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Abstract. This paper presents a linear solution for reconstructing the
3D trajectory of a moving point from its correspondence in a collec-
tion of 2D perspective images, given the 3D spatial pose and time of
capture of the cameras that produced each image. Triangulation-based
solutions do not apply, as multiple views of the point may not exist at
each instant in time. A geometric analysis of the problem is presented
and a criterion, called reconstructibility, is defined to precisely charac-
terize the cases when reconstruction is possible, and how accurate it can
be. We apply the linear reconstruction algorithm to reconstruct the time
evolving 3D structure of several real-world scenes, given a collection of
non-coincidental 2D images.

Keywords: Multiple view geometry, Non-rigid structure from motion,
Trajectory basis, and Reconstructibility

1 Introduction

Without making a priori assumptions about scene structure, it is impossible
to reconstruct a 3D scene from a monocular image. Binocular stereoscopy is a
solution used both by biological and artificial systems to localize the position
of a point in 3D via correspondences in two views. Classic triangulation used in
stereo reconstruction is geometrically well-posed as shown in Figure 1(a). The
rays connecting each image location to its corresponding camera center intersect
at the true 3D location of the point — this process is called triangulation as
the two rays map out a triangle with the baseline that connects the two camera
centers. The triangulation constraint does not apply when the point moves in the
duration between image capture, as shown in Figure 1(b). This case abounds as
most artificial vision systems are monocular and most real scenes contain moving
elements.

The 3D reconstruction of a trajectory is directly analogous to monocular
image reconstruction: it is impossible to reconstruct a moving point without
making some assumptions about the way it moves. In this paper, we represent the
3D trajectory of a moving point as a compact linear combination of a trajectory
basis and demonstrate that, under this model, we can recover the 3D motion
of the point linearly, and can handle missing data. By posing the problem in
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Fig. 1. (a) A point in projective space, P3, is mapped to P2. From two views, the 3D
point can be triangulated. (b) From a series of images, a point trajectory, P3K , also
imaged to P2. To estimate the trajectory, at least three projections are required when
the number of parameters describing the trajectory is 6 (2 for each coordinate, x, y,
and z). (c) Geometric illustration of the least squares solution of Equation (4). The

estimated trajectory Θβ̂ is placed on the intersection between l containing the camera
trajectory space and the point trajectory, and the p space spanned by the column space
of the trajectory basis matrix, col(Θ).

this way, we generalize the problem of triangulation, which is a mapping from
P3 → P2, to 3D trajectory reconstruction, as a mapping P3K → P2, where
3K is the number of the trajectory basis required to represent the 3D point
trajectory3.

The stability of classic triangulation is known to depend on the baseline
between camera centers [3]. In this paper, we characterize an instability en-
countered when interference occurs between the trajectory of the point and the
trajectory mapped out by successive cameras centers. We demonstrate that the
accuracy of 3D trajectory reconstruction is fundamentally limited by the correla-
tion between the trajectory of the point and the trajectory of successive camera
centers. A measure called reconstructibility is defined which can determine the
accuracy of reconstruction, given a particular trajectory basis, 3D point trajec-
tory, and 3D camera center trajectory. The linear reconstruction algorithm, in
conjunction with this analysis, is used to propose a practical algorithm for the
reconstruction of multiple 3D trajectories from a collection of non-coincidental
images.

3 Related observations have been made in [1,2].
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2 Related work

When correspondences are provided across 2D images in static scenes, the method
proposed by Longuet-Higgins [4] estimates the relative camera poses and trian-
gulates the point in 3D using epipolar geometry. In subsequent research, sum-
marized in [3, 5, 6], the geometry involved in reconstructing 3D scenes has been
developed. While a static point can be estimated by the triangulation method,
in the case where the point may move between the capture of both images the
triangulation method becomes inapplicable: the line segments mapped out by
the baseline and the rays from each camera center to the point no longer form
a closed triangle (Figure 1(b)).

The principal work in ‘triangulating’ moving points from a series of images is
by Avidan and Shashua [7], who coined the term trajectory-triangulation. They
demonstrated two cases where a moving point can be reconstructed: (1) if the
point moves along a line, or (2) if the point moves along a conic section. This
work inspired a number of papers such as the work by Shashua and Wolf [1], who
demonstrated reconstruction for points moving along planes, and the work by
Kaminski and Teicher [8] who extended to a general trajectory using the poly-
nomial representation. Wolf and Shashua [9] classified different manifestations
of related problems, analyzing them as projections from PN to P2.

In this paper, we investigate the reconstruction of the 3D trajectory of a
moving point where the motion of the point can be described as a compact
combination of a linear trajectory basis. This generalization allows far more
natural motions to be linearly reconstructed. We demonstrate its application
in reconstructing dynamic motion of objects from a series of image projections
where no two image projections necessarily occur at the same time instant.

The reconstruction of dynamic motion from monocular sequences, or nonrigid
structure from motion, is one such domain. The seminal work of Bregler et al. [10]
introduced linear shape models as a representation for nonrigid 3D structures,
and demonstrated their applicability within the factorization-based reconstruc-
tion paradigm of Tomasi and Kanade [11]. Subsequently, numerous constraints
and techniques have been proposed to specify shape priors depending on models
such as facial expressions and articulated body motions [12–16]. In contrast to
these methods which represent the instantaneous shape of an object as a linear
combination of basis shapes, Akhter et al. [17] proposed analyzing each trajec-
tory as a linear combination of basis trajectories. They proposed the use of the
Discrete Cosine Transform as a basis, and applied factorization techniques to
estimate nonrigid structure. The primary limitation of these factorization-based
methods is: (1) the assumption of an orthographic camera, and (2) their inabil-
ity to handle missing information. Several papers have relaxed the constraint of
orthography, such as Hartley and Vidal [2] and Vidal and Abretske [18], and the
work by Torresani et al. [15] can handle missing data. However, these algorithms
remain unstable and have been demonstrated to work only for constrained data
like faces or motion capture; studies of this instability have been pursued by
Xiao et al. [12] and Akhter et al. [19].
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Unlike previously proposed methods, we do not pursue a factorization based
solution. Instead we propose a linear solution to reconstruct a moving point
from a series of its image projections inspired by the Direct Linear Transform
algorithm [3]. In conjunction with rigid structure from motion estimation, and
the trajectory based representation of points, this facilitates the first practical
algorithm for dynamic structure reconstruction. It is able to handle problems
like missing data (due to occlusion and matching failure) and estimation insta-
bility. An analysis is presented which geometrically describes the reconstruction
problem as fundamentally restricted by the correlation between the motion of
the camera center and the motion of a scene point trajectory. This analysis is
leveraged to estimate an optimized trajectory basis to represent scene point mo-
tion, given an estimated camera center trajectory. We will assume that scene
point correspondences have been provided, and that the relative locations of the
view-points have been estimated, and that the basis describing the trajectory
are pre-defined: these are reasonable assumptions that will be justified presently.

3 Linear Reconstruction of a 3D Point Trajectory

For a static point in 3D projective space, correspondences across a pair of images
enable us to triangulate as shown in Figure 1(a). Traditional triangulation solves
for a 3D point from an overconstrained system because there are three unknowns
while the number of equations is 2F , where F is the number of images. For a
3D point trajectory, if it can be represented by K parameters per coordinate,
the projection is P3K → P2 as shown in Figure 1(b). As was the case with
static point projection, if 2F ≥ 3K, solving for a 3D trajectory becomes an
overconstrained problem. Using this observation, we develop a linear solution
for reconstructing a point trajectory given the relative poses of the cameras and
the time instances the images were captured.

For a given ith camera projection matrix, Pi ∈ ℜ3×4, let a point in 3D,

Xi =
[
Xi Yi Zi

]T
, be imaged as xi =

[
xi yi

]T
. The index i used in this paper

represents the ith time sample. This projection is defined up to scale,
[
xi

1

]
≃ Pi

[
Xi

1

]
, or

[
xi

1

]

×

Pi

[
Xi

1

]
= 0, (1)

where [·]× is the skew symmetric representation of the cross product [3]. This
can be rewritten as an inhomogeneous equation,

[
xi

1

]

×

Pi,1:3Xi = −

[
xi

1

]

×

Pi,4 ,

where Pi,1:3 and Pi,4 are the matrices made of the first three columns and the
last column of Pi, respectively, or simply as QiXi = qi, where,

Qi =

([
xi

1

]

×

Pi,1:3

)

1:2

, qi =

([
xi

1

]

×

Pi,4

)

1:2

,
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and (·)1:2 is the matrix made of two rows from (·). By taking into account all
time instants, a closed form for the 3D point trajectory, X, can be formulated
as,



Q1

. . .

QF






X1

...
XF


 =



q1

...
qF


 , or QX = q, (2)

where F is the number of time samples in the trajectory. Since Equation (2)
is an underconstrained system (i.e. Q ∈ ℜ2F×3F ), there are an infinite number
of solutions for a given set of measurements (2D projections). There are many
ways to constrain the solution space in which X lies. One way is approximating
the point trajectory using a linear combination of any trajectory basis that can
describe it as,

X =
[
XT

1 · · · XT

F

]T
≈ Θ1β1 + . . .+Θ3Kβ3K = Θβ, (3)

where Θj ∈ ℜ3F is a trajectory basis vector, Θ =
[
Θ1 . . . Θ3K

]
∈ ℜ3F×3K is

the trajectory basis matrix, β =
[
β1 . . . β3K

]T
∈ ℜ3K are the parameters or

coefficients of a point trajectory, and K is the number of bases per coordinate.
If the trajectory basis are known a priori [17], this linear map between the

point trajectory and basis enables us to formulate a linear solution. By plugging
Equation (3) into Equation (2), we can derive an overconstrained system by
choosing K such that 2F ≥ 3K,

QΘβ = q. (4)

Equation (4) is a linear least squares system for reconstructing a point trajectory,
β, which provides an efficient, numerically stable, and globally optimal solution.
β is the coefficient of the trajectory based on measurements and known camera
poses embedded in Q and q and known trajectory basis, Θ.

4 Geometric Analysis of 3D Trajectory Reconstruction

Empirically, the point trajectory reconstruction approaches the ground truth
point trajectory when the camera motion is fast or random. On the other hand,
if the camera moves slowly or smoothly, the solution tends to deviate highly
from the ground truth. To explain these observations, we decompose the process
of solving the linear least squares system into two steps: solving Equation (2)
and solving Equation (3).

4.1 Geometry of Point and Camera Trajectories

Let X and X̂ be a ground truth trajectory and an estimated point trajectory,
respectively. The camera matrix can always be normalized by intrinsic and rota-
tion matrices, K and R, respectively, because they can be factored out without
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loss of generality (as all camera matrices are known), i.e. RT

i K
−1
i Pi =

[
I3 −Ci

]
,

where Pi = KiRi

[
I3 −Ci

]
, Ci is the camera center, and I3 is a 3× 3 identity

matrix. This follows from the fact that triangulation and 3D trajectory recon-
struction are both geometrically unaffected by the rotation of the camera about
its center. All Pi subsequently used in this analysis are normalized camera ma-
trices, i.e. Pi =

[
I3 −Ci

]
. Then, a measurement is a projection of X onto the

image plane from Equation (1). Since Equation (1) is defined up to scale, the
measurement, x, can be replaced as follows,

[
Pi

[
Xi

1

]]

×

Pi

[
X̂i

1

]
= 0. (5)

Plugging in Pi =
[
I3 −Ci

]
results in, [Xi −Ci]×

(
X̂i −Ci

)
= 0, or equiva-

lently,

[Xi −Ci]× X̂i = [Xi]× Ci. (6)

The solution of Equation (6) is

X̂i = aiXi + (1− ai)Ci, (7)

where ai is an arbitrary scalar. Geometrically, Equation (7) is the constraint for
the perspective camera model due to the fact that it enforces the solution to lie
on the ray joining the camera center and the point in 3D. From Equation (3),

Equation (7) can be rewritten as Θiβ̂ ≈ aiXi + (1 − ai)Ci where β̂ is the
estimated parameter and Θi is the matrix from Θ(3(i−1)+1):3i.

Figure 1(c) illustrates the geometry of the solution of Equation (4). Let the
subspace, p, be the space spanned by the column space of the trajectory basis
matrix, col(Θ). The solution Θβ̂, has to simultaneously lie on the hyperplane
l, which contains the camera trajectory and the point trajectory, and must lie
in col(Θ). Thus, Θβ̂ is the intersection of the hyperplane l and the subspace
p where A = D ⊗ I3.

4 In the figure, note that the line and the plane are a
conceptual 3D vector space representation for the 3F -dimensional space. The

camera center trajectory, C =
[
CT

1 . . . CT

F

]T
, and the point trajectory, X, are

projected onto col(Θ) as ΘβC and ΘβX, respectively. From this point of view,

we want Θβ̂ to be as close as possible to Θβ
X
.

4.2 Reconstructibility

When a point trajectory is identical to the camera trajectory, it is not possible
to estimate the point trajectory because a series of 2D projections is stationary.
This intuition results in the following theorem.

Theorem 1 Trajectory reconstruction using any linear trajectory basis is im-

possible if corr(X,C) = ±1.5

4 ⊗ is the Kronecker product and D is a diagonal matrix which consists of
{a1, · · · , aF }.

5 corr(X,Y ) = E[(X−µX)(Y −µY )]
σXσY

where E[·] is the expected value operator and µ and
σ are the mean and standard deviation, respectively.
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Proof. When corr(X,C) = ±1, or X = cC+d where c is arbitrary scalar and d

is arbitrary constant vector, we can transform X and C to X̃ and C̃ such that
X̃ = cC̃ without loss of generality. This linearity causes the RHS of Equation (6)

to be zero and the solution X̂i to be the same as C̃i up to scale. This results in
the scale ambiguity of X̂i. ⊓⊔

While Theorem 1 shows the reconstruction limitation due to the correlation
between the point trajectory and the camera trajectory, solving Equation (3)
with respect to β provides a measure of the reconstruction accuracy for a given
trajectory basis. Solving the least squares, X̂ = Θβ̂ minimizes the residual error,

argmin
β̂,A

∥∥∥Θβ̂ −AX− (I−A)C
∥∥∥ . (8)

Let us decompose the point trajectory and the camera trajectory into the column
space of Θ and that of the null space, Θ⊥ as follows, X = Θβ

X
+Θ⊥β⊥

X
, C =

ΘβC +Θ⊥β⊥

C
, where β⊥ is the coefficient for the null space. Let us also define

a measure of reconstructibility, η, of the 3D point trajectory reconstruction,

η =

∥∥∥Θ⊥β⊥

C

∥∥∥
∥∥∥Θ⊥β⊥

X

∥∥∥
. (9)

Theorem 2 As η approaches infinity, β̂ approaches βX.

Proof. From the triangle inequality, the objective function of Equation (8) is
bounded by,

∥∥∥Θβ̂ −AΘβX − (I−A)ΘβC −AΘ⊥β⊥

X − (I−A)Θ⊥β⊥

C

∥∥∥ (10)

≤
∥∥∥Θβ̂ −AΘβX − (I−A)ΘβC

∥∥∥+
∥∥∥AΘ⊥β

⊥

X

∥∥∥+
∥∥∥(I−A)Θ⊥β

⊥

C

∥∥∥

≤
∥∥∥Θ⊥β

⊥

C

∥∥∥




∥∥∥Θβ̂ −AΘβ
X
− (I−A)Θβ

C

∥∥∥
∥∥∥Θ⊥β⊥

C

∥∥∥
+

‖A‖

η
+ ‖I−A‖


 . (11)

As η approaches infinity, ‖A‖ /η in Equation (11) becomes zero. In order to

minimize Equation (11), A = I because it leaves the last term zero and β̂ = βX

because it also cancels the first term. This leads the minimum of Equation (11)
to be zero, which bounds the minimum of Equation (10). Thus, as η approaches

infinity, β̂ approaches βX. ⊓⊔

Figure 2(a) shows how reconstructibility is related to the accuracy of the
3D reconstruction error. In each reconstruction, the residual error (null com-

ponents) of the point trajectory, eX =
∥∥∥Θ⊥β⊥

X

∥∥∥, and the camera trajectory,

eC =
∥∥∥Θ⊥β⊥

C

∥∥∥, are measured. Increasing eC for a given point trajectory en-

hances the accuracy of the 3D reconstruction, while increasing eX lowers accu-
racy. Even though we cannot directly measure the reconstructibility (we never
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know the true point trajectory in a real example), it is useful to demonstrate
the direct relation with 3D reconstruction accuracy. Figure 2(b) illustrates that
the reconstructibility is inversely proportional to the 3D reconstruction error.

In practice, the infinite reconstructibility criterion is difficult to satisfy be-
cause the actual X is unknown. To enhance reconstructibility we can maximize
eC with constant eX. Thus, the best camera trajectory for a given trajectory
basis matrix is the one that lives in the null space, col(Θ⊥). This explains our
observation about slow and fast camera motion described at the beginning of
this section. When the camera motion is slow, the camera trajectory is likely
to be represented well by the DCT basis, which results in low reconstructibility
and vice versa. However, for a given camera trajectory, there is no deterministic
way to define a trajectory basis matrix because it is coupled with both the cam-
era trajectory and the point trajectory. If one simply finds an orthogonal space
to the camera trajectory, in general, it is likely to nullify space that also spans
the point trajectory space. Geometrically, simply changing the surface of p in
Figure 1(c) may result in a greater deviation between ΘβX and Θβ̂. Yet, if we
have prior information of a point trajectory, we can enhance the reconstructibil-
ity. For example, if one is shooting video while walking, the frequency of the
camera trajectory will be concentrated at a certain frequency, say the walking
frequency, whereas that of a point trajectory is somewhere else. In such a case,
if we find a trajectory basis space that is orthogonal to the walking frequency
basis, the point trajectory can be estimated well, as long as it does not contain
that frequency. This process allows us to eliminate interference from the camera
trajectory.

5 Results

In this section, we evaluate 3D trajectory reconstruction on both synthetic and
real data. In all cases, the trajectory bases are the first K discrete cosine trans-
form (DCT) basis in order of increasing frequency. The DCT basis has been
demonstrated to accurately and compactly model 1D point trajectories [17]. If a
3D trajectory is continuous and smooth, DCT basis can represent it accurately
with relatively few low frequency components. We make the assumption that
each point trajectory is continuous and smooth and use the DCT basis as the
trajectory basis, Θ. We choose the value of K based on the number of visible
points on a trajectory such that the system is overconstrained and 2F ≥ 3K.
We consider two choices of DCT bases: the original DCT basis set, and the
specialized DCT basis set. The specialized DCT is a projection of the original
DCT onto the null space of the camera trajectory. The idea here is to limit how
well the specialized DCT reconstructs the camera trajectory and improve the
reconstructibility.

5.1 Simulation

To quantitatively evaluate our method, we generate synthetic 2D images from
3D motion capture data and test it in three perspectives: reconstructibility, ro-
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Fig. 2. (a) As the null component of the camera trajectory, eC, decreases, the closed
form solution of Equation (4) deviates from the real solution. (b) Reconstructibility, η,
provides the degree of interference between the camera trajectory and the point tra-
jectory. (c) Comparisons of reconstruction accuracy of trajectories reconstructed with
the specialized and original DCT basis under various camera trajectories, and (d) tra-
jectories between the ground truth and the original and specialized DCT basis under
smooth camera trajectory. Black: the ground truth of the point trajectory, green: the
camera trajectory, and blue and red: reconstructed trajectory of the motion capture
marker from the original and specialized DCT basis, respectively. Comparisons of ro-
bustness between the original and specialized DCT basis with regard to (e) occlusion
and (f) frame rate.

bustness, and accuracy. For reconstructibility, we compare reconstruction from
the original DCT basis with the specialized DCT basis by increasing the null
component, eC, of the camera trajectory. Reconstruction error from the original
DCT basis is higher when there is small eC. For robustness, we test with miss-
ing data and lowered frame rates and we show that the specialized DCT basis
performs better. Finally, for accuracy, we compare our algorithm with state-of-
the-art algorithms by varying the perspectivity of projection. The results show
our method outperforms others, particularly under perspective projection.

Reconstructibility: Earlier, we defined the reconstructibility of a 3D tra-
jectory as the trade off between the ability of the chosen trajectory basis to accu-
rately reconstruct the point trajectory vs. its ability to reconstruct the camera
trajectory. To evaluate this effect empirically we generate camera trajectories
by varying eC and measure the error in point trajectory reconstruction in Fig-
ure 2(c). Each trajectory is normalized to have zero mean and unit variance so
that errors can be compared across different sequences. When eC is low, there is
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Fig. 3. (a) Quantitative comparisons of reconstruction accuracy with previous methods
regarding projection types, and qualitative comparisons of reconstruction errors using
the original DCT basis (blue) and the methods by Torresani et al. [15](dark green),
Paladini et al. [16](light green) and Akhter et al. [17](orange). (b-e): Qualitative com-
parison between the ground truth (black) and reconstructed trajectories (red) for each
method.

an advantage in using the specialized DCT basis. This is expected as the original
DCT basis is able to reconstruct both camera and point trajectories well, and
the reconstructibility is lower. As eC increases, this becomes less of an issue, and
both original and specialized DCT perform approximately the same. Figure 2(d)
shows the comparison of point trajectories reconstructed using the original and
specialized DCT basis compared to the ground truth. For this example the re-
constructibility using the specialized DCT is 2.45, and for the original DCT basis
it is 0.08.

Robustness: In this experiment, we evaluate the robustness of trajectory
reconstruction for smooth camera trajectories with missing 2D point samples.
Missing samples occur in practice due to occlusion, self-occlusion, or measure-
ment failure. Figure 2(e) shows the normalized trajectory reconstruction error
for varying amounts of occlusion (0% and 20% of the sequence) and different
numbers of DCT basis. A walking motion capture sequence was used and each
experiment was repeated 10 times with random occlusion. As long as the visi-
bility of a point in a sequence is sufficient to overconstrain the linear system of
equations, the closed form solution is robust to moderate occlusion. Figure 2(f)
evaluates robustness to the frequency of input samples, i.e. varying the effective
frame rate of the input sequence. Visibility of the moving points is important
to avoid an ill-posed condition of the closed form solution, and intuitively more
frequent visibility results in better reconstruction. The results confirm this ob-
servation. In both robustness experiment, the specialized DCT basis perform
better than the original DCT basis for reduced number of bases. This is due to
the (worst case) smooth synthesized camera trajectories. This effect is reduced
as the number of DCT basis increases and the reconstructibility of the sequence
increases accordingly.

Accuracy: We compare the accuracy of reconstructed trajectories against
methods using shape basis reconstruction by Torresani et al. [15] and Pala-
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Fig. 4. Results of the rock climbing scene. Top row: sampled image input, second row:
five snap shots of 3D reconstruction in different views, and bottom row: reconstructed
trajectories (blue line) in different views.

dini et al. [16] and the method using trajectory basis reconstruction Akhter et

al. [17]. To validate that our closed form solution is independent of the camera
projection model, we parameterize camera projection as the distance between
image plane and the camera center and evaluate across a range that moves pro-
gressively from projective at one end to orthographic at the other. Note that
we are given all camera poses for the closed form trajectory solution, while the
previous methods reconstruct both camera poses and point trajectories simulta-
neously. We set K to 10 for all methods and use the original DCT basis. Figure 3
compares the normalized reconstruction accuracy for the walking scene under a
random camera trajectory. The other methods assume orthographic camera pro-
jection and are unable to accurately reconstruct trajectories in the perspective
case.

5.2 Experiments with Real Data

The theory of reconstructibility states that it is possible to reconstruct 3D point
trajectories using DCT basis precisely if a camera trajectory is random. An
interesting real world example of this case occurs when many independent pho-
tographers take asynchronous images of the same event from different locations.



12 Hyun Soo Park, Takaaki Shiratori, Iain Matthews, Yaser Sheikh

Fig. 5. Results of the handshake scene. Top row: sampled image input, second and
third row: five snap shots of 3D reconstruction in different views.

Table 1. Parameters of real data sequences.

F (sec) # of photos # of photographers K

Rock climbing 39 107 5 12

Handshake 10 32 3 6

Speech 24 67 4 14

Greeting 24 66 4 10

A collection of asynchronous photos can be interpreted as the random motion
of a camera center. Using multiple photographers, we collected data in several
‘media event’ scenarios: a person rock climbing, a photo-op hand shake, public
speech, and greeting. The static scene reconstruction is based on the structure
from motion algorithm described in [20]. We also extracted timing information
from image EXIF tags. Correspondences of moving points across images were
obtained manually.

The parameters for each scenario are summarized in Table 1. The number
of bases was selected empirically for each case. We were able to use the original
DCT basis for all scenes. Figures 4, 5, 6, and 7 show some of input images
and reconstructed point trajectories. The reconstructed point trajectories look
similar to postures of the person.

6 Conclusion

In this paper, we analyze the geometry of 3D trajectory reconstruction and define
a measure called reconstructibility to determine the accuracy of 3D trajectory
reconstruction. We demonstrate that 3D trajectory reconstruction is fundamen-
tally limited by the correlation between the 3D trajectory of a point and the 3D
trajectory of the camera centers. Using this analysis, we propose an algorithm
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Fig. 6. Results of the speech scene. Top row: sampled image input, and bottom row:
reconstructed trajectories (blue line) in different views.

Fig. 7. Results of the greeting scene. Top row: sampled image input, and bottom row:
reconstructed trajectories (blue line) in different views.

to reconstruct the 3D trajectory of a moving point from perspective images.
By constraining the solution space using a linear trajectory basis, the dimen-
sionality of the solution space can be reduced so that an overconstrained linear
least squares system can be formulated. The linear algorithm takes as input the
camera pose at each time instant, and a predefined trajectory basis. These re-
quirements are met in our practical application, where we reconstruct dynamic
scene from collections of images captured by a number of photographers. We
estimate the relative camera pose by applying robust structure from motion to
the static points in the scene. The Discrete Cosine Transform is used as a pre-
defined basis. As the effective camera trajectory is quite discontinuous, we are
able to obtain accurate 3D reconstructions of the dynamic scenes.
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