matrices by extracting a set of
ground-truth feature point correspondences and computing
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Fig. 4 Example inputs to our calibration algorithms: A set of simultaneously captured image sets of a face at a variety of different positions and
expressions. See calib_input.mov for the complete input

Fig. 5 Qualitative comparison
between our AAM-based
calibration algorithms and the
8-point algorithm (Hartley
1995). a An input image
captured by the first camera
with several feature points
marked on it. b The
corresponding points and
epipolar lines of the other
image. The solid dark colored
epipolar lines are computed
using the 8-point algorithm, the
dashed black epipolar lines
using the two stage multiple
time instant algorithm, and the
solid light colored epipolar lines
are computed using the
optimization algorithm.
d Shows the input image of the
third camera, and c the
corresponding points and
epipolar lines for the second
camera
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Fig. 6 Quantitative comparison
between our AAM-based
calibration algorithms and the
8-point algorithm (Hartley
1995) using a calibration grid.
The evaluation is performed on
10 images of a calibration grid
(data similar to, but not used by
the 8-point algorithm). The
ground-truth is extracted using a
corner detector. We plot the
RMS distance error between
epipolar lines and the
corresponding feature points for
each of the 10 images

Fig. 7 Quantitative comparison
between our AAM-based
calibration algorithms and the
8-point algorithm (Hartley
1995) using a calibration grid.
The evaluation is performed on
1400 images of a face. The
ground-truth is extracted using a
single-view AAM fitting
algorithm. We plot the RMS
distance error between epipolar
lines and the corresponding
feature points for each of the
1400 images

the RMS distance between each feature point and the corre-
sponding epipolar line predicted by the fundamental matrix.
In Fig. 6 we present results on 10 images of a calibration
grid, similar (but not identical) to that used by the calibra-
tion grid algorithm. The ground-truth correspondences are
extracted using a corner detector. In Fig. 7 we present results
on 1400 images of a face at different scales. The ground-
truth correspondences are extracted by fitting a single-view
AAM independently to each image (i.e. no use of the multi-
view geometry is used).

Although the optimization algorithm of Sect. 4.5 per-
forms significantly better than the two stage algorithm in
Sect. 4.4, both AAM-based algorithms perform slightly
worse than the 8-point algorithm on the calibration grid data
in Fig. 6. The main reason is probably that the ground-truth
calibration grid data covers a similar volume to the data used
by the 8-point algorithm, but a much larger volume than the
face data used by the AAM-based algorithms. When com-
pared on the face data in Fig. 7 (which covers a similar vol-
ume to that used by the AAM-based algorithm), the 8-point
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Fig. 8 An example of using our calibrated multi-view fitting algo-
rithm to fit a single 2D+3D AAM to three simultaneously captured
images of a face. Each image is overlaid with the corresponding 2D
shape for that image in dark dots. The single 3D shape p for the current
triple of images is displayed in the top right of the center image. This
3D shape is also projected into each image using the corresponding Pn,

and displayed as a white mesh. The single head pose (extracted from
the rotation matrix R) is displayed in the top left of the center image
as roll, pitch, and yaw. This should be compared with the algorithm in
Sect. 3 in which there is a separate head pose for each camera. See the
movie calib_fitting.mpg for the complete fitting sequence

algorithm and the optimization algorithm of Sect. 4.5 per-
form comparably well.

5 Calibrated Multi-View Fitting

Once we have calibrated the cameras and computed in, jn,
f n, on

u, on
v , and on

z we can then use a weak perspective cal-
ibrated multi-view fitting algorithm to fit a given AAM to
multiple images. We optimize:

N∑

n=1

(∥∥∥∥∥A0(u) +
l∑

i=1

λn
i Ai(u) − In(W(u;pn))

∥∥∥∥∥

2

+ K

∥∥∥∥∥s0 +
m∑

i=1

pn
i si

− Pn
wp

(
R

(
s0 +

m∑

j=1

pj sj

)
+ T

)∥∥∥∥∥

2)

with respect to the N sets of 2D shape parameters pn, the N

sets of appearance parameters λn
i , the one global set of 3D

shape parameters p, the global rotation R, and the global
translation T. In this optimization, Pn

wp is defined by (16)

where z = kn · T. It is also possible to formulate a simi-
lar scaled orthographic calibrated algorithm in which Pn

wp is
replaced with Pn

so defined in (8) and the optimization is also
performed over the additional N scales σn. Note that in these
calibrated fitting algorithms, the calibration parameters in,
jn, f n, on

u, on
v , and on

z are constant and not optimized. As
shown below, this leads to a lower dimensional optimization
and more robust fitting.

5.1 Empirical Evaluation

5.1.1 Qualitative Results

An example of using our calibrated multi-view fitting al-
gorithm to track by fitting a single 2D+3D AAM to three
concurrently captured images of a face is shown in Fig. 8.
The complete fitting sequence is included in the movie
calib_fitting.mpg. The top row of the figure shows
the tracking result for one frame. The bottom row shows
the tracking result for a frame later in the sequence. In each
case, all three input images are overlaid with the 2D shape
pn plotted in dark dots. The view-dependent camera projec-
tion of this 3D shape is also plotted as a white mesh overlaid
on the face. The single 3D shape p at the current frame is
displayed in the top-right of the center image. We also dis-
play the recovered roll, pitch, and yaw of the face (extracted
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Fig. 9 a The likelihood (frequency) of convergence plot against the
magnitude of a random perturbation to the ground-truth fitting results
computed by tracking through a trinocular sequence. The results show
that the calibrated multi-view algorithms are more robust than the
uncalibrated multi-view algorithm discussed in Sect. 3, which itself is
more robust than the 2D+3D single-view algorithm (Xiao et al. 2004a).

b The rate of convergence is estimated by plotting the average error
after each iteration against the iteration number. The results show that
the calibrated multi-view algorithms converge faster than the uncali-
brated algorithm, which converges faster than the single-view 2D+3D
algorithm

from the global rotation matrix R) in the top left of the cen-
ter image. The three cameras combine to compute a single
head pose, unlike Fig. 3 where the pose is view dependent.

5.1.2 Quantitative Results

In Fig. 9 we show quantitative results to demonstrate the in-
creased robustness and convergence rate of our calibrated
multi-view fitting algorithms. In experiments similar to
those in Matthews and Baker (2004), we generated a large
number of test cases by randomly perturbing from a ground-
truth obtained by tracking the face in the multi-view video
sequences. The global 3D shape parameters p, global rota-
tion matrix R, and global translation T were all perturbed
and projected into each of the three views. This ensures the
initial perturbation is a valid starting point for all algorithms.
We then run each algorithm from the same perturbed start-
ing point and determine whether they converged or not by
computing the RMS error between the mesh location of the
fit and the ground-truth mesh coordinates. The algorithm is
considered to have converged if the total spatial error is less
than 2.0 pixels. We repeat the experiment 20 times for each
set of 3 images and average over all 300 image triples in
the test sequences. This procedure is repeated for different
values of perturbation energy. The magnitude of the per-
turbation is chosen to vary on average from 0 to 4 times
the 3D shape standard deviation. The global rotation R, and
global translation T are perturbed by a scalar multiples α

and β of this value. The values of α and β were chosen so
that the rotation and translation components introduce the
same amount of perturbation energy as the shape compo-
nent (Matthews and Baker 2004).

In Fig. 9(a) we plot a graph of the likelihood (frequency)
of convergence against the magnitude of the random per-
turbation for the 2D+3D single-view fitting algorithm (Xiao
et al. 2004a) applied independently to each camera, the un-
calibrated multi-view fitting algorithm described in Sect. 3
and the two calibrated multi-view fitting algorithms: scaled
orthographic and weak perspective. The results clearly show
that the calibrated multi-view algorithms are more robust
than the uncalibrated multi-view algorithm, which is more
robust than the 2D+3D single-view algorithm. Overall, the
weak perspective calibrated multi-view fitting algorithm
performs the best. The main source of the increased robust-
ness of the calibrated multi-view fitting algorithms is im-
posing the constraint that the head pose is consistent across
all N cameras. We also compute how fast the algorithms
converge by computing the average RMS mesh location er-
ror after each iteration. Only trials that actually converge
are used in this computation. The results for two different
magnitudes of perturbation (0.8 and 2.0) to the ground-truth
are included in Fig. 9(b). The results indicate that the cal-
ibrated multi-view algorithms converge faster than the un-
calibrated algorithm, which converges faster than the single-
view 2D+3D algorithm.

We include the movie fit_compare.mpg to demon-
strate a few examples of the perturbation experiments. The
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Table 1 This table shows the timing results for our Matlab imple-
mentations of the four fitting algorithms evaluated in Sect. 5.1.2 in
milliseconds. The results were obtained on a dual 2.5 GHz
Power Mac G5 machine and were averaged over 600 image triples with

VGA (640 × 480) resolution. Each algorithm was allowed to iterate
until convergence over each image triple. Note that the results for the
single-view algorithm is just the cost of processing one image from the
image triple

Algorithm Time per frame Iterations per frame Time per iteration

2D+3D single-view 33.808 2.5209 13.401

uncalibrated multi-view 152.33 3.2915 46.247

scaled orthographic 152.94 3.2178 47.534

weak perspective 125.94 2.6131 48.158

movie illustrates how the calibrated multi-view algorithms
impose a consistent head pose (c.f. uncalibrated algorithm)
and a single 3D face shape (c.f. 2D+3D algorithm). As a
result, the calibrated algorithms sometimes converges when
the other algorithms diverge. The speed of convergence is
also visibly faster.

In Table 1 we include timing results for our Matlab im-
plementations of the four fitting algorithms compared in
this section. The results were obtained on a dual 2.5 GHz
Power Mac G5 machine and were averaged over 600 image
triples with VGA (640 × 480) resolution. Each algorithm
was allowed to iterate until convergence over each image
triple. Note that the results for the single-view algorithm7 is
just the cost of processing one image from the image triple.
The multi-view algorithms are all therefore approximately
3 times slower than the single-view algorithm, as should be
expected. Also note that since the weak perspective algo-
rithm is more constrained it converges more quickly than
the uncalibrated and scaled orthographic multi-view algo-
rithms. The single-view algorithm requires slightly fewer it-
erations than all of the multi-view algorithms because it does
not have to impose consistency on the 2D shapes in the dif-
ferent views.

6 Multi-View 3D Model Construction

In the previous section we have shown that the performance
of AAM fitting can be improved by using multiple views
and calibration information. Similarly, a 3D AAM can be
constructed more reliably using multiple calibrated cameras.
In this section, we outline a calibrated multi-view motion-
stereo algorithm for 3D AAM construction and compare its
performance with other existing single-view and multi-view
non-rigid structure-from-motion algorithms.

7The single-view algorithm can be implemented in real-time (approxi-
mately 60 Hz) in C (Matthews et al. 2007).

6.1 Non-Rigid Structure-from-Motion

One way to build a deformable 3D face model is to use 3D
range data. In Blanz and Vetter (1999), the 3D mesh ver-
tices s are first located in a set of “training” 3D range scans.
Principal Component Analysis is then used to extract the
base (or mean) shape s0 and the m dominant shape modes
sj . More recently, however, the task of building deformable
face models from a video captured by a single camera using
non-rigid structure-from-motion has received a great deal of
attention (Bregler et al. 2000; Brand 2001).

Suppose that we have a sequence of images I t of a face
captured across time t = 1, . . . , T . Either the face, the cam-
era, or both may be moving. Assume we can track K 2D
feature points in the 2D images I t . Denote the tracking re-
sults:

ut =
(

ut
1 ut

2 . . . ut
K

vt
1 vt

2 . . . vt
K

)
.

Also denote the camera matrix of the camera at time t

by Pt . Non-rigid structure-from-motion can then be posed
as minimizing:

T∑

t=1

∥∥∥∥∥Pt

(
s0 +

m∑

j=1

pt
j sj

)
− ut

∥∥∥∥∥

2

(23)

with respect to the base shape s0, the shape modes sj ,
the shape parameters pt

j and the camera matrices Pt . If
Pt is a perspective camera model, the above optimization
is non-linear, but can be solved using an appropriate non-
linear optimization algorithm (Xiao and Kanade 2005). If
Pt is a linear camera model, such as the scaled orthographic
model (P = Pso), the above optimization can be solved us-
ing a linear algorithm (Bregler et al. 2000; Brand 2001;
Xiao et al. 2004b).

6.2 Multi-View Structure-from-Motion

The single-view non-rigid structure-from-motion (NR-SFM)
paradigm can be extended to include information from mul-
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tiple views/cameras to yield a multi-view non-rigid struc-
ture-from-motion algorithm (Torresani et al. 2001) (MV-
SFM).

Suppose we have a set of N > 1 cameras that simulta-
neously capture videos In,t for n = 1, . . . ,N across time
t = 1, . . . , T . Denote the unknown camera matrices by Pn

for n = 1, . . . ,N and the global 3D rotation and translation
of the face across time by Rt and Tt . Assume that we can
track K feature points across time in the videos In,t . Denote
the tracking results as:

un,t =
(

u
n,t
1 u

n,t
2 . . . u

n,t
K

v
n,t
1 v

n,t
2 . . . v

n,t
K

)
. (24)

The problem then becomes one of minimizing:

N∑

n=1

T∑

t=1

∥∥∥∥∥Pn

(
Rt

(
s0 +

m∑

j=1

pt
j sj

)
+ Tt

)
− un,t

∥∥∥∥∥

2

(25)

with respect to the base shape s0, the shape modes sj , the
shape parameters pt

j , the camera matrices Pn, the global 3D
rotation Rt and translation Tt of the face across time.

6.3 Stereo

Both the single-view and multi-view structure-from-motion
algorithms suffer from the Bas Relief ambiguity (Zhang and
Faugeras 1992a; Szeliski and Kang 1997; Soatto and Brock-
ett 1998; Hartley and Zisserman 2000). The Bas Relief am-
biguity is an ambiguity between the motion (translation or
small rotation) of the cameras and the depths of the points
in the scene. In both the single-view and multi-view cases,
the camera matrices must be solved for as well as the struc-
ture of the scene. So, the ambiguity can manifest itself in
the form of scaled depths and motion between the cameras.
If we have multiple calibrated cameras, however, it is pos-
sible to derive better algorithms that do not suffer from the
Bas-Relief ambiguity. As we now describe, the simplest ap-
proach is to use stereo to fulfill the same role as a range-
scanner.

Suppose now that we have a calibrated stereo rig with
N > 1 cameras in it. Denote the known (calibrated) cam-
era matrices Pn for n = 1, . . . ,N . Suppose that the nth cam-
era captures the images In,t across time t = 1, . . . , T as the
face (and possibly the stereo rig) move. Assume that we can
track K feature points across time in the videos In,t , and
also compute correspondence between the cameras. Denote
the tracked feature points as:

un,t =
(

u
n,t
1 u

n,t
2 . . . u

n,t
K

v
n,t
1 v

n,t
2 . . . v

n,t
K

)
. (26)

A stereo algorithm (similar to those in (Cootes et al. 1996;
Gokturk et al. 2001)) to compute the deformable model is
then as follows:

1. Perform stereo at each time t by minimizing:

N∑

n=1

‖Pn(st ) − un,t‖2

with respect to the 3D static shape st .
2. Align the 3D static shapes st with a transformation con-

sisting of a 3D rigidity transformation (6 degrees of free-
dom) and a single scale (1 degree of freedom); i.e. per-
form a 3D “Procrustes” alignment.

3. Compute s0, sj using Principal Component Analysis.

6.4 Motion-Stereo

The above stereo algorithm can be improved upon by pos-
ing the problem as a single large optimization, a generaliza-
tion of the non-rigid structure-from-motion formulation in
(23). The input to the motion-stereo algorithm is the same
as the stereo algorithm, namely the camera matrices Pn and
the tracked feature points un,t . Denote the global 3D rota-
tion and translation of the face across time by Rt and Tt . In
the stereo algorithm above, Rt and Tt are computed by the
3D similarity Procrustes algorithm. The model construction
problem can then be posed as minimizing:

N∑

n=1

T∑

t=1

∥∥∥∥∥Pn

(
Rt

(
s0 +

m∑

j=1

pt
j sj

)
+ Tt

)
− un,t

∥∥∥∥∥

2

(27)

with respect to the base shape s0, the shape modes sj , the
shape parameters pt

j , the global rotations Rt , and the global
translations Tt . The construction goal in (27) can be mini-
mized using the following motion-stereo algorithm:

1. Initialize using the stereo algorithm in Sect. 6.3
(a) 3D similarity Procrustes → Rt ,Tt .
(b) Principal Components Analysis → s0, sj ,p

t
j .

2. Iterate the following two steps until convergence:
(a) Fix s0, sj , solve for Rt ,Tt , pt

j .
(b) Fix pt

j ,Rt ,Tt , solve for s0, sj .
3. Project out any scale, rotation, or translation components

left in the 3D shape modes sj .

In Step 2a, the optimization can be broken down into sep-
arate optimizations for each time t ; i.e. for each t minimize:

N∑

n=1

∥∥∥∥∥Pn

(
Rt

(
s0 +

m∑

j=1

pt
j sj

)
+ Tt

)
− un,t

∥∥∥∥∥

2

with respect to Rt ,Tt , pt
j . In Step 2b, we break the opti-

mization down in m + 1 sub-steps. We first solve for the
mean shape s0 and then for each shape mode sj in turn.
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Fig. 10 Three example frames from each of three synchronized stereo
cameras. In total, we tracked the head independently through 104
frames in each camera using a 68 point 2D AAM (Cootes et al. 2001;

Matthews and Baker 2004). The pose variation in the three sequences
is the most that a single 2D AAM can cope with before it fails. See the
movie 2d_track.mpg for the complete tracked input sequence

6.5 Experimental Evaluation

6.5.1 Input

The input to our four face model construction algorithms
consists of a set of 2D tracked facial feature points un,t

(see (26)) in 312 images captured by n = 1,2,3 synchro-
nized cameras at t = 1, . . . ,104 time instants. We tracked 68
feature points independently in each video sequence using a
2D Active Appearance Model (AAM) (Cootes et al. 2001;
Matthews and Baker 2004). Example results for 9 images
(3 cameras × 3 time instants) are shown in Fig. 10. We also
include the movie 2d_track.mpg showing the complete
tracked input sequence. Note that the head pose variation is
substantial, but not too extreme. None of the videos contain
any full profiles. The input sequences were carefully chosen

to maximize the head pose variation, while not causing the
2D AAM to fail. In our experience, the head pose variation
shown in Fig. 10 is the most that a single 2D AAM can cope
with. While more sophisticated tracking algorithms, which
can cope with occlusions, severe foreshortening, and non-
Lambertian reflectance have been proposed, the pose varia-
tion in Fig. 10 is about the most that can be tracked using
the basic algorithm.

6.5.2 Qualitative Multi-View Model Construction
Comparison

The results of applying each of the four algorithms: (1) non-
rigid structure-from-motion (NR-SFM) (Xiao et al. 2004b),
(2) multi-view non-rigid structure-from-motion (MV-SFM)
(Torresani et al. 2001), (3) stereo, and (4) motion-stereo are
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Fig. 11 This figure shows the mean shape and first two shape modes of the single-view and multi-view non-rigid structure-from-motion models,
the stereo model and the motion-stereo model. The main thing to note is that the non-rigid structure-from-motion models are “stretched” in the
depth direction

summarized in Fig. 11. Note that the input to the NR-SFM
is generated by stacking together the image sequences from
each of the three cameras. All four algorithms therefore use
exactly the same set of input image data.

For each model, we display the mean shape (s0) and the
first two shape modes (s1, s2) from two viewpoints to help
the reader visualize the 3D structure. The main thing to note
in Fig. 11 is how “stretched” the NR-SFM and the MV-
SFM models are. The depth (z) values of all of the points
in the mean shape appear to have been scaled by a con-
stant multiplier. The underlying cause of this stretching is
the Bas-Relief ambiguity which occurs when applying (non-
rigid) structure-from-motion to data with little pose varia-
tion (Zhang and Faugeras 1992a; Szeliski and Kang 1997;
Soatto and Brockett 1998; Hartley and Zisserman 2000).
The problem manifests itself for both linear (NR-SFM)
(Bregler et al. 2000; Brand 2001; Xiao et al. 2004b) and non-
linear (MV-SFM) (Torresani et al. 2001) algorithms. The
MV-SFM model is slightly better than the NR-SFM model
but the ambiguity persists as the problem is in the data. (Be-
cause the problem is an ambiguity, it is possible that by
chance the scale may be chosen more accurately. The chance

of accurate estimation of scale increases the more pose vari-
ation there is, and the less noise there is (Zhang and Faugeras
1992a; Szeliski and Kang 1997; Soatto and Brockett 1998;
Hartley and Zisserman 2000).) The motion-stereo and stereo
models do not suffer from this problem. In the next section
we present a quantitative comparison using the calibration
algorithm derived in Sect. 4.

6.5.3 Quantitative Comparison using Camera Calibration

In this section we quantitatively compare the performance of
the four 3D face model construction algorithms in terms of
how well the resulting models can be used to perform cam-
era calibration using the algorithm in Sect. 4.5. One possi-
ble way of obtaining quantitative results might be to capture
range data as ground-truth. This approach, however, requires
(1) calibrating and (2) aligning the range data to the image
data. Static range data also cannot be used to evaluate the
deformable 3D shape modes. Ideally, we would like a way
of evaluating the 3D fidelity of the face models using video
data of a moving face.

The algorithm in Sect. 4.5 is used to calibrate weak per-
spective camera matrices for a set of stereo cameras using a
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Fig. 12 A quantitative
evaluation of the 3D fidelity of
the models, obtained by using
the models to calibrate the
cameras using the algorithm in
Sect. 4.5. The results show the
motion-stereo algorithm to
perform the best. The
single-view non-rigid
structure-from-motion model
results in estimates of the yaw
and focal length that are both off
by a large factor. The two error
factors are roughly the same.
Using multi-view non-rigid
structure-from-motion does help
in reducing the errors to a
significant degree, but the
results are still not as good as
the motion-stereo model. GT
refers to the ground truth values
computed using the Matlab
camera calibration toolbox
(Bouguet 2005)

3D face model. By comparing the results of this algorithm
with ground-truth calibration data, we can indirectly mea-
sure the 3D fidelity of the face models. The relative orien-
tation component of the calibration primarily measures the
pose estimation accuracy of the algorithms, without any ab-
solute head pose ground-truth. Estimating the focal lengths
and the epipolar geometry requires more than the relative
orientation. Accurate focal lengths and epipolar geometry
requires the accurate non-rigid 3D tracking of the face in an
extended sequence.

We implemented the multi-view single optimization cali-
bration algorithm in Sect. 4.5 and compared the results with
a calibration performed using a calibration standard grid and
the Matlab Camera Calibration Toolbox (Bouguet 2005). In
Fig. 12 we present results for the yaw rotation (about the
vertical axis) between each pair of the three cameras and for
each of the three focal lengths. The yaw between each pair
of the three cameras was computed from the relative rota-
tion matrices of the three cameras. We include results for
each of the four models, and compare them to the ground-
truth. The results in Fig. 12 clearly show the motion-stereo
algorithm to perform the best. The results for the NR-SFM

model are a long way off. The yaw8 is underestimated by
a large factor, and the focal length overestimated by a sim-
ilar factor. Based on the results in Fig. 11, this is to be ex-
pected. The face model is too deep, so a medium amount of
parallax is generated by a too small yaw angle. Similarly,
a scaling of the model is interpreted as a too large motion
in the depth direction and so too large a focal length. The
MV-SFM model also suffers from the same problem due to
the scaled nature of the model albeit generating better re-
sults than the NR-SFM model. Overall, the motion-stereo9

algorithm clearly out performs both these algorithms and
gives estimates of yaw and focal lengths that are compa-
rable to ground-truth calibration data (computed using the
Matlab camera calibration toolbox (Bouguet 2005)). To fur-
ther emphasize this observation, we compute the percent-

8The results for the pitch and roll between each pair of cameras are
omitted. The pitch and roll are very close to zero and so there is little
difference between any of the algorithms.
9Since the motion-stereo algorithm is the best among the four algo-
rithms that we compared, we used the motion-stereo model for all the
fitting and calibration experiments described in the previous sections.
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Table 2 This table summarizes the results presented in Fig. 12.
For each 3D model we compute the percentage deviation of the
relative “yaw” between each pair of cameras and focal length of
each camera from the ground-truth data (computed using the Matlab
camera calibration toolbox (Bouguet 2005)). The motion-stereo
model results in estimates of yaw and focal length that are both

comparable to the ground-truth values whereas the estimates from
the non-rigid structure-from-motion (NR-SFM) model are both off
by a large factor. The multi-view non-rigid structure-from-motion
(MV-SFM) model performs better than the NR-SFM model but overall
the motion-stereo model performs the best

Relative yaw Focal length

Cam 12 Cam 13 Cam 23 Cam 1 Cam 2 Cam 3

NR-SFM 62.1% 66.2% 68.9% 193.5% 201.7% 214.8%

MV-SFM 8.6% 18.8% 25.7% 30.9% 35.5% 41.2%

Stereo 30.2% 15.4% 5.5% 23.9% 18.2% 15.1%

Motion-Stereo 21.7% 7.8% 1.5% 8.7% 3.0% 1.1%

age deviation of the yaw and focal length estimates of each
3D model from the ground-truth data. Although the bar
graphs in Fig. 12 may look similar, the motion-stereo re-
sults for the focal length are several times better than the
stereo or MV-SFM results by the relative error measure in
Table 2.

7 Conclusion

7.1 Summary

In this paper we have studied multi-view AAM model fit-
ting and construction. In Sect. 3 we have described an al-
gorithm to fit a single 2D+3D AAM to N images captured
simultaneously by N uncalibrated cameras. In the process,
our algorithm computes: 2D shape parameters for each im-
age, a single set of global 3D shape parameters, the scaled
orthographic camera matrix for each view, and appearance
parameters for each image (which may be different due
to different camera response functions). Our algorithm en-
forces the constraints that all of these quantities are phys-
ically consistent in the 3D scene. The algorithm operates
approximately N times slower than the real-time single im-
age 2D+3D AAM fitting algorithm (Matthews et al. 2007;
Xiao et al. 2004a). We have shown our multi-view 2D+3D
AAM algorithm to be both slightly more robust and con-
verge more quickly than the single-view 2D+3D AAM al-
gorithm, which is itself more robust than the single-view 2D
AAM algorithm (Matthews and Baker 2004).

In Sect. 4 we have shown how the multi-view face model
fitting algorithm can be extended to calibrate a weak per-
spective (or full perspective) camera model. In essence, we
use the human face as a (non-rigid) calibration grid.

We demonstrated that the resulting calibration is of com-
parable accuracy to that obtained using a calibration grid.
We have also shown in Sect. 5, how the calibration algo-
rithms described in this paper can be used to improve the

performance of multi-view face model fitting. The cali-
brated multi-view algorithms perform better than the un-
calibrated multi-view algorithm, which performs better than
the 2D+3D single-view algorithm in terms of frequency of
convergence and rate of convergence towards ground-truth
when perturbed from the ground-truth data.

In Sect. 6 we proposed a calibrated multi-view 3D
model construction algorithm that is superior to existing
single-view and multi-view algorithms. We have shown
that constructing a 3D face model using a single-view or
multi-view non-rigid structure-from-motion algorithm suf-
fers from the Bas-Relief ambiguity that may result in a
“scaled” (stretched/compressed) model when applied to data
containing pose variation typical of that which can be ob-
tained using a standard face tracker such as a 2D Active Ap-
pearance Model (Cootes et al. 2001; Matthews and Baker
2004). We have shown how using calibrated multi-view
motion-stereo can eliminate this ambiguity and yield face
models with higher 3D fidelity. In Sect. 6.5.3 we quanti-
tatively compared the fidelity of the 3D models described
in Sect. 6 using the calibration algorithm in Sect. 4.5 and
showed that calibrated multi-view motion-stereo algorithm
performs the best for calibration of camera relative orienta-
tions and focal lengths.

7.2 Discussion

In this paper we have shown how multi-view data can be
used to improve both the fitting and construction of face
models. Multiple images always provide more information,
but it is not always obvious how best to take advantage of
it. One of the interesting results of this paper is that cam-
era calibration considerably improves the performance of
multi-view model fitting and construction. In fact the results
in Figs. 9 and 12 show that the benefit of using calibrated
multi-view over uncalibrated multi-view is in most cases
perhaps even bigger than the benefit of using uncalibrated
multi-view over single-view. As model construction is typi-
cally performed offline it is not a problem to use calibrated
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cameras. However, in the case of model fitting, assuming
calibration is not so easy. The cameras may be moved, they
may be pan-tilt, or it may not be possible to enter the scene.
So automatic calibration is important in many applications
and dramatically improves fitting performance.

7.3 Future Work

In terms of multi-view 3D model construction, one limi-
tation of our motion-stereo algorithm is that it only com-
putes the shape model for 68 points on the face. One area
for future work would be to extend our algorithm to com-
pute dense 3D shape models. One possibility is to use
dense stereo to compute the 3D model, assuming calibrated
cameras, followed by optical flow methods (Brand 2001;
Jones and Poggio 1998) or automatic construction methods
(Baker et al. 2004) to find the relationship between views.

In terms of multi-view fitting, one area of future work is
batch fitting over time to a video sequence. The main differ-
ence between a video sequence and a set of simultaneously
captured multi-view images is that the face cannot be as-
sumed to have the same 3D shape in all images. However, it
is possible that the multi-view algorithms can be extended to
temporal sequences by imposing the constraint that the 3D
shape does not change very fast; i.e. impose soft constraints
on the 3D shape over time instead of the hard constraint that
it is exactly the same in each of the views.
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