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Abstract - We report a summary of the Johns Hopkins Summer 2000 Workshop
on audio-visual automatic speech recognition (ASR) in the large-vocabulary, continuous
speech domain. Two problems of audio-visual ASR were mainly addressed: Visual feature
extraction and audio-visual information fusion. First, image transform and model-based
visual features were considered, obtained by means of the discrete cosine transform (DCT)
and active appearance models, respectively. The former were demonstrated to yield su-
perior automatic speechreading. Subsequently, a number of feature fusion and decision
fusion techniques for combining the DCT visual features with traditional acoustic ones
were implemented and compared. Hierarchical discriminant feature fusion and asyn-
chronous decision fusion by means of the multi-stream hidden Markov model consistently
improved ASR for both clean and noisy speech. Compared to an equivalent audio-only
recognizer, introducing the visual modality reduced ASR word error rate by 7% relative
in clean speech, and by 27% relative at an 8.5 dB SNR audio condition.

INTRODUCTION

Exploiting visual, lip-region information for improving human speech perception as well
asautomatic speech recognition(ASR) has been well documented in both the psychological
[1] and technical literatures [2]. However, until recently, allautomatic speechreadingstudies
have been limited to small-vocabulary tasks and small subject populations [2], [3]. Thus, no
definite answers existed on the two key issues for the design ofspeaker-independent, audio-
visual,large-vocabulary continuous speech recognition(LVCSR) systems [2]: (a) The choice of
appropriatevisual features, informative about unconstrained, continuous visual speech; and (b)
The design of audio-visual informationfusionalgorithms that consistently outperform audio-
only LVCSR systems. To address these issues, we participated in the Summer 2000 Workshop at
the Johns Hopkins University on audio-visual ASR, seriously tackling the problem of speaker-
independent audio-visual LVCSR for the first time [4]. In this paper, we provide a summary of
this work and highlight our main contributions and results.

The paper is structured as follows: First, a section is devoted to visual feature extraction,
with two visual front ends discussed. The subsequent section presents a number of audio-
visual information fusion algorithms, grouped into feature and decision fusion methods. Next,
a description of the audio-visual database is provided, together with the experimental design
and results. A summary section concludes the paper.

VISUAL FEATURE EXTRACTION

Various sets of visual features for automatic speechreading have been proposed in the liter-
ature over the last 25 years. In general, they can be grouped into three categories: High-level
lip contour(shape) based features, low-levelvideo pixel(appearance) based ones, and features
that are a combination of both [2]. In the first approach, a parametric, or statistical lip contour
model is fitted to the mouth image, and the model parameters are used as visual features [3].
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Figure 1: DCT versus AAM based visual feature extraction for automatic speechreading, followed by
linear interpolation, feature mean normalization, and the application of LDA and MLLT.

Alternatively, geometric features of an estimate of the inner and/or outer lip contours, such as
mouth height and width, are used [2]. In the second approach, the entire image containing the
speaker’s mouth is considered as informative for speechreading (region of interest- ROI), and
appropriateimage transformationsof its pixel values are used as visual features [5]. In the third
approach, both high- and low-level features are combined to give rise to joint shape and appear-
ance visual features [3], [6]. At the Johns Hopkins Workshop we considered one representative
technique from the second and third categories, as discussed next (see Fig.1).

Discrete cosine transform based visual features
In this approach, a statistical face tracker [4], trained on 3744 images (each annotated with

26 facial feature locations), was first employed to detect the speaker’s face and facial feature
locations, including the mouth corners (see Fig.2). Based on these, the speaker’s mouth center
and size were estimated, and averaged, for robustness, over a number of neighboring frames. A
size-normalized 64�64 pixel ROI, centered around the speaker’s mouth was subsequently ex-
tracted (see also Fig.2). Finally, a two-dimensional, separablediscrete cosine transform(DCT)
was applied on the ROI pixels, and the 24 highest energy DCT coefficients were retained as
visual features [5] (see Fig.1).

Notice that the resulting features can be extracted in real-time, since the DCT allows a
fast implementation, whereas it suffices that face and facial feature tracking be performed at a
low frame rate. DCT features are also robust to small face tracking inaccuracies, since, in this
approach, only a gross estimate of the ROI is required.

Active appearance model based visual features
In this approach, anactive appearance model(AAM) of the entire face was built from a

training set of 4072 facial images, each annotated with 68 landmark points that outlined the
eyebrows, eyes, nose, nostrils, jaw, and lip contours. For each image, a 134-dimensional shape
vector containing the coordinates of the 68 landmark points (after asimilarity transformation
for normalization to a reference shape), as well as the 6000-dimensional appearance vector of
the luminance values of a 6000-pixel normalized face, were obtained (see also Fig.1). The
main modes of the shape and appearance vector variation in the training set were independently
computed usingprincipal component analysis(PCA), and the 11 and 186 largest PCA matrix
eigenvalues were retained for the shape- and appearance-only models, respectively. Subse-
quently, a joint shape and appearance model (AAM) was obtained using a second stage of PCA
on the concatenated vector of shape and appearance features, after appropriately rescaling the
latter [6]. The 86 largest PCA matrix eigenvalues were retained, giving rise to 86-dimensional
AAM based visual features.

To extract AAM visual features from a given facial image, the AAM algorithm of [7] was
first employed to fit the appearance model to the image. Subsequently, the joint model was used
to extract visual features by hierarchically applying the two stages of PCA [4] (see also Fig.1).
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Figure 2: Sample frames from four database subjects, with detected facial features superimposed (left),
and grey-scale, 64�64 pixel, mouth regions of interest extracted (right).

Visual feature postprocessing

Additional processing was applied on both DCT and AAM features to incorporate dynamic
visual speech information, and to improve phoneme discrimination and maximum-likelihood
based statistical modeling: Fifteen consecutive-frame DCT or AAM visual feature vectors
were concatenated, subsequently projected onto a 41-dimensional space usinglinear discrim-
inant analysis(LDA), and then “rotated” by means of amaximum-likelihood linear transform
(MLLT) [4], [5]. Furthermore, linear interpolationwas used to align the visual features to
the audio feature rate (100 Hz), and visualfeature mean normalizationwas employed to com-
pensate for lighting and other variations. The final visual feature vectoro

(V)

t dimension was
DV = 41 , for both DCT and AAM parametrizations (see also Fig.1).

Audio features

In addition to the visual features, static audio features were extracted from the speech signal,
consisting of 24 mel-cepstral coefficients, computed over a sliding window of 25 msec and at a
rate of 100 Hz. Dynamic audio features were obtained by concatenating 9 consecutive feature
frames, and applying LDA and MLLT. The final audio featureo(A)t dimension wasDA = 60 .

AUDIO-VISUAL INFORMATION FUSION

A number of techniques have been suggested for audio-visual fusion [2], which can be
broadly grouped intofeature fusionanddecision fusionmethods. The first are based on training
a traditionalhidden Markov model(HMM) classifier on the concatenated vector of the audio and
visual features, or appropriate transformations of it. Decision fusion techniques combine clas-
sification decisions based on single modality observations, typically by appropriately weighting
their respective log-likelihoods. At the Johns Hopkins Workshop, we considered two feature
fusion algorithms and a number of decision fusion approaches, discussed in the following [4].

Feature fusion

We considered twofeature fusiontechniques for audio-visual ASR (see also Fig.3(a)): The
first approach was a simpleaudio-visual feature concatenation(AV-Concat), giving rise to
audio-visual features

o
(AV)

t = [o(A)>t ; o
(V)>
t ]> 2 R

D
; (1)

whereD=DA+DV =101 . The second approach was aimed at reducing the dimensionality of
(1), by means of an LDA projection to a 60-dimensional space, followed by an MLLT rotation,

o
(HiLDA)

t = P
(AV)
MLLT P

(AV)
LDA o

(AV)

t : (2)

Since LDA and MLLT were also independently applied on the audio- and visual-only features,
this scheme was referred to asaudio-visual hierarchicalLDA (AV-HiLDA ), or hierarchical
discriminant feature fusion. In both cases, we modeled the generation process of a sequence of
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Figure 3: (a): Feature fusion and multi-stream HMM based decision fusion. (b): Phone-synchronous
(state-asynchronous) multi-stream HMM with three states per phone and modality, and its equivalent prod-
uct HMM; white circles denote states that are removed when limiting the degree of allowed asynchrony.

features (1) or (2) by asingle-streamHMM, with Gaussian mixtureemission(classc conditional
observation) probabilities, given, in the case of (1) (a similar equation holds for (2)), by [8]

Pr [o(AV)t j c ] =

KcX

k=1

w c kND (o(AV)t ;m ck ; s c k ) : (3)

In (3),m c k ands ck denote theD-dimensionalmeananddiagonal covariancevectors of the
classc , k-th mixture componentD-variate normal distribution withprior w c k .

Decision fusion
The maindecision fusionapproach considered was by means of themulti-streamHMM

(MS-HMM) [9], with state emission (classc conditional) probability given by

Pr [o(AV)t j c ] =
Y

s2fA ;Vg

[
Ks cX

k=1

ws c kNDs (o
(s)

t ;m s c k ; s s c k ) ]
� s c t

: (4)

In (4), � s c t are the stream exponents, that are non-negative, and, in general, depend on the
modality s , the HMM state (class)c , and, locally, on the utterance frame (time)t . Initially,
we consideredconstantexponents,�A ; �V constrained to�A + �V = 1 . We then separately
trained single-stream audio- and visual-only HMMs, and we combined their emission proba-
bilities in (4), after optimizing the exponents on held-out data. We referred to this scheme as
AV-MS-2. However, superior results were obtained, by, instead,jointly training both streams of
(4) using theexpectation-maximization(EM) algorithm [8], and again optimizing the exponents
on held-out data. We referred to this scheme asAV-MS-1. Subsequently, we relaxed the con-
stant exponent assumption, considering utterance-level dependent exponents. We set the audio
exponents�A t of the jointly trained MS-HMM (AV-MS-1) equal to the normalized (between
0 and 1) estimate of the degree ofvoicingpresent in the speech signal [10], averaged over the
entire utterance, with the visual exponents being�Vt = 1��At . We referred to this scheme as
AV-MS-UTTER .

Next, we relaxed thestate synchronyassumption when combining single-stream likelihoods
in (4), by enforcing synchrony at thephone boundariesonly (each phone had three states). This
gave rise to theproductHMM, depicted in Fig.3(b) [4], [9]. In our particular implementation,
we allowed asynchrony up to a single audio-visual state, as depicted in Fig.3(b). Similar to the
state synchronous case, we jointly trained the resulting HMM parameters. We referred to this
method as asynchronous decision fusion (AV-PROD).

Finally, we considered a “late” integration method using thediscriminative model combi-
nation (AV-DMC ) approach of [11]. In this technique, for every utterance, a list of n-best hy-
pothesesfh 1 ;h 2 ;:::; hng , obtained using an audio-only HMM, were first forced-aligned [8]
to their corresponding phone sequencesh i = fci;1; ci;2; ::: ; ci;Ni

g by means of both audio-
and visual-only HMMs. The resulting phonec i;j boundaries were denoted by[ t starti;j;s ; t

end

i;j;s] ,
for s 2 fA ;Vg , j=1;:::;Ni , andi=1;:::;n . The hypotheses were subsequently rescored by

Pr [h i ] � PrLM(h i)
�LM
Y

s2fA ;Vg

NiY

j=1

Pr (o(s)t ; t 2 [ tstarti;j;s ; t
end

i;j;s] j ci;j )
� s c i;j ;
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Audio Condition: Clean Noisy Audio Condition: Clean Noisy

Audio-only 14.44 48.10 AV-MS-1 (DF) 14.62 36.61
AV-Concat (FF) 16.00 40.00 AV-MS-2 (DF) 14.92 38.38
AV-HiLDA (FF) 13.84 36.99 AV-MS-PROD (DF) 14.19 35.21
AV-DMC (DF) 13.65! 12.95 �� AV-MS-UTTER (DF) 13.47 35.27

Table 1:Test set audio-only and audio-visual word error rate (WER), %, for both clean and noisy audio.
Two feature fusion (FF) and five decision fusion (DF) based audio-visual systems were evaluated.

wherePrLM(h i)was thelanguage model(LM) probability of hypothesish i . All audio-visual
phone weights and the LM weight were discriminatively trained on a held-out set [4], [11].

DATABASE AND EXPERIMENTS

The IBM ViaVoice audio-visual database
All experiments were performed on the IBM ViaVoiceTM audio-visual database, that con-

sists of full-face frontal video and wideband audio of 290 subjects, uttering continuous read
speech with a 10,400 word vocabulary. The database video is of size 704�480 pixels, inter-
laced, captured in color at a rate of 30 Hz, and it is MPEG2 encoded at the relatively high
compression ratio of 50:1. The audio is synchronously collected with the video at a rate of 16
kHz, and at a relatively clean office environment at a 19.5 dBsignal-to-noise ratio(SNR) [4].

The experimental framework
Approximately 42 hours of data were used in speaker-independent audio-visual ASR ex-

periments, partitioned into thetraining set (239 subjects, 35 hours), used for HMM parameter
estimation, theheld-outset (25 subjects, 5 hours), used for training parameters relevant to
audio-visual decision fusion, and thetestset (26 subjects, 2.5 hours). Two audio conditions
were considered: The original database clean audio and a degraded one with an 8.5 dB SNR,
where the audio was artificially corrupted by additive “babble” speech (“cafeteria”-like) noise.
All HMMs, as well as the LDA and MLLT matrices used in feature extraction, were trained and
tested in thematchedcondition.

All experiments were conducted using the HTK toolkit [8] and a lattice rescoring strategy:
Using the IBM LVCSR decoder with a trigram LM and IBM-trained HMMs, appropriate ASR
lattices were generated. These lattices were then rescored using the HTK decoder by various
cross-word, context-dependent triphone HTK-trained HMMs, based on a number of feature sets
and fusion strategies.

Experimental results
First, baseline audio-only results were obtained for both clean and noisy audio conditions,

using HMMs trained in the matched audio condition to rescore IBM-generated audio lattices at
the corresponding condition. Performance deteriorated significantly from a 14.44%word error
rate(WER) for clean audio to a 48.10% WER in the noisy case (see also Table 1). Subsequently,
the relative performance of the two visual front ends was investigated. Visual-only HMMs
were trained and used to rescore noisy audio lattices. Of course, such lattices contained audio
information, therefore the obtained results could not be interpreted as visual-only recognition.
The DCT visual features resulted in a 58.14% WER, outperforming the AAM features, that
achieved a 64.00% WER. Therefore, the DCT features were exclusively used in the audio-
visual fusion experiments, next.

A number of feature and decision fusion techniques were used to train appropriate audio-
visual HMMs at the clean (19.5 dB) and noisy (8.5 dB) conditions, that were subsequently
evaluated by rescoring clean audio and noisy audio-visual lattices, respectively (the latter were
obtained at IBM using HiLDA feature fusion). The performance of all algorithms is depicted in
Table 1. Notice that every fusion method considered outperformed audio-only ASR in the noisy
audio case. Furthermore, hierarchical discriminant feature fusion (HiLDA) and decision fusion
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by means of the multi-stream HMM with utterance-based stream exponents (MS-UTTER), as
well as by using the product HMM (MS-PROD), improved ASR in the clean audio condition
too. The latter achieved a 27% relative reduction in WER in the noisy audio case (from a 48.10%
audio-only WER to 35.21% audio-visual), whereas the MS-UTTER method outperformed all
fusion methods in clean speech achieving a 7% relative reduction in WER (from 14.44% to
13.47%). The DMC method was only applied to the clean speech case, and it reduced WER
to 12.95%, amounting to a 5% reduction from its clean audio-only baseline of 13.65% (this
was different from the 14.44% audio-only result due to the use of n-best list instead of lattice
rescoring). Overall, decision fusion methods outperformed feature fusion techniques. Further
investigation of exponent estimation of the state-synchronous and product multi-stream HMMs
is expected to yield additional improvements.

SUMMARY

We provided a summary of our work on speaker-independent audio-visual large-vocabulary,
continuous speech recognition, during the Johns Hopkins Summer 2000 Workshop. We studied
both image transform and model based visual features, as well as a number of feature fusion
and decision fusion techniques for audio-visual integration. In our particular implementation,
the DCT based visual front end outperformed the AAM one. Among the audio-visual fusion
techniques considered, hierarchical discriminant feature fusion, as well as decision fusion by
means of the product HMM with limited state asynchrony, or the state-synchronous multi-
stream HMM with utterance dependent audio-visual exponents, consistently improved recog-
nition performance for both clean and noisy audio conditions considered. This constitutes the
first time that such improvements have been obtained in the LVCSR domain.

ACKNOWLEDGMENTS

We would like to thank the entire audio-visual ASR research team at the Johns Hopkins
summer 2000 workshop for fruitful collaboration, as well as F. Jelinek (CLSP) for hosting the
workshop. Furthermore, we would like to acknowledge contributions to this work by G. Iyengar
and A.W. Senior (IBM) for help with face and mouth region detection for the IBM ViaVoiceTM

audio-visual data and by E. Helmuth (IBM) for help in data collection.

References
[1] Campbell, R., Dodd, B., and Burnham, D. eds.,Hearing by Eye II, Psychology Press, Hove, 1998.
[2] Hennecke, M.E., Stork, D.G., and Prasad, K.V., “Visionary speech: Looking ahead to practical

speechreading systems,” in Stork, D.G. and Hennecke, M.E. eds.,Speechreading by Humans and
Machines, Springer, Berlin, pp. 331–349, 1996.

[3] Dupont, S. and Luettin, J., “Audio-visual speech modeling for continuous speech recognition,”IEEE
Trans. Multimedia, vol. 2, pp. 141–151, 2000.

[4] Neti, C., Potamianos, G., Luettin, J., Matthews, I., Glotin, H., Vergyri, D., Sison, J., Mashari,
A., and Zhou, J., “Audio-visual speech recognition,”Final Workshop 2000 Report, Center for
Language and Speech Processing, The Johns Hopkins University, Baltimore, 2000 (http:
//www.clsp.jhu.edu/ws2000/final reports/avsr/ ).

[5] Potamianos, G., Verma, A., Neti, C., Iyengar, G., and Basu, S., “A cascade image transform for
speaker independent automatic speechreading,”Proc. ICME, vol. II, pp. 1097–1100, 2000.

[6] Matthews, I., Potamianos, G., Neti, C., and Luettin, J., “A comparison of model and transform-based
visual features for audio-visual LVCSR,” (In Press),Proc. ICME, 2001.

[7] Cootes, T.F., Edwards, G.J., and Taylor, T.J., “Active appearance models,”Proc. Europ. Conf. Comp.
Vision, pp. 484–498, 1998.

[8] Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., and Woodland, P.,The HTK Book.
Entropic Ltd., Cambridge, 1999.

[9] Bourlard, H. and Dupont, S., “A new ASR approach based on independent processing and recombi-
nation of partial frequency bands,”Proc. ICSLP, vol. 1, pp. 426–429, 1996.

[10] Berthommier, F. and Glotin, H., “A new SNR-feature mapping for robust multistream speech recog-
nition,” Proc. Int. Congress Phonetic Sciences, vol. 1, pp. 711–715, 1999.

[11] Beyerlein, P., “Discriminative model combination,”Proc. ICASSP, vol. 1, pp. 481–484, 1998.


