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ABSTRACT

Realistic animation is crucial for immersive and seamless human-
avatar interactions as digital avatars become more prevalent. This
work presents PhISANet, an encoder-decoder model that realisti-
cally animates the face and tongue solely from speech. PhISANet
leverages neural audio representations trained on vast amounts of
speech to map the speech signal into animation parameters that con-
trol the lower face and tongue of realistic 3D models. By integrat-
ing a novel multi-task learning strategy during the training phase,
PhISANet reincorporates the phonetic information from the input
speech, improving articulation in the generated animations. A thor-
ough quantitative and qualitative study validates this improvement,
and it determines that WavLM and Whisper features are ideal for
training a generalizable speech-animation model regardless of gen-
der, age, and language.

Index Terms— Speech Animation, Multi-task Learning, CTC,
Tongue, EMA

1. INTRODUCTION

Animating realistic-looking digital avatars has become an important
task due to its wide range of applications in entertainment, produc-
tivity, and healthcare, to mention a few. The filmmaking and video
game industry highly benefits from lifelike 3D characters that speak
naturally for a more immersive experience. The recent development
of large language models and the outstanding results of automatic
speech recognition, speech-to-text, and 3D graphics are fuelling the
research in interactive agents. Hence, it is important to generate ani-
mations in an automated way that look as natural as possible to avoid
any disruption to the user interaction. In the healthcare sector, a
group of researchers has provided a voice to a patient with apha-
sia through a MetaHuman [1] 3D character driven by audio gener-
ated from estimating a sequence of phonemes from brain signals [2].
Generating a natural articulation animation of these characters could
improve how patients with similar pathologies communicate.

In this paper, we introduce PhISANet, a solution that ani-
mates the face and tongue of a 3D character from speech audio
input, allowing us to efficiently generate realistic speech anima-
tion. PhISANet is a PHonetically Informed Speech Animation
encoder-decoder Network trained on high-quality articulation data.
It uses a pre-trained audio encoder together with an animation de-
coder to generate animations that generalize across gender, age,
and language. We additionally introduce a novel multi-task learn-
ing framework that uses a Connectionist Temporal Classification
(CTC) [3] auxiliary task to provide a phone alignment constraint.

The main contributions of this work are as follows: (1) We
present PhISANet, an end-to-end model that fully animates the

lower face, including the jaw and tongue, on a frame-by-frame ba-
sis with temporal consistency solely from speech signal. (2) We
introduce the use of WavLM and Whisper audio features into the
speech-to-animation field of study. (3) We introduce the regulariza-
tion of a speech-animation model through multi-task learning with a
CTC task, which we demonstrate improves the generated animations
through a quantitative and qualitative analysis.

2. RELATED WORK

Parke introduced the first parametric face model [4], which was
animated by keyframing particular poses in accordance with the
phonemes [5]. The clustering of phonemes based on their visual
similarity was later termed ”visemes” [6]. Over the years, several
studies have built upon this foundational work, focusing on animat-
ing 3D models using visemes via procedural methods [7]. However,
one limitation of these rule-based methods is their demand for ex-
tensive manual intervention. This methodology requires meticulous
rule design to yield desired outcomes, notably evident in the JALI
framework [8].

To overcome these problems, the research community explored
deep learning-based solutions like those introduced by Zhou et
al. [9] with VisemeNet, which learns to produce animation curves
from JALI-generated data. Taylor et al. [10] directly learns coartic-
ulation motions from data based on an Active Appearance Model.
Richard et al. [11] presented MeshTalk to learn a categorical la-
tent space of facial animations from 4D scan data and disentangle
audio correlated and non-correlated face motions. Fan et al. [12]
introduced the Transformer architecture to speech animation as an
autoregressive model through Faceformer. Furthermore, Xing et
al. [13] proposed the CodeTalker model, which maps audio input
to facial motions through a self-reconstruction method that consists
of learning a codebook in tandem with a decoder to capture realis-
tic facial motion priors. While these models represent significant
advancements, a limitation is their constrained generalization due
to the targeted face parametric model. In contrast, our solution is
compatible with the MetaHuman rig model [1], enabling the seam-
less transfer of animations between different MetaHuman-based
character models.

Deep learning has also benefited other research areas, such
as automatic speech recognition (ASR). A common practice to im-
prove the performance of ASR models is through multi-task learning
(MTL) by adding an auxiliary task handled by a CTC. For instance,
Kim et al. [14] introduced a joint CTC attention-based end-to-end
ASR system that utilized multi-task learning for sequence labeling
and output sequence prediction, thereby significantly enhancing sys-
tem performance. Heba et al. [15] addressed character-level speech
recognition through multi-task learning, employing Consonant-



Vowel (CV) recognition as an auxiliary task via CTC. Moreover,
Chen et al. [16] improved multilingual ASR by incorporating hier-
archical CTC objectives into an encoder-decoder model, postulating
that language identification assists model convergence. Inspired by
this work, we explored the introduction of a CTC into an end-to-
end model designed to predict a sequence of animation parameters
from a speech signal by incorporating the phonetic information into
the training of the model through an MTL CTC, which aligns the
corresponding phones of the speech signal.

In this work, we also examine the efficacy of pre-trained audio
representation models in the development of generalizable speech-
to-animation frameworks. Building upon the findings of Medina et
al.[17], the investigation reveals that training a speech animation de-
coder on features derived from the Wav2Vec audio encoder yields
robust generalized performance, even when exclusively trained on a
single actor. Wav2Vec, a causal self-supervised convolutional net-
work tailored for general speech audio representation, is compared
against WavLM and Whisper audio encoders in terms of speech an-
imation regressions. WavLM[18], designed within the principles of
HuBERT [19] and Wav2Vec 2.0 [20], integrates masked speech pre-
diction as a denoising component within a Transformer-based archi-
tecture. WavLM outperforms contemporary models in the SUPERB
challenge [21]. Whisper [22], trained on an extensive dataset com-
prising 680,000 hours of undisclosed multilingual audio sources,
shares an architectural resemblance with WavLM and employs an
end-to-end encoder-decoder Transformer framework. Despite lack-
ing specific fine-tuning for any particular dataset, Whisper demon-
strates remarkable robustness in zero-shot scenarios across various
tasks.

3. DATA

We build upon the IMT’22 dataset introduced by [17], which cap-
tures the tongue, lips, and jaw motion through an electromagnetic ar-
ticulography (EMA) device from a single English actor. This dataset
consists of synchronized speech at 16 kHz, transcripts, and 3D land-
marks from 10 EMA sensors, three on the lips, two on the jaw, and
five on the tongue. In this work, we add the rotation of the EMA
sensors and track 51 facial dots along with 17 lip contour landmarks
from the multi-view videos captured during the same session with
an industrial-grade visual tracker [23]. The 3D facial landmarks are
obtained using a stereo reconstruction of the 2D landmarks [24].
The landmarks are mapped into the 3D target head mesh space us-
ing a similarity transformation, and we subsequently fit the mesh to
our data (EMA + landmarks) on a frame-by-frame basis, adopting
the method from [17] using an L-BFGS optimizer [25]. Lip con-
tours are integrated into the optimizer as 2D constraints, as the re-
constructed depth was unreliable due to the difficulties in placing
these landmarks consistently across views.

The target head mesh was created from a high-quality 3D cap-
ture of the actor and it is controlled by 173 rig parameters, as outlined
by the Epic Games MetaHuman model [1]. Given our emphasis on
producing realistic coarticulation animations, we narrowed our focus
to 67 parameters controlling only the lower face and inner mouth. A
significant benefit of the MetaHuman model is its ability to trans-
fer predicted motions to other MetaHuman characters, making our
solution well-suited for practical, industrial applications.

To train the phone CTC, we extract the allophones from the au-
dio samples with their corresponding transcripts using the Montreal
Forced Aligner [26]. Our dataset revealed a total of 88 allophones,
including the silence token.

Our enhanced dataset encompasses 1700 samples, equivalent to

Speech
Signal

Audio
Encoder

Decoder

R

L

Rig Parameter
Sequence

"ICASSP"

Phone
Sequence

"aɪ̯kæsp"CTC

ENC

Animation
Regressor

CTC
Sequence
Regressor

q
x

y

p

z

DEC
 π 

Fig. 1: PhISANet is an encoder-decoder model that is trained
through multi-task learning with a phone CTC task to predict a se-
quence of rig parameters from an arbitrary speech signal.

2.28 hours of audio, each paired with sequences of 67-D rig param-
eters at 50 FPS to train our model and their corresponding times-
tamped phone sequences.

4. MODEL

PhISANet is an encoder-decoder model that aims to generate 3D
speech animations given a speech signal through a multi-task learn-
ing approach. Inspired by how ASR has improved by adopting a
multi-task learning CTC [14, 15, 16] strategy while training, we seek
to explore its effect on the speech animation task by introducing an
auxiliary phone CTC task during training.

The PhISANet model architecture is shown in Figure 1. It con-
siders an audio signal x = [x1, ..., xT ] to be mapped into a latent
space z = [z1, ..., zT ] through a pre-trained audio encoder ENC,
where T is the number of frames in the output sequence, xt is the
corresponding audio window for frame t and zt is the corresponding
audio embedding. Then z is mapped by a decoder DEC into a shared
space q = [q1, ..., qT ] which serves as input to the animation regres-
sor R to predict the sequence of rig parameters y = [y1, ..., yT ], and
also as input to the CTC Sequence Regressor L whose output serves
a CTC to align the audio’s corresponding phones p = [p1, ..., pS ]
with a sequence length S ≤ T .

We trained the model with a weighted loss described in Eq. 1,
which consists of a reconstruction term based on the MSE of the
rig parameters Lrec, a velocity term Lvel =

1
|T |

∑T−1
t=1 (v̂t − vt)

2 of
the rig parameters in contiguous timesteps vt = yt+1 − yt and an
acceleration term Laccel =

1
|T |

∑T−2
t=1 (ât − at)

2 as the difference of
velocities in contiguous timesteps at = vt+1 − vt. Each loss term is
weighted through an independent λ(.) coefficient.

L = Lrec + λvelLvel + λaccelLaccel + λCTCLCTC (1)

To compute the multi-task CTC loss LCTC, the decoder features q
are linearly mapped by L into phone probability representations
P (π|q) = Softmax(L(q)), where an alignment sequence π allows
repetitions of the phones found in our dataset plus blank symbols
{−}. Through training the CTC branch, we seek to maximize
the probability distribution over all possible alignment sequences
π ∈ Ψ(p) as described in Eq. 2. The CTC loss is the negative
log-likelihood of such a probability as described in Eq. 3.

P (p|q) =
∑

π∈Ψ(p)

P (π|q) (2)

LCTC
def
= − lnP (p|q) (3)



5. EXPERIMENTS AND RESULTS

We compare PhiSANet with an equivalent baseline model trained
without the CTC task by removing the CTC term in Eq.1. We
additionally seek to determine which pre-trained model between
Wav2Vec, WavLM, and Whisper functions as the best audio encoder
within PhiSANet. No fine-tuning is applied to the audio encoders.

Our model is trained to generate animation at 50 FPS, which
matches the sampling rate of WavLM and Whisper. For the
Wav2Vec Large model output, the features are subsampled from
100 FPS by concatenating the embeddings from two contiguous
audio frames as instructed in [17]. We further select the WavLM
Large and the Whisper Medium models as the number of parameters
is similar between these models.

The decoder in all experiments is formed by a 5-layered bidirec-
tional GRU [27] with 1,024 hidden units, whose output is linearly
projected into the 67-D rig parameter space for all the baseline mod-
els. For the CTC models, we added to the baseline model a two-layer
MLP as the CTC Sequence Regressor with a 512-D hidden size. The
batch size is set to 32 and the learning rate to 5 × 10−6, and the
maximum number of epochs is limited to 100. The RAdam opti-
mizer [28] is employed during training and an early stop strategy is
applied at ten epochs. A grid search determined the best coefficients
to be λvel = 0.5, λaccel = 0.7, and λCTC = 0.008.

The data was split in an 80/20 fashion for the training and test
sets. The training samples were subsampled from the original data
through overlapping windows of 45 audio frames (900 ms) and a
stride of 1 frame (20 ms). The output is subjected to min-max nor-
malization, as the MetaHuman rig parameters ranges are either [0, 1]
and [−1, 1]. For the linear layers and MLPs within the architecture,
a consistent dropout rate of 0.1 is applied.

The performance of the models is evaluated through the mean
temporal vertex error (MTVE) (Eq.4) of the animated facial mesh.
The MTVE is computed across all the 3D vertices of the lower face,
including those in the inner mouth, and also over the isolated sub-
regions of the lips and tongue to gain a deeper understanding of the
model’s behavior.

MTVE =
1

N

N∑
i=1

1

Ti

Ti∑
t=1

1

K

K∑
k=1

(ûitk − uitk)
2 , (4)

where uitk represents the kth ground truth 3D vertex of the j-th
timestep in the ith sample, while ûitk denotes the vertex correspond-
ing to the prediction of the model being evaluated. Furthermore, N
indicates the total number of samples in the test set. Ti is the num-
ber of frames of the ith sample, and K corresponds to the number
of vertices to be evaluated.

5.1. Quantitative Results

Our findings are summarized in Table 1. We observe that utilizing
multi-task learning CTC for phone alignment significantly reduces
the MTVE in the generated animations across all audio encoders,
maintaining the integrity of the lips and tongue regions. To validate
these outcomes, we conducted a pairwise t-test of the MTVE per test
sample, comparing the baselines of each audio encoder with their
CTC variant, yielding a significant p < 10−5. Notably, the model
with the best performance employed the WavLM for audio encoding
and was trained using a phone CTC. Figure 2 shows a vertex-level
visualization of MTVE for models using WavLM audio representa-
tions, highlighting the benefits of integrating phonetic data into the
network. Improvements are evident on the lower lip and its sur-
rounding area, and the region surrounding the tongue tip.

Table 1: Effect of different encoder-decoder combinations on Lower
Face, Tongue, and Lip MTVE. The WavLM encoder with the
GRU+CTC decoder yielded the lowest MTVE.

Encoder Decoder MTVE Tongue MTVE Lips MTVE

Wav2Vec GRU 0.072± 0.014 0.180± 0.036 0.164± 0.036
GRU+CTC 0.070± 0.014 0.173± 0.033 0.160± 0.037
p-value 3 .48 × 10−6 9 .505 × 10−18 5 .745 × 10−6

WavLM GRU 0.076± 0.013 0.166± 0.034 0.175± 0.035
GRU+CTC 0.068± 0.014 0.160± 0.030 0.157± 0.035
p-value 1 .426 × 10−52 9 .729 × 10−18 1 .628 × 10−45

Whisper GRU 0.077± 0.015 0.190± 0.034 0.173± 0.034
GRU+CTC 0.075± 0.015 0.172± 0.031 0.168± 0.036
p-value 3 .679 × 10−11 1 .159 × 10−57 1 .753 × 10−6
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Fig. 2: Visualization of the MTVE for the WavLM-based model
showing how incorporating a CTC multi-task learning strategy to
align phones reduces the overall error of the face, lips, and tongue.

5.2. Qualitative Results

Visual representations of the study’s findings are accessible via the
project’s website1. Upon examining the animations produced by the
proposed models, it was observed that the tongue’s behavior aligns
with theoretical expectations: during the articulation of open vow-
els, it is positioned on the floor of the mouth, and for dental conso-
nants, it is located between the anterior teeth. A comparative analy-
sis of the leading models across different audio encodings indicated
that the animations derived from in-domain samples maintained a
consistent level of plausibility. Notably, the model incorporating
WavLM encoding with an MTL phone CTC demonstrated superior
performance, as evidenced in a silence audio sample. Moreover, the
methodology displayed generalization capabilities as it could ani-
mate female voices and articulations in languages such as German,
Spanish, Japanese, and Mandarin despite the absence of these voices
in the training data.

6. USER STUDIES

Since the ultimate goal of our work is to create animations that are
perceived as realistic by humans, evaluating the model through a
human perception study is an essential step. We conducted three
user studies to evaluate our proposed models’ effectiveness. Firstly,
we compared the animations generated by the highest-performing
model per audio encoder against its ground truth counterpart. Then,

1https://github.com/salmedina/PhISANet

https://github.com/salmedina/PhISANet


Table 2: User study results from comparing ground-truth vs. MTL
CTC models with different audio features.

Comparison Audio Encoder Preference Rating

1 Ground truth 55.6 4.03±0.78
None 6.7 2.58±1.38
Wav2Vec 37.8 3.97±0.75

2 Ground truth 58.9 3.99±0.77
None 5 3.00±1.15
WavLM 36.1 3.95±0.69

3 Ground truth 52.8 4.04±0.85
None 5.6 3.10±1.45
Whisper 41.6 3.91±0.81

we compared the baseline model for each audio encoder against its
multi-task learning version with a CTC. Lastly, we identified the
highest-performing model per audio encoder and compared them
against each other to ascertain which was more favorably received by
users. As our ground-truth only has English speech, we limited the
participation to native English speakers residing in English-speaking
countries. This strategic selection of participants ensured a more in-
formed and precise evaluation of our animations.

The user studies were conducted as pairwise preference tests,
where participants were presented with two videos from a sample
from all possible combinations required by the study. Participants
were instructed to select the preferred video or indicate neither or
both. They were also asked to rate the congruence of the selected
animation with the audio on a 5-star scale ranging from ”Does not
match the audio” to ”Perfectly matches the audio”. We presented
the users with 10 videos per study. The first study showed animations
from 10 in-domain audio samples from our test data. The second and
third studies used 5 in domain and 5 out-of-domain samples, selected
from outside sources varying the intonation and range of motion.

The design of our user studies drew inspiration from those con-
ducted for the GENEA challenge [29], with the specific aim of ob-
taining results that are statistically robust to enable a comprehensive
evaluation of our findings. The first three videos shown to partici-
pants were to acclimate participants to the evaluation process, and
responses were discarded. To avoid potential bias, the sequence or-
der and left-right positioning of the videos was randomized. Fur-
thermore, three control videos featuring non-matching audio were
added to ensure participants were attentive throughout each video.
They were asked to evaluate such videos by selecting the ”None”
option and set the rating to one star.

6.1. User Study Results

Table 2 summarizes our first user study comparing CTC-based mod-
els with the ground truth. The ground-truth animations predomi-
nantly received a rating of 4.0. Predicted animations from all audio
encoders achieved ratings close to ground truth, indicating that all
were deemed to match the audio for this in domain test data. Ta-
bles 3 and 4 further support this, showing that our CTC models align
closely with the ground truth, as seen in the in domain section of
the results when evaluating the models with our test data, where
the models received ratings near 4.0. The Whisper-based anima-
tions were most commonly favored over the ground truth animations
with a preference rate of 41.6% over the preference of 37.8% for
Wav2Vec and 36.1% for WavLM.

Our second study highlights the benefits of using a phone CTC
(GRU+CTC) to regularize the animation decoder. As Table 3 dis-
plays, users consistently favored these animations over baseline
models without an auxiliary CTC. Specifically, 57.8% favored the

Table 3: User study results from comparing baseline models for each
feature vs. their MTL CTC counterparts.

All In Domain Out of Domain

Audio (%) (%) (%)
Encoder Decoder Preference Rating Preference Rating Preference Rating

W2V GRU 42.1 3.76±0.89 44.2 3.88±0.90 39.7 3.61±0.85
None 6.8 1.83±0.64 6.1 1.82±0.58 7.7 1.83±0.69
GRU+CTC 51.0 3.80±0.89 49.7 4.02±0.83 52.6 3.56±0.89

WavLM GRU 45.8 3.88±0.88 43.8 3.88±0.87 47.8 3.89±0.89
None 4.5 1.50±0.50 5.1 1.56±0.50 3.8 1.43±0.50
GRU+CTC 49.7 4.07±0.83 51.1 4.14±0.79 48.4 4.00±0.86

Whisper GRU 38.5 3.81±0.96 40.4 4.01±0.79 36.5 3.56±1.08
None 3.7 1.92±0.49 2.3 1.75±0.43 5.1 2.00±0.50
GRU+CTC 57.8 3.78±0.86 57.3 3.98±0.71 58.3 3.57±0.95

Table 4: User study results from comparing MTL CTC models
across different audio features.

All In Domain Out of Domain

Comp- Audio (%) (%) (%)
arison Encoder Preference Rating Preference Rating Preference Rating

1 Wav2Vec 38.9 3.78±0.82 48.2 3.89±0.80 26.9 3.54±0.80
None 6.1 1.67±0.69 4.5 1.70±0.64 8.2 1.64±0.72
WavLM 55.0 3.84±0.87 47.3 3.89±0.84 64.9 3.80±0.90

2 Wav2Vec 43.5 3.94±0.86 46.8 4.17±0.73 39.4 3.60±0.92
None 4.9 1.79±0.61 2.8 2.00±0.58 7.6 1.69±0.60
Whisper 51.6 3.81±0.84 50.5 4.02±0.77 52.9 3.56±0.85

3 WavLM 53.6 3.90±0.75 45.7 3.95±0.82 62.8 3.86±0.69
None 4.2 1.65±0.59 4.6 1.60±0.49 3.7 1.71±0.70
Whisper 42.3 3.85±0.76 49.8 3.85±0.81 33.5 3.84±0.65

improved quality of the Whisper animations using the CTC, com-
pared to 38.5% for the standard model. This preference held across
various audio encodings and both in domain and out of domain
samples, aligning with the quantitative findings in Table 1.

In the final study, we examined preferences between CTC-
based models with different audio encodings. While WavLM and
Whisper were generally preferred over Wav2Vec, the difference be-
came clearer for out-of-domain audio, where WavLM led by 12.9%
against Wav2Vec and 21.8% over Whisper. These results suggest
that PhISANet trained with the WavLM audio encoder generalizes
better across speakers.

7. CONCLUSIONS

In this work, we introduced PhISANet, an encoder-decoder model
for realistic speech animation trained on data that adds 3D face el-
ements to the IMT’22 dataset, which consists of EMA capture of
the inner mouth’s speech motion to produce realistic articulation an-
imations. PhISANet introduces to the field of speech animation a
phonetic constraint through a multi-task learning CTC training strat-
egy to improve the quality of the generated articulation animations.
A quantitative evaluation using the mean temporal vertex error and
a comprehensive user study confirm our findings.

We additionally explored three pre-trained audio encoders for
the speech-animation task: Wav2Vec, WavLM, and Whisper. Our
analysis showed that by combining any explored audio encoder
model with our data can effectively reconstruct the original anima-
tion data. However, PhISANet performed best when paired with
WavLM encodings, generalizing across diverse audio samples from
different genders, ages, and languages, even when the animation
decoder is trained solely on a single actor’s voice.
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