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Evaluation

Comparison of models for each feature vs. MTL CTC counterpart

Comparison of MTL CTC models across features

Encoder Decoder MTVE Tongue MTVE Lips MTVE

Wav2Vec GRU 0.072± 0.014 0.180± 0.036 0.164± 0.036
GRU+CTC 0.070± 0.014 0.173± 0.033 0.160± 0.037
p-value 3 .48 ⇥ 10�6 9 .505 ⇥ 10�18 5 .745 ⇥ 10�6

WavLM GRU 0.076± 0.013 0.166± 0.034 0.175± 0.035
GRU+CTC 0.068± 0.014 0.160± 0.030 0.157± 0.035
p-value 1 .426 ⇥ 10�52 9 .729 ⇥ 10�18 1 .628 ⇥ 10�45

Whisper GRU 0.077± 0.015 0.190± 0.034 0.173± 0.034
GRU+CTC 0.075± 0.015 0.172± 0.031 0.168± 0.036
p-value 3 .679 ⇥ 10�11 1 .159 ⇥ 10�57 1 .753 ⇥ 10�6

Evaluation of different Encoder-Decoder models

Quantitative 
Evaluation

Mean Temporal Vertex Error

User Studies

Salvador Medina     Sarah L. Taylor    Carsten Stoll    Gareth Edwards   

Alex Hauptmann    Shinji Watanabe     Iain Matthews

PhISANet: PHONETICALLY INFORMED SPEECH ANIMATION NETWORK

• PhISANet is an encoder-decoder model that generates realistic speech animation by training on data derived from high-quality 3D capture of 
facial and tongue movements.


• PhISANet delivers realistic and high-quality animations regardless of the gender, age, or language, leveraging on robust audio encodings.

• Incorporating Connectionist Temporal Classification multi-task learning, enhances the realism of the generated speech animations.

• State-of-the-art speech audio encoders, such as Wav2Vec, WavLM, or Whisper, can effectively drive plausible speech animation generation.

• Animations generated by the WavLM-based model were preferred by users due to their “natural and lifelike motion”.

We present PhISANet, an end-to-end model that fully animates the lower face, including the jaw and tongue from speech. 
In this work we:

• Compare the use of WavLM [1], Whisper [2], and Wav2Vec [3] audio features for speech-to-animation. 

• Improve articulation animation by regularizing the speech-animation model through multi-task learning (MTL) with a 

Connectionist Temporal Classification (CTC) [4] task.

Conclusions
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