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Abstract
Our study examines the information obtained by adding two
parasagittal sensors to the standard midsagittal configuration of
an Electromagnetic Articulography (EMA) observation of lin-
gual articulation. In this work, we present a large and phoneti-
cally balanced corpus obtained from an EMA recording session
of a single English native speaker reading 1899 sentences from
the Harvard and TIMIT corpora. According to a statistical anal-
ysis of the diphones produced during the recording session, the
motion captured by the parasagittal sensors has a low correla-
tion to the midsagittal sensors in the coronal plane. We per-
form a geometric analysis of the lateral tongue by the measure
of its width and using a proxy of the tongue’s curvature that is
computed using the Menger curvature. To provide a better un-
derstanding of the tongue sensor motion we present dynamic
visualizations of all diphones. Finally, we present a summary
of the velocity information computed from the tongue sensor
information.
Index Terms: Tongue, Parasagittal, Electromagnetic Articu-
lography, EMA, Articulatory Analysis

1. Introduction
The tongue is fundamental to shaping the sounds of speech. A
dynamic model that describes the relationship between tongue
motion and acoustic speech is key to applications such as ani-
mating talking heads, speech synthesis, acoustic-to-articulatory
inversion and automatic speech recognition, and may inform
methods for providing feedback during speech therapy.

Until recently, continuous speech and tongue datasets pre-
dominantly captured midsagittal deformations of the tongue
and, subsequently, acoustic-articulatory modelling has been ap-
proximated with 2-D dynamics. By not measuring parasagit-
tal deformations, the tongue is assumed to be horizontal in the
coronal plane, and this does not accurately represent the many
degrees of freedom that enable human tongues to roll, twist and
otherwise non-rigidly deform.

We present a novel multi-modal speech and tongue dataset
which recorded midsagittal tongue sensors and two additional
parasagittal sensors to capture complex 3-D tongue deforma-
tions. We consider this work to be a step forward to obtain
a better representation of the tongue’s surface since Magnetic
Resonance Imaging (MRI) scans and X-rays capture sessions
are less desirable due to the change in acoustics for the former
and long-term exposure to radiation is unhealthy for the latter.
We will release our data which we believe forms the first large-
scale EMA English dataset of continuous speech, and tongue,
lips and jaw motion that includes two parasagittal sensors on
the tongue.

From our data we present a diphone-level statistical analy-
sis on the dynamics of the tongue during speech with a focus

on the parasagittal motion. Specifically, we aim to determine
the following: 1) To what extent and for which diphones is the
lateral tongue actively controlled? 2) What are the characteris-
tics of the lateral tongue width and curvature during continuous
speech? We additionally present a visualization of the sensor
motion of each diphone to provide a greater understanding on
tongue dynamics during speech production.

2. Related Work
2.1. Tongue motion acquisition

Tongue motion has previously been acquired through X-ray im-
agery [1, 2], but radiation exposure makes large-scale data col-
lection unfeasible. Real-time MRI [3, 4, 5] is a safer option, but
the resulting images are unregistered and it can be challenging
to track points on the tongue over time. Although more intru-
sive, EMA can measure sensor motion at fixed locations on the
tongue with high temporal resolution and low error [6].

The MOCHA-TIMIT [7] corpus is a phonetically balanced
dataset of 460 sentences read by two British English speakers.
The articulatory data is captured in different modalities from
Electropalatography (EPG), Laryngography and EMA in a mid-
sagittal configuration. EMA was also used for capturing tongue
motion in [8] for 320 utterances of Austrian German speech, to
construct the mngu0 dataset [9] which contains 1354 utterances.
In [10], Dutch and English speakers recited a short phrase and
isolated words, while in [11], 3 Italian speaker were captured
reading 500 Italian sentences providing approximately 2 hours
of speech. EMA sensors are generally placed midsagittally
along the tongue for capturing 2D deformation of the tongue
tip, body and dorsum [6]. Although the parasagittal motions
of the tongue contribute to speech production, they are largely
overlooked during data collection.

There has been some prior work that considered lateral
tongue motion [12] to study the production of /l/ in Australian
English with the aide of two parasagittal sensors acquired at
a rate of 100 Hz. The work presented by [13] included one
parasagittal sensor to examine the contribution of lateral motion
on the production of alveolar consonants in vowel-consonant-
vowel syllables. Their findings indicate that lateral motion is
fundamental for articulating the sound /z/. Two parasagittal
sensors were included in the capture by [14] and [15] who
respectively studied the articulation of Czech liquids in iso-
lated nonsense words and English liquids in carrier sentences
by Japanese speakers.

2.2. Tongue dynamics during speech production

The work in [2] analyzed patterns of deformations of the mid-
sagittal edge of the tongue in transitions between lingual seg-
ments from X-Ray images. An analysis of tongue motion dur-



ing emotive speech revealed that the vertical motion of the
tongue dorsum is dampened during sad speech [5]. A study of
vowel-consonant-vowel syllables in [16] revealed that tongue
width is largest for palatal plosives and fricatives as the tongue
widens as it is pressed against the hard palate, and smallest for
velar plosives and fricatives, since a the tongue body volume
is largely retracted towards the velum. The work in [12] in-
vestigated tongue lateralization in the Australian production of
/l/ and discovered that the lateral tongue is actively controlled
rather than moving as a bi-product of tongue stretching.

The majority of previous work performs analysis on iso-
lated or nonsensical words, and there has been very little re-
search into the 3-D tongue motion during continuous speech
production. An exception to this is the work in [17] which pre-
sented a statistical technique for identifying critical, dependent
and redundant roles played by the articulators during production
of the English phonemes in the MOCHA-TIMIT corpus. They
found that fricatives and affricates required the most number
of critical articulators, and none were identified for the alveo-
lar /l/. They additionally observed that the articulatory system
comprised of three largely-independent components: the lip and
jaw group, the tongue, and the velum.

3. Data
Our data consists of a single male English native speaker, read-
ing 1899 sentences providing a total of 2.5 hours of speech au-
dio. A subset of 720 sentences is from the Harvard set [18]
which was read twice at a normal and fast pace. The remaining
sentences were a subset of the TIMIT dataset [19].

Acoustics and articulatory movement were recorded using
a Carstens AG501 EMA device. Passive transducers were at-
tached to speech articulators using medical-grade cyanoacrylate
glue. Three sensors were placed midsagittally on the tongue
surface, one sensor on the tongue dorsum (TD), one on the
tongue blade (TB), and one behind the tongue tip (TT). Two
more sensors were parasagittally placed to the left (BL) and
right (BR) of the tongue blade. Three additional sensors were
placed on the lips, two were midsagittally attached on the upper
(UL) and lower lips (LL) at the vermillion border, and one on
the right corner (LC) of the lips. Additionally, two sensors were
placed on the jaw on the gingiva below the medial incisors (LI)
and between the canine and first premolar (LJ). See Figure 1 for
sensor placement.

The articulatory movements and single-channel acoustic
data were synchronously captured at 250 Hz and 48 kHz re-
spectively. Articulatory data was downsampled to 50 Hz, and
corrected for head movement by rotating and translating to the
occlusal plane using a reference biteplane.

An approximation of the surface of the palate was captured
through three traces using one of the transducers glued to the
tip of a wooden stem after removing the cotton swab as pro-
posed by [20]. One trace followed the midsagittal curve, and
two traces were captured through an alternating movement in a
sagittal direction and the other trace in a coronal direction from
the upper incisors to the posterior of the palate before the sub-
ject would feel any discomforts. We reconstructed the surface
of the palate by fitting a plane to the traces using the 3D soft-
ware Blender.

In this work we focus only on the analysis of the parasagit-
tal sensors of the tongue. However, the full processed and fil-
tered data will be made publicly available for further investiga-
tion and reproducibility of our results.
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TT

TB

BR BL

Figure 1: EMA sensor configuration for tongue motion capture
with two parasagittal sensors. Three more sensors are placed
on the lips and two sensors on the jaw.

4. Importance of the Lateral Tongue
We use the Montreal Forced Aligner [21] to extract the diphone
segments from the audio. For our analysis we ignore the di-
phones with silence or non-speech segments. This results in
a total of 1,158 diphones from which 424 are consonant clus-
ters. The remaining 734 diphones are distributed as follows:
305 vowel-consontant, 315 consonant-vowel, and 114 vowel-
vowel. We filter out the consonant clusters and diphones with
fewer than 53 examples resulting in 227 unique diphones which
cover 80% of the total diphones found in the data.

4.1. Relationship between mid and parasagittal sensors

We first investigate the extent to which the parasagittal sensors
deform with the midsagittal sensors to identify the sounds dur-
ing which the parasagittal deformations are largely independent
of the midsagittal motion. We compute the Pearson correlation
coefficient (r) for each midsagittal tongue sensor (TD, TB, TT)
to each parasagittal sensor (BL, BR) independently for each of
the x (anterior/posterior), y (left/right) and z (superior/inferior)
axes. The complete set of correlations for BL and BR are re-
spectively shown in Figures 2a and 2b.

We observe a high correlation of the parasagittal sensors
with all the midsagittal sensors on the x-axis, demonstrating
that during regular speech the surface of the tongue moves back
and forth in a consistent manner. Moreover, we observe that
the parasagittal sensors correlate most with TT, confirming the
discoveries in [13], and are least correlated to the TB and TD
sensors in the coronal plane with a prominent difference on the
y-axis for particular diphones. Specifically, we observe very
low and slightly negative correlations with TD and TB in the
coronal plane for the diphones that end with the alveolars /z/,
/s/, /d/ or /n/. We find this effect to be less prominent for alveo-
lar /t/. The same effect can be seen in diphones ending with the
front unrounded vowels /i/ and /I/.

The results suggest that the lateral tongue is actively con-
trolled and does not move merely as a bi-product of midsagittal
activity. Parasagittal sensors move independently of the mid-
tongue sensors to the greatest extent in the coronal plane. This
could be indicative of a) lateral curvature or b) a widening or
narrowing of the superior surface to preserve tongue volume as
it deforms. We further investigate this in the following sections.

4.2. Diphonic tongue width and curvature

We compute a proxy to describe the tongue width as the 3-D
Euclidean distance between the left and right parasagittal sen-
sors. Furthermore, to determine the extent of tongue roll and
its relationship to the underlying speech, we compute a mea-
sure of tongue curvature in the coronal plane for each diphone.
We compute the Menger curvature [22] using three 2-D points
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Figure 2: (a) and (b) Correlation of midsagittal tongue sensors to left and right parasagittal sensors shown for each diphone and axis.
(c) Distance between the parasagittal sensors in mm and proxy curvature (BL-TB-BR) in the coronal plane for each diphone.



(a) /sO/ sagittal view
(b) /sO/ frontal view

(c) /ik/ sagittal view
(d) /ik/ frontal view

Figure 3: Data visualization of diphones /sO/ and /ik/. Sensors
are represented by colored spheres. The motion from all di-
phone samples is represented by colored quivers from blue to
red. The tongue pose is the mean of the mid-position of all the
samples from the second phone.

representing the y and z axes of BL, TB and BR. A negative
value represents a curled upward tongue surface and a positive
value indicates a curled downwards pose, while a zero value in-
dicates a flat tongue. In Figure 3b we visualize a diphone with
slightly negative curvature showing a close to flat tongue, while
in Figure 3d we see an example with a high positive curvature.

The means and standard deviations of tongue width and cur-
vature for each diphone can be found in Figure 2c shown in as-
cending order of curvature. We generally observe that tongue
width negatively correlates with curvature (r = −0.384). This
is intuitive since the sensors become closer as the edges of the
tongue curl up. At the top of the graph we observe a cluster of
diphones containing the velar consonants /k/, /g/, and /N/ paired
with vowels /i/, /I/ and /2/. These are associated with a rela-
tively narrow tongue and large downwards curvature of the lat-
eral tongue. They are followed by a cluster of diphones contain-
ing the vowel /i/ with a range of consonant contexts that have
diverse places of articulation. However, outliers appear when
/i/ is spoken in the context of the alveolar fricatives /S/ and /Z/,
where we observe that the tongue curvature is approximately
halved. The diphones that contain /S/ and /Z/ appear towards the
bottom of the graph, although /Z/ is distributed more uniformly
throughout the lower half. The outliers are therefore the result
of co-articulation that stems from transitioning between a flat
or upwards curled tongue to a downwards curvature and vice
versa. This result indicates that parasagittal tongue motion is
important for producing each of these sounds.

4.3. Dynamics of the parasagittal sensors

Our geometric analysis of the parasagittal sensors is indicative
of the shape of the tongue, but dynamic information is lost.
To provide a better understanding of the tongue sensor motion
through our data we present visualizations of all diphones as
quiver plots and exemplar videos1. An example plot is shown
in Figure 3 which contains two different diphones /sO/ and /ik/
from a frontal and sagittal view. All the lip and tongue sensors

1https://salmedina.github.io/
ContinuousTongueMotionAnalysis/

are represented by colored spheres, while the white cubes repre-
sent the jaw sensors and a symetrically placed proxy to improve
the visualization. The palate surface reconstruction is shown
for a clear spatial reference of the tongue. The tongue’s pose
presented is the mean of the mid-poses of the second phone.
All the sensors’ motions are presented in the images as a series
of color-encoded quivers. The colors from start to end are de-
scribed in the following sequence: blue, green, yellow, orange,
and red. In Figure 3a we can observe how /sO/ starts with the
tongue tip close to the alveolar ridge (blue) followed by a rapid
gesture that moves the tongue downwards (yellow) and back
before returning to the palate (red). In Figure 3c, we can appre-
ciate how /ik/ is formed from the curved transition from a low
frontal tongue pose to a constriction on the palate.

To gain insight into the tongue’s motion statistics, we com-
pute the peak velocities of each of the five tongue sensors for
every diphone sample and calculate the mean of the velocities
for each diphone class. In our analysis, we found that the di-
phones with alveolar and post-alveolar fricatives /z/, /s/, and /S/
show low mean peak velocity below 40 mm/s. The reason is due
to the long periods in which the tongue remains stationary. Al-
ternatively, the diphones with the highest velocities above 180
mm/s require an open or close movement of the jaw such as /2r/,
/kO/, /At/, and /Ak/.

5. Conclusion
We introduced a large and phonetically balanced corpus from
a single English speaker from an EMA capture that includes
2.5 hours of speech and the articulation of the lips, jaw, and
tongue with the addition of two parasagittal sensors to the tra-
ditional midsagittal configuration. We presented a correlation
analysis at a diphonic level, demonstrating that both parasagit-
tal sensors have a low correlation to the midsagittal sensors in
the coronal plane which indicates that they contribute indepen-
dently to speech production. The enriched information from
the parasagittal sensors also allows us to determine an approx-
imation to the width and curvature of the tongue from which
we determined the characteristics of each diphone. We discov-
ered that the vowel /i/ and alveolar consonant /S/ exhibit co-
articulatory effects when spoken in sequence. We have pre-
sented visualizations of the motions of all diphones in our data
and made these publicly available. We believe our corpus will
enable further research in continuous speech with a higher level
of detail and the training of data-driven models for applications
such as acoustic-articulatory inversion.
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