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Estimating Audience Engagement
to Predict Movie Ratings

Rajitha Navarathna, Peter Carr, Patrick Lucey and Iain Matthews

Abstract—While watching movies, audience members exhibit both subtle and coarse gestures (e.g., smiles, head-pose change,
fidgeting, stretching) which convey sentiment (i.e engaged or disengaged) during feature length movies. Noticing these behaviors using
computer vision systems is a very challenging problem — especially in a movie theatre environment. The environment is dark and
contains views of people at different scales and viewpoints. Feature length movies typically run 80 – 120 minutes, and tracking people
uninterrupted for this duration is still an unsolved problem. Facial expressions of audience members are subtle, short, and sparse;
making it difficult to detect and recognize activities. Finally, annotating audience sentiment at the frame-level is prohibitively time
consuming. To circumvent these issues, we use an infrared illuminated test-bed to obtain a visually uniform input of audiences
watching feature length movies. We present a method which can automatically detect the change in behavior (key-gestures) using
“key-frames”, which can convey audience sentiment. As the number of key-frames are many orders of magnitudes lower than the
number of frames, the annotation problem is reduced to assigning a sentiment label for each key-frame. Using these discovered
key-gestures, we create a movie rating classifier from crowd-sourced ratings and demonstrate its predictive capability. Our dataset
consists of over 50 hours of audience behavior collected across 237 subjects.

Index Terms—Audience, Behaviour, Engagement, Movie, Film.
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1 INTRODUCTION

C Rowd sourced reviews, such as Rotten Tomatoes, capture
the overall rating of a movie, but rarely contain detailed

information about specific scenes or moments. Measuring viewer
sentiment (i.e engaged or disengaged) for long continuous time-
series signals like movies is very useful for writers, directors,
marketers and advertisers. The de-facto standard for measuring
audience sentiment is via self-report [5]. Self-reporting is sub-
jective and does not provide feedback with precise time stamps.
Completing a report during the movie would require a person to
consciously think about and document what they are watching
and subjects may miss important parts of the movie. Although
wearable sensors that gather physiological data (e.g., heart-rate,
galvanic skin response [9], [16], [34], [42]) or continuous dial rat-
ings [3] could be used, such approaches are invasive and unnatural,
and may not be a good indicator of the actual rating. Vision-based
approaches are ideal as they can be done unobtrusively and allow
viewers to watch the stimuli uninhibited.

However, monitoring an audience in a movie theatre using
computer vision is difficult. The environment is dark, and light
spill from the screen causes drastic variations in illumination
conditions. Moreover, the physical configuration makes it difficult
to observe facial expressions on all audience members. To circum-
vent these issues, we created an infrared (IR) illuminated testbed.
We screened feature-length movies, and collected over 50 hours
of video footage across 237 subjects from 10 different movies.
We captured audience footage at 15 fps from an IR camera, two
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IR illuminators and a IR band-pass filter to give a uniform visual
signal (see Section 3 for more details).

Audiences responses can be quick and subtle (i.e., a smile
at a joke or jumping at a scary moment). Manually identifying
these events is prohibitive given the size of the dataset. As
audience members are often stationary for long periods of time,
the annotation of sentiment levels can be expedited by exploiting
the significant redundancy in the input signal. After collecting
the audience data, we identified key frames for each audience
member and then mapped each key frame to a sentiment label.
Recently Whitehill et al. [58] found that annotating engagement
level for static images is more reliable than watching the video
clip and continuously labeling engagement levels (in a classroom
environment). They observed that labeling the video clips at
normal viewing speed is difficult to execute in practice.

Using the labeled key frames and following a supervised learn-
ing approach, we present a framework which can automatically
predict audience sentiment levels. Using the audience engagement
levels, we predict movie ratings and demonstrate its predictive
capability compared to self-reports and our previous work [40]
(see Figure 1). Our results show that audience sentiment levels
are better for predicting movie ratings compared to self-reports.
Overall, we show that the proposed pipeline can be used to predict
movie ratings solely using audience behaviors, which is a potential
solution to the problems with current standard self-report measures
[46].

2 RELATED WORK

Having a large window of time to monitor human behavior in-
troduces a broad gamut of additional gestures/activities associated
with engagement or boredom - meaning that both coarse and fine
behaviors in the face (e.g., smiles/yawning vs head-pose change)
and body (e.g., fidgeting/doodling vs stretching) maybe indicators
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Fig. 1. (a) From a single video stream we capture the motion of all
audience members during a feature-length movie. (b) Based on facial
expressions and body motions, we then compactly represent each
person’s behavior as a series of key gestures, which are the distinct
changes in face expressions (left) and body motions (right). Once the
key gestures are determined, positive (green) and negative (red) senti-
ment is annotated for each key gesture. Using these sentiment levels,
we predict audience movie ratings and demonstrate how visual input
can be more informative than self-reports.

of engagement/disengagement [53]. In his book “In the Blink of
an Eye” [39], Walter Murch speculates that the engagement of an
audience can be measured through the synchronicity of motion.

Conventional methods of estimating the sentiment of an au-
dience member during long-term experiences such as movies,
stage drama-shows and TV shows are based on self-reports [5],
[46]. Similarly, subjects could be instrumented with a myriad of
wearable sensors, but such approaches are invasive and unnatural
which may not be a good indicator of the actual rating.

2.1 Sentiment Detection from Physiological Changes
Use of physiological signals provides continuous affective states.
These physiological changes can be used to measure the peripheral
nervous system functions such as electrodermal activity, heart
and blood circulation, skin conductivity, muscular activity, etc.
Work from Picard et al. [41] and Healey et al. [18] show that
certain affective states may be recognized using physiological
data. Levenson et al. [26] used three physiological signals namely;
heart rate, skin conductance, and finger temperature to measure
autonomic nervous system (ANS) patterns for emotions anger,
sadness, disgust and fear using subjects from America and the
West Sumatra. In terms of user experience for musical events
Vaitl et al. [52] found the ANS differentiation while subjects
were listening to Wagner operas during the Bayreuth Festival.
Electrodermal response and respiratory activity measurements
were used to analyze emotional arousal. Also, Krumhansl et

al. [25] recorded physiological data while listeners were hearing
music and analyzed them to find out what relationship existed
between the physiological measurements and the dynamic ratings
of emotions (i.e happy, sadness and fear). Authors found that
emotion state happy is linked to the largest changes in respiration
measure, changes in heart rate, blood pressure, and skin tempera-
ture associated for sadness and the rate of blood flow associated
with the emotion state fear.

Recently Kim et al. [24] investigated the potential of phys-
iological signals as reliable channels for emotion recognition
using a musical induction (i.e subjects are listening to music)
which spontaneously leads subjects to real emotional states. They
collected 360 samples (samples were between 3 – 5 min) from
three subjects using the Procomp Infinity which is an eight-
channel multi-modal Biofeedback system with 14-bit resolution
and a fiber optic cable connection to the computer. They measured
electromyogram (EMG), skin conductivity, electrocardiogram,
and respiration. Finally, they used multi-class classification using
an extended linear discriminant analysis to recognize musical
emotional states of subjects.

2.2 Engagement Analysis in Computer Vision

A survey of recent work in automatically measuring a person’s
behavior using vision-based approaches is presented in [60]. Much
of this work has centered on recognizing an individual’s facial
expression, with notable progress made in the areas of smile
detection in consumer electronics [57], pain detection [32] and
human-computer-interaction [54]. An emerging area of research
over the last couple of years is the use of affective computing
for marketing and advertising purposes. When users watch video
clips or listens to music, they may experience certain feelings and
emotions [24] that manifest through gestural and physiological
cues, such as laughter.

Shan et al. [47] studied the relationship between music features
and emotions from film music. In a recent study, Joho et al., [21]
showed that facial expression is a good feature to predict personal
highlights in media content. Hoque et al. [20] further showed that
these facial behaviors vary from the laboratory setting to real-
world. Teixerira et al. [51] demonstrated that joy (i.e., smiles)
was the most reliable emotion that accurately reflects the user’s
sentiments when analyzing the engagement with commercials.
McDuff et al. [36] utilized crowd-sourcing to collect responses
from people watching commercials and used smiles to gauge their
reaction. They extended this work to predict the effectiveness of
advertisements using smiles instead of “likes” [35]. Hernandez et
al. [19] used a similar approach to measure the engagement of a
single person watching a TV show. They mounted a camera on
top of a TV set and recorded the responses of 47 participants.
The Viola-Jones face detector [55] was used to locate the face,
and conducted classification into four states of engagement based
on facial movements. Recently, Whitehill et al. [58] used facial
expression to understand student engagement in a classroom
setting.

The above prior work was applied only to individuals and
limited to stimuli of short duration. In this work we include
simultaneous recordings of multiple individuals and continuous
tracking of audience behaviour over long periods of time (e.g., up
to 2 hours). Automatic long-term monitoring of human behavior
is difficult: tracking people for this period of time is still an
unsolved problem in computer vision. Additionally, being in a
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Fig. 2. (Left) Capturing video in a movie environment without IR illumination. (Middle) Example of the screening room with IR illuminators on –
reflectance from the screen is problematic. (Right) We used an IR band-pass filter to remove the illumination reflected from the screen to obtain a
uniform lighting environment.
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Fig. 3. A schematic of the audience testbed. We capture audience footage at 15 fps from an infrared camera, two IR illuminators and an IR
band-pass filter to give a uniform visual signal.

group environment introduces extra variability as behavior can be
altered by other audience members as well as by the stimuli.

2.3 Key Poses for Long-Term Signals
Discovering key frames or key poses of human behaviors has
been widely used in computer vision literature due to their
ability to compactly represent the feature space both spatially
and temporally. The simplest approach is to select key frames by
randomly or uniformly sampling the video frames at predefined
intervals [17]. Even though this method is very simple and fast,
the major drawback is it neglects the content of the video (i.e may
not have selected the correct dictionary for optimal compression).
Zhuang et al. [61] proposed an unsupervised clustering algorithm
to extract key frames using color features. Li et al. [28] propose an
algorithm based on color histograms to extract the key frames from
face videos. The more advanced approaches use motion patterns to
extract key frames [29], [59]. Liu et al. [29] used perceived motion
energy to model motion patterns and extracted key frames using
a threshold free approach. They defined key frames as the turning
point of the motion acceleration and motion deceleration. In [61]
authors computed the optical flow for each frame to measure the
motion and selected key frames at the local minima of motion.
However, calculating optical flow is computationally expensive,
which can make large-scale analysis time consuming.

3 DATASET

Observing people watching movies is difficult because the envi-
ronment is very dark, and light reflected from the screen creates
fluctuating illumination (see Figure 2). Wide aperture lenses and
sensor sensitivity are two important features when working in low-
light conditions. We instrumented a test-bed with an infra-red (IR)
sensitive low-light camera (Allied Vision GX 1920 with a 2/3”
Sony ICX674 CCD sensor and a f/1.4 9mm wide angle lens), two
IR illuminators (Bosch UFLED95-8BD AEGIS illuminators with
850 nm wavelength and 95 degree wide beam pattern), and an
IR band-pass filter to reduce reflections from the viewing screen
(850nm ± 5nm). The IR camera is able to see in dark without ef-
fecting viewing conditions and the band-pass filter removes visible
light reflected from the screen. The IR illuminators have 18 high
efficiency surface mounted LED arrays and can spread around 50
m distance. The resulting captured images are 1936×1456 pixels
captured at 15 frames per second. The schematic diagram of the
IR illuminated testbed is given in Figure 3.

3.1 Audience Footage

We selected movies from the Animation, Comedy, Kids & Family
genre to screen. From those movies from 1998 – 2013, we selected
a subset of ten movies (Table 1) with varying crowd sourced
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TABLE 1
An inventory showing the number of audience members, attributes, and

the Rotten Tomatoes rating per movie.

Movie Sessions Viewers Duration Rating
[min] [%]

M-01 3 25 103 87
M-02 3 25 81 53
M-03 3 25 96 72
M-04 3 27 101 89
M-05 3 24 96 87
M-06 3 22 83 47
M-07 3 25 87 35
M-08 3 23 93 76
M-09 3 22 86 43
M-10 3 19 88 62

audience ratings from [1]. We chose three good movies (ratings
greater than 80%), three average movies (ratings from 60% to
80%), and four bad movies (ratings below 60%).

We recruited participants to be part of an audience test screen-
ing ranging in size of 5-10 people (mean 8 people) for a session.
This work was approved by our Institutional Review Board, and
participants were compensated for their time. We screened the
movies from 6:00pm – 8:30pm and for each screening, ensured
participants had not seen the movie previously and had normal
or corrected-to-normal vision and hearing. We held three sessions
for each movie (total 30 sessions) and each subject could only
watch one movie. Our audience footage consists of 237 audience
members (125 male and 112 female). The participants ranged in
age from 18 to 70 and 63.3% were from 18 – 24 age group, 20.7%
were from age 25 – 30 age group, 6.8% were from age 31 – 39
age group, 5.1% were from age 40 – 59 age group and 4.1% were
from over 60 age group. The majority of the audience members
were Caucasian (49.4%) with the reminder Asian (27.0%), African
American (11.8 %) and Hispanic (11.8%). At the completion of
each session, every participant completed a survey asking about
their overall rating of the movie, as well as their age, gender,
movie genre preference, and expectation/recommendation of the
movie.

We used the same approach as [1] to generate aggregate ratings
from our individual survey responses: each audience member rated
the movie on a scale of 1 – 5 stars, and the aggregate rating for
the movie is the fraction of user ratings of 3.5 stars or higher. The
overall correlation of our audience responses to Rotten Tomatoes
users is 0.917 with p ≤ 0.001. For the majority of movies our
audience ratings were compatible with the Rotten Tomatoes users
except movies M-8 and M-10. Therefore, the ratings from our
sample audience are representatives of the general population. The
detailed comparison of movie ratings using the self-report method
from our audience members to the RottenTomato users for each
movie is given in Figure 4.

4 DISCOVERING AUDIENCE MEMBER KEY-
FRAMES

Talking to another person, checking phones/watches, smiling,
large body pose changes such as stretching arms and changing sit-
ting pose, eating and drinking, and falling asleep are key audience
behaviors widely found when people are watching movies. The
benefit of analyzing an audience environment is its low variance
in behaviors compared to “in-the-wild” conditions due to the
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Fig. 4. A bar chart comparing the ratings of our recruited audience to the
crowd-sourced ratings from rottentomatoes.com. M-1, M-4 and M-5 are
high rated movies, M-3, M-8 and M-10 are well rated movies, and M-2,
M-6, M-7 and M-9 are low rated movies from rottentomatoes.com.

many constraints that exists. Such constraints are: i) every person
shares the same input stimuli at the same time, ii) people tend
to be stationary and are sitting, and iii) due to proxemics each
persons tends to limit or maintain their personal space between
each person. As audiences tend to adhere to this principal, we pre-
defined an area of the camera’s image for each seat. From videos
cropped from these seat areas, we discover the key frames.

4.1 Per-Member Key Frame Dictionary
We follow an online learning approach to discover the audience
key frame dictionary, as it has the ability to dynamically adapt to
the incoming frames. Audience members do not move substan-
tially during the movie — they tend to stay within the confines
of their seat to maintain space between other audience members.
Following the methodology of [40], we use the first frame to define
a volume that the person will occupy.

Once we define a volume for each audience member, we
calculate the similarity using a template matching approach [27].
We used the first frame of each audience member as the first
template and calculate the similarity with the incoming frames
in the video. For a given audience member i we assume our
initial key frame is the first frame Ii,1 and update our key frame
dictionary for audience member i to di = {Ii,1}. Then we
calculate the similarity score αi,1 between frame Ii,1 and Ii,2.
If the value αi,1 is less than pre-define threshold β then we define
the frame Ii,2 as another key frame and update template dictionary
to di = {Ii,1, Ii,2}. We continue this process for each full-length
movie for each audience member, which results in a key per-movie
frame dictionary

Da = [d1, d2, · · · , dn] , (1)

where n is number of audience members watching the movie.
Once we identify these key frames, it allows us to quickly annotate
the interesting behaviors. As the number of key-frames are many
orders of magnitudes lower than the number of frames1, the
annotation problem is reduced to assigning a label for each key
frame from a small dictionary of activities which allows us to
estimate audience sentiment. We use the similarity threshold value
β = 0.7 as it shows a reasonable number of key frames and also
has the ability to discover both subtle and coarse face (e.g., smiles,
disgust, eye-closure vs head-pose change) and body (e.g., fidgeting

1. Due to the long length of input stimuli (approximately 1-2 hours per
movie), it is highly impractical and unscalable to get higher level of annotation
in every frame for each audience and it would be expected that the reliability
of annotation would greatly diminish due to the high level of subjectivity.
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Algorithm 1: Discovering audience key frames.

Data: Audience video or frames V = {I1, I2, · · · , In}
Result: Dictionary D with key frames
β ← Threshold ;
index← 1;
Dindex ← I1 ;
Initialize q← 0;
for i = 2 to n do

nD← length(D);
for j=1 to nD do

Template← Dj ;
Image← Ii;
Compute α between Ii and Dj ;
Add α to q;

end
a← maximum of q;
if a < β then

index← index+1;
Dindex ← Ii ;

end
empty q;

end
return D;

vs stretching) behaviors. An example of the relationship between
the threshold β and number of audience key frames is shown
in Figure 5. We discovered the interesting audience key frames
across all the 30 movie sessions in the collected audience dataset.
The break down of the proposed approach is given in Algorithm 1.

5 EXTRACTING AUDIENCE FEATURES

Whitehill [58] found that humans rely on head pose, and ele-
mentary facial actions like brow raise, eye closure, and upper lip
raise to make judgments of engagement. In audience domains,
visual components such as visibility of face, whether an audience
member is looking at the screen, large body motions, smiling,
yawning and sleeping may be indicative of engagement levels. In
this study, we extract visual features for body motion and face
expression, and investigate their predictive power.

5.1 Body Motion
In terms of recognizing individual and specific actions, there is
a plethora of research that has solely focused on this domain,
with excellent progress being made [2]. Efros et.al [14] used
optical flow features to recognize actions from ballet, soccer and

0 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0

5

10

15

20

25

30

Threshold (_ )

# 
of

 K
ey

 P
os

e 
Sa

ta
te

s

� = 0.7

�

Fig. 5. Variation in the number of audience key frames using different
thresholds β.

tennis. More recently, Rodriguez et.al [45] used similar features to
analyze crowds. However, we are not interested in the specific
actions of one person but instead the synchronicity of actions
(i.e., is everyone doing the same thing at the same time?). The
screening room environment introduced a natural spacing of audi-
ence members so each person could watch the movie unoccluded
and in comfort, resulting in each person occupying a minimum
uninterrupted 3D volume. We experimented with an aggregated
real-time approach to represent the spatio-temporal motion that
recursively integrates frame differences into a motion history
image [12]. We found that this representation is equally reliable in
audience environment to optical flow [30], but with substantially
less computational burden. This is done by layering the threshold
differences between consecutive frames one over the other. This
represents how much motion is present in the image as opposed to
magnitude and direction of the motion. A motion history image is
calculated as

Hγ(x, y, t) =

{
γ if D(x, y, t) = 1,
max(0, Hγ(x, y, t− 1)− 1) otherwise, (2)

where D(x, y, t) is a binary image sequence indicating regions
of motion at pixel (x, y) at time t, and the parameter γ is
the temporal duration of the motion history images. We then
calculate the normalized local 3D energy for person q as e(q, t) =
1
Nq

∑
Hγ(x, y, t) where Nq is the size of the predefined volume.

5.2 Face attributes
Faces provide useful information such as gaze angle (e.g. is the
person looking at the screen) and expression (smiling, yawning
and sleeping). These attributes are strong cues for estimating
engagement level (i.e the person is engaged or disengaged with
the movie). To extract these attributes from each audience face,
the first task is to register the location of the face of a given
audience member.

5.2.1 Face Detection
Despite an audience member remaining relatively stationary whilst
watching a movie, continuous face detection/tracking is challeng-
ing because there are considerable appearance changes due to
out-of-plane head motion or self-occlusion (e.g., hands on the
face). While face tracking is a mature area of research, most of
the previous work has only looked at videos of small periods of
time (i.e., up to one minute). The intuitive method of registering
each audience member would be to use an off-the-shelf face-
detector/template update approaches [4], [22], [33] on each frame
and then track each detection. This approach works well in ideal
conditions but not so well in our test-bed because we are capturing
faces from a different viewpoint (i.e., camera is looking down on
the audience), we are operating in the infrared spectrum, and the
resolution of faces can be small [40].

Recently, King et al. [11] proposed a method known as Max-
Margin Object Detection (MMOD), which optimizes over all sub-
windows to detect objects in images. This approach learns a
Histogram of Oriented Gradients (HoG) [10] template on training
images using structural support vector machines which enables it
to train on all the sub-windows in every training image (efficiently
finding the ‘hard negatives’ automatically). This approach works
well for a fixed environment as the detector is discriminative. As
we are operating in a fixed IR spectrum, we use such an MMOD
implementation to train models and detect faces. The face detector
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was trained on labeled faces in our audience dataset. In particular,
we trained a HOG face detector using about 800 images. We use
the DLib C++ Library2 to train an environment specific face model
and then to detect audience faces the entire dataset. We found this
implementation runs at 4 – 6 frames per seconds. On a validation
set of 10000 images, the precision and recall values are 99.5% and
94.2% . The missed faces were manually cropped for analysis and
all face images were normalized into 48× 32 image patches.

5.2.2 Gaze Angle
Head pose of an audience member (i.e frontal/near frontal, looking
away from the screen and looking down), while watching the
movie provides useful information since the head pose usually
indicates the focus of attention. To create a focus of attention,
calculating the head pose is crucial since it usually coincides with
the gaze direction [7].

A plethora of work has been conducted to estimate the head
pose estimation based on appearance-based and model-based ap-
proaches. Appearance-based methods [38], [44], [50] concentrate
on face detection and consider the pose estimation problem as a
classification problem using pre-defined head orientation classes.
These approaches are quite efficient in terms of computation time,
but do not estimate all three rotation angles (i.e roll, pitch and
yaw). Model-based methods use a geometric model of the face
to estimate the head pose. Stiefelhagen et al. [49] and Gee et
al. [15] extract a set of facial features and map the features onto
the 3D model using perspective projection, while Dornaika et
al. [13] apply an active appearance model and use the contours
and features of the face to estimate the head poses. In this work,
we use such an approach to calculate the rotation matrix of a given
audience member.

For each detected face, we use the DLib 68 landmark shape
model to generate face landmark locations [23]. Then we associate
the 68 fitted 2D face landmark locations to a 3D face mesh from
Face Warehouse [8] to calculate the 3D rotation matrix R to
estimate the roll, pitch and yaw of the audience member (fangle).

5.2.3 Visual Expressions
Humans use facial expressions such as smiling/laughter, yawning
and sleeping as very strong cues to understand if an audience
member is in engaged or disengaged. In terms of understanding
these behaviors automatically, concatenating of filter responses
before learning a classifier has found particular success in facial
expression recognition [6] compared to learning those classifiers
with appearance intensities. We designed such an approach by
calculating HOG features [10] from the given face image. Our
visual expression feature fhog consists of representing the input
face image via HOG descriptor using 9 orientation bins with
overlapping regions with block size of 2×2, and cell size of 8×8.

A summary of the features is given in Table 2.

6 ESTIMATING AUDIENCE ENGAGEMENT

The visual appearance of an audience member may give an
indication of how engaged or disengaged they are during various
segments of the movie. The problem of defining or learning affec-
tive states such as disengagement and engagement is difficult [43]
compared to facial expression recognition such as happy, sad,
angry, or surprised [31]. Devising an adequately clear definition

2. http://dlib.net/

TABLE 2
Description of the features

Feature Description

fangle Visual focus for movie screen
fhog Facial expressions
xface Face features: visual focus + facial expressions
bw Body motion feature
xfacebody Combination of face and body features

(a)

(b)

Fig. 6. Sample of audience behavior for (a) engaged and (c) disengaged.

of labeling procedure is important for the reliability and validity
of the training labels. Recently Whitehill et al. [58] found that
viewing static images and labeling engagement levels is a more
reliable solution than watching the video clip and continuously
labeling engagement levels in a classroom student engagement
setting. Motivated by this approach, we organized a team of three
annotators to label the key frames. These annotators viewed each
key frame and labeled each frame as either engaged or disengaged.
Annotators were instructed to annotate key frames according to
how engaged does the subject appear to be rather than predict
what they were actually thinking. Specific instructions to the
annotators were:

• Engaged: The audience member’s main focus is on the
screen. Visual components such as facial expressions (
smiles/laughter) and leaning forward can be identified as
key attributes. Additionally, audience members that look
relaxed and have no expression can still be highly engaged.

• Disengaged: The audience member’s focus is not on
the movie screen. Visual components such as: looking
away from the screen, looking at his/her phone/watch,
eating/drinking, sleeping, large-body motions/doodling,
yawning can be identified as disengaged attributes.

Visual examples are given in Figure 6.
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Face attributes

Body attributes

• Visual focus
• Visual expression

• Body motion

Face+ Body

Face only

Body only

Engagement classification

Fig. 7. The proposed engagement pipeline consists of first capturing both face and body key frames. Face attributes consist of (i) visual focus
(looking at the screen) or expressions such as smiling, yawning and sleeping. Body attributes consist of stretching or fidgeting. The final sentiment
score is estimated using face only, body only and a combination of face and body features.
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Fig. 8. (a) Model complexity using the HOG features. (b) The variation of test error with the number of trees.

6.1 Discovery of Engagement Levels using Human La-
bels
Across our audience data set we discovered 10787 key frames. The
discovered key frames are many orders of magnitudes lower than
the number of frames. The discovered key frames were consistent
with visual components such as visibility of face, view of the face
(i.e frontal or near frontal, looking away, looking down, occluded),
larger body motions, smiling, yawning, sleeping (or eye closure)
and eating/drinking.

The key frames were shuffled both in time and across subjects.
Human observers labeled these key frames for the appearance
of engagement, as described in Section 6. Among these three
annotators, Fleiss’ Kappa value was 0.59, and the average pairwise
observed agreement was 0.812 (with an expected agreement of
0.542). All annotators fully agreed for 7741 key frames (i.e ≈
72% of the data). Among these fully agreed key frames there are
5403 engaged key frames and 2338 disengaged key frames.

7 LEARNING

We focus our study of automatic engagement classification based
on the features in Section 5. Our focus is not only to understand
how predictive each feature type is for engagement classification
but also to asses these state-of-the-art computer vision architec-
tures for a novel application. We propose an automatic engagement
classification pipeline using (a) face features only and (b) motion
features only and (c) a combination of face and motion features.
The propose pipeline is given in Figure 7.

We conducted our experiments using the key frames that all
annotators were in agreement over. We divided these key frames
into 5 different groups. We conducted 5-fold cross-validation using

these groups. We trained a binary random forest classifier. The
experiments were conducted using the feature types shown in
Table 2. The main interest to perform individual experiments using
each attribute is to discover how well each attribute can distinguish
engagement levels.

7.1 Model Complexity
To understand the model complexity of the random forest for the
task of engagement classification, initially we extracted different
features as shown in Table 2 namely : a) motion, b) gaze c) face
HOG, d) (gaze + HOG) and e) motion + gaze + HOG. Then we
conduct binary engagement classification experiments to see the
model complexity using HOG features for given number of trees
(see Figure 8 (a)). We also extended the experiments using the
other four features and the variation of error with the number of
trees is given in Figure 8 (b). The performance of the test error
after 100 trees has no significant difference. We also tested the
variation of error with different tree depths. In all cases, we set the
number of trees to 100. The variation of error with the depth of
the trees is shown in Figure 9.

8 ESTIMATING AUDIENCE MEMBER ENGAGEMENT

In this section we describe the engagement classification accuracy
using the proposed pipeline: (a) face features only, (b) motion
features only, and (c) combination of face and motion features.

8.1 Only Body Motion Features
We calculated the motion history images as descried in Sec-
tion 5.1. We calculate the motion magnitudes for each audi-
ence member and normalized and scaled according to the image
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Fig. 9. Model complexity with the variation of tree depth.

TABLE 3
Engagement classification accuracy

Feature Type Average Accuracy (Test)

Body bw 0.5886 ±0.05

Face
fangle 0.7914 ±0.03
fHog 0.8412 ±0.04
xface 0.8532 ±0.04

Face + Body xfacebody 0.8582 ±0.07

window size. We obtain motion feature bw for each key frame
and conducted 5 fold-cross validation engagement classification
experiments. The average accuracy using the motion feature is
0.5866±0.05. The average accuracy with±2σ is given in Table 3.

8.2 Only Facial Features

8.2.1 Pose Angle: fangle
Feature fangle consist of yaw, roll and pitch angle from each face
in key-frames. The average engagement classification accuracy is
0.7973±0.03.

8.2.2 Visual Appearance: fhog
In terms of understanding facial expression individually, the most
common approach is a concatenation of filter responses, before
learning a classifier. Instead of maximizing the likelihood for rec-
ognizing facial expressions such as smiling, yawning and sleeping;
we maximize the likelihood for engagement. As described in the
Section 5.2, we extracted HOG features fhog (756 in dimensions)
and used engagement labels to learn a classifier. The accuracy was
0.8412, which is higher than both body motion and gaze angle.

8.2.3 Face Feature: xface
Finally, we combined the pose angle feature fangle and HoG
features from the face fhog to obtain the final face feature vector
such that xface =

[
fangle fhog

]
with a dimension of 759.

We achieved best accuracy with the combination of these two
attributes with a average of 0.8532 over the 5 folds.

8.3 Body Motion and Facial Features

Finally we combined the face features xface and motion feature
bw to obtain the final face & gesture vector xfacebody =[
xface bw

]
which is 760 dimensions. Across all the 5-folds,

we found that adding face features improves the engagement

TABLE 4
McNemar’s test values.

Classifiers McNemar’s test χ2

Motion vs HOG 334.89
Gaze vs HOG 54.23

(Gaze + HOG) vs HOG 5.32
(Motion + Gaze + HOG) vs HOG 14.49

classification accuracy. Overall average engagement accuracy is
given in Table 3 and confusion matrices are shown in Figure 10.

As shown in Figure 10, the combination of face and body
features improved the diagonal values compared to all the other
feature representations. The overall accuracy for this configuration
with xfacebody is 0.8582±0.07. We observed that adding motion
features combined with the face features helped to distinguish
more disengaged behaviors. The results suggest that the proposed
framework can be used to distinguish extreme sentiment states
very well in an audience environment. The finding may be appli-
cable to other domains such as educational, behavioral science and
entertainment.

8.4 Significance of Features

As shown in Table 3 the engagement classification performance
of the features clearly shows (motion + HOG + gaze) > (HOG
+ gaze) > HOG > gaze > motion. To see whether the perfor-
mance is statistically significant, we tested the classifiers using
McNemar’s test [37].

McNemar’s test values are given in Table 4. The cut off for
the χ2 test value at 99% is 6.635 (i.e p value is p < 0.01).
From our analysis, we observe that HOG features have significant
improvement over motion only, and gaze only. Combining gaze +
HoG is not significant, but the combination of all three features
(HOG + Gaze + Motion) is.

9 PREDICTING MOVIE RATINGS

Finally, we investigated the effect of our engagement analysis
framework to the task of movie prediction. To gauge how much
the general public likes a particular movie, rottentomatoes.com
has an interactive feature that allows people to submit a rating.
Over time the number of ratings aggregate (100k’s) and based on
these crowd-sourced ratings, they generate an average audience
measure. In rottentomatoes.com, a movie with an average audience
measure of 60% or higher is deemed a good movie and below 60%
denotes a bad movie.

9.1 Audience Feature Representation

9.1.1 Body Motion
In previous work, we used the synchronicity of body motion to
predict movie ratings. Specifically, we compared body motion
features fi,t and fj,t of two audience members concatenated over
a temporal window t, and calculated the pairwise similarity

sij,t = exp

(− ‖ fi,t − fj,t ‖2

2σ2

)
, (3)

where σ = 0.5. We then exhaustively calculated all of the pairwise
correlations between audience members to produce the collection
St of similarity scores sij,t. When everyone is doing something
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Fig. 10. Confusion matrices using body and face features: (a) bw, (b) fangle, (c) xface and (d)xfacebody . The terms: A engage and B disengage
classes.

at the same time (e.g., laughing/smiling) the cohesion is high;
similarly, when everyone is doing nothing, the audience cohesion
is still high. Given the collection of similarity scores for a given
temporal window t, we generate a probability distribution p(sij,t),
allowing us to gauge the synchronicity of the audience reaction for
the given time window t using entropy [48]

Xbody
t =

∑
ij

p(sij,t) log p(sij,t). (4)

9.1.2 Engagement Level
Alternatively, we use the combination of face and body features
to predict an engagement score for each audience member ei,t
over time3. For a given time window t, we compute the average
audience engagement

Xengaged
t =

1

N

N∑
n=1

ei,n. (5)

9.2 Temporal Aggregation
The instantaneous state Xt of the audience is measured from
multiple frames of data collected over the time window t (using
either body motion or predictions of engagement). Because movies
have different temporal durations, we sample feature data from
the first, middle and last 30 minutes of the movie to create a fixed
length feature vector regardless of the duration of a movie.

In order to determine the optimal temporal window size over
which to compute audience state using either entropy (body
motion) or average (engagement level), we selected different
window sizes from 10s – 150s. For each window size, we created
corresponding feature vectors X for the first, middle and last 30
minutes of the movie by concatenating the feature representation
Xt for each temporal window. We validate our framework using
leave-one-out cross-validation experiments leaving out an entire
movie. The parameters for support vector regression were chosen
using a cross-validation method as described in [56]. The average
mean squared validation error with different window sizes is
given in Figure 11. A 30s window generally produces the lowest
prediction error for every segment of the movie.

9.3 Audience Ratings Prediction
As movies are variable length, we extracted features for (a) audi-
ence body motion and (b) audience engagement levels methods in

3. For simplicity, we assume an audience member has the same engagement
score from one key frame to the next key frame.
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Fig. 11. Variation of average RMSE with respect to different temporal
window sizes using the interesting segments of the movie.

Section 9.1 using first, middle and last 30 minutes of the movies to
create a fixed length feature representation. We used these features
and Rotten Tomatoes ratings (see Table 1) to predict the audience
rating for an unseen movie. The full comparison of prediction
error for all the movies from (a) audience body motion and (b)
audience engagement levels is given in Table 5. In addition to
the proposed method, we also report the error from the audience
survey responses. The average prediction error from (i) audience
body motion, (ii) engagement levels and (iii) survey responses
are 19.8, 12.6 and 14.2 respectively. The results imply that our
engagement pipeline can generate very good predictions of overall
audience enjoyment of a movie — even outperforming predictions
based on audience responses to exit surveys.

10 CONCLUSIONS
In this paper, we present a framework to estimate the engagement
of audience members and to predict movie ratings, based on
face expressions and body motions. The problem is challenging
because: i) the movie viewing environment is dark and contains
views of people at different scales and viewpoints, ii) the duration
of feature-length movies is long (80-120 mins) and tracking people
uninterrupted for this length of time is difficult, iii) expressions
and motions of audience members are subtle, short and sparse
making labeling of activities unreliable, and iv) annotating the
sentiment at the frame-level is prohibitive. To circumvent these
issues, we use an infrared illuminated testbed to obtain a visually
uniform input video. Due to the enormous amount of video data
to process, we first discovered the key frames within a pre-
defined image region for each audience member. We extracted
face and body features for each key frame and learned classifiers to
estimate whether a key frame represents an engaged or disengaged
behavior.
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TABLE 5
The prediction error of our automatic audience rating approaches compared to the crowd-sourced ones from rottentomatoes.com.

Movie Rotten Tomatoes Prediction Error
Rating Survey Model Motion Model Engagement Model

M-01 87 5.0 26.0 4.5
M-02 53 16.0 12.2 13.1
M-03 72 6.0 16.0 1.5
M-04 89 8.0 26.4 17.2
M-05 87 6.0 20.7 5.6
M-06 47 29.0 14.8 5.6
M-07 35 31.0 30.0 20.2
M-08 76 10.0 11.7 22.0
M-09 43 12.0 32.5 17.4
M-10 62 19.0 7.8 20.0

Average - 14.2 19.8 12.6

In addition to the proposed audience engagement level ar-
chitecture, we also proposed an automatic approach to predict
movie ratings solely using audience behaviors. We showed that
audience sentiment levels can be more predictive of overall movie
rating than self-report measurements. We tested the utility of our
approach using 30 movie sessions across more than 200 subjects
(< 50 hours of video data).
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