
The Template Update Problem

Iain Matthews, Member, IEEE, Takahiro Ishikawa,
and Simon Baker

Abstract—Template tracking dates back to the 1981 Lucas-Kanade algorithm.

One question that has received very little attention, however, is how to update the

template so that it remains a good model of the tracked object. We propose a

template update algorithm that avoids the “drifting” inherent in the naive algorithm.

Index Terms—Template tracking, the Lucas-Kanade algorithm, active

appearance models.

�

1 INTRODUCTION

TEMPLATE tracking is a well studied problem in computer vision
which dates back to [7]. An object is tracked through a video by
extracting an example image of the object, a template, in the first
frame and then finding the region which matches the template as
closely as possible in the remaining frames. Template tracking has
been extended in a variety of ways, including: 1) to allow arbitrary
parametric transformations of the template [3], 2) to allow linear
appearance variation [4], [6], and 3) to be efficient [6], [2].
Combining these extensions to Lucas-Kanade has resulted in the
real-time fitting of nonrigid appearance models such as Active
Appearance Models (AAMs) [5], [8].

The underlying assumption behind template tracking is that the
appearance of the object remains the same throughout the entire
video. This assumption is generally reasonable for a certain period
of time, but eventually the template is no longer an accurate model
of the appearance of the object. A naive solution to this problem is
to update the template every frame (or every n frames) with a new
template extracted from the current image at the current location of
the template. The problem with this naive algorithm is that the
template “drifts.” Each time the template is updated, small errors
are introduced in the location of the template. With each update,
these errors accumulate and the template steadily drifts away from
the object. See Fig. 1 for an example.

In this paper, we propose a template update algorithm that
does not suffer from this drift. The template can be updated in
every frame and yet still stays firmly attached to the original object.
The algorithm is a simple extension of the naive algorithm. As well
as maintaining a current estimate of the template, our algorithm
also retains the first template from the first frame. The template is
first updated as in the naive algorithm with the image at the
current template location. To eliminate drift, this updated template
is then aligned with the first template to give the final update. We
first evaluate our algorithm qualitatively and show that it can
update the template without introducing drift. Next, we reinter-
pret our algorithm as a heuristic to avoid local minima. We then
quantitatively evaluate the algorithm as a technique to avoid local
minima.

Next, we consider the more general case of template tracking
with linear appearance variation. Specifically, we generalize our
algorithm to AAMs [5]. In this context, our appearance update
algorithm can also be interpreted as a heuristic to avoid local

minima and, so, we again quantitatively evaluate it as such. We
also demonstrate how our algorithm can be applied to convert a
generic a person-independent AAM into a person-specific AAM.

2 SINGLE TEMPLATE TRACKING

We begin by considering the original template tracking problem [7]
where the object is represented by a single template image.
Suppose we are given a video sequence of images InðxÞ where
x ¼ ðx; yÞT are the pixel coordinates and n ¼ 0; 1; 2; . . . is the frame
number. In template tracking, a subregion of the initial frame I0ðxÞ
that contains the object of interest is extracted and becomes the
template T ðxÞ. The template is not necessarily rectangular, and
might, for example, be a face shaped region [5], [8].

Let Wðx;pÞ denote the parameterized set of allowed deforma-
tions of the template, where p ¼ ðp1; . . . ; pkÞT is a vector of
parameters. The warp Wðx;pÞ takes the pixel x in the coordinate
frame of the template T ðxÞ and maps it to a subpixel location
Wðx;pÞ in the coordinate frame of the video InðxÞ. The set of
allowed warps depends on the type of motions we expect from the
object being tracked. If the object is a roughly planar image patch
moving in 2D, we might consider the set of similarity warps:

Wðx;pÞ ¼ ð1þ p1Þ � x � p2 � y þ p3
p2 � x þ ð1þ p1Þ � y þ p4;

� �
; ð1Þ

where there are four parameters p ¼ ðp1; p2; p3; p4ÞT. In general, the
number of parameters k may be arbitrarily large and Wðx;pÞ can
be arbitrarily complex [3]. A particularly complex example is the
set of piecewise affine warps used to model nonrigidly moving
objects in Active Appearance Models (AAMs) [5], [8].

The goal of template tracking is to find the best match to the
template in every subsequent frame in the video. The sum of
squared error is normally used to measure the degree of match
between the template and the video frames. The goal is therefore to
compute:

pn ¼ argmin
p

X
x2T

InðWðx;pÞÞ � T ðxÞ½ �2 ð2Þ

for n � 1 and where the summation is over all of the pixels in the
template (a convenient abuse of terminology). The original
solution to the nonlinear optimization in (2) was the Lucas-Kanade
algorithm [7]. A variety of other algorithms have since been
proposed. See [2] for a recent survey.

2.1 Template Update Strategies

In this paper, we consider the problem of how to update the
template T ðxÞ. Suppose that a (potentially) different template is
used in each frame. Denote the template that is used in the nth
frame TnðxÞ. Tracking then consists of computing:

pn ¼ argmin
p

X
x2Tn

InðWðx;pÞÞ � TnðxÞ½ �2 ð3Þ

and the template update problem consists of computing Tnþ1ðxÞ
from the images I0ðxÞ; . . . ; InðxÞ and the templates T1ðxÞ; . . . ; TnðxÞ.
The simplest strategy is not to update the template at all:

Strategy 1: No Update

Tnþ1ðxÞ ¼ T1ðxÞ for all n � 1:

The simplest strategy for actually updating the template is to set
the new template to be the region of the input image that the
template was tracked to in InðxÞ:

Strategy 2: Naive Update

Tnþ1ðxÞ ¼ InðWðx;pnÞÞ for all n � 1:

810 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

. The authors are with the The Robotics Institute, Carnegie Mellon
University, 500 Forbes Ave., Pittsburgh, PA 15232.
E-mail: {iainm, taka, simon}@cs.cmu.edu.

Manuscript received 14 Aug. 2003; revised 21 Jan. 2004; accepted 27 Feb.
2004.
Recommended for acceptance by J. Weng.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0230-0803.

0162-8828/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

Neither of these strategies are very good. With the first strategy,

the template eventually, and inevitably, becomes out-of-date and

no longer representative of the appearance of the object being

tracked. With the second strategy, the template eventually drifts

away from the object. Small errors in the warp parameters pn mean

that the new template InðWðx;pnÞÞ is always a slighted shifted

version of what it ideally should be. These errors accumulate and,

after a while, the template drifts away from the object that it was

initialized to track. See Fig. 1 for an example of the template

drifting in this way. Note that simple variants of this strategy such

as updating the template every few frames, although more robust,

also eventually suffer from the same drifting problem.
How can we update the template every frame and avoid it

wandering off? One possibility is to keep the first template T1ðxÞ
around and use it to correct the drift in Tnþ1ðxÞ. For example, we

could take the estimate of Tnþ1ðxÞ computed in Strategy 2 and then

align Tnþ1ðxÞ to T1ðxÞ to eliminate the drift. Since Tnþ1ðxÞ ¼
InðWðx;pnÞÞ, this is the same as first tracking in image InðxÞ with

template TnðxÞ and then with template T1ðxÞ. If the nonlinear

minimizations in (2) and (3) are solved perfectly, this is

theoretically exactly the same as just tracking with T1ðxÞ. The

nonlinear minimizations are solved using a gradient descent

algorithm, however, and, so, this strategy is actually different. Let

us change the notation slightly to emphasize the point that a

gradient descent algorithm is used to solve (3). In particular,

rewrite (3) as:

pn ¼ gd min
p¼pn�1

X
x2Tn

InðWðx;pÞÞ � TnðxÞ½ �2; ð4Þ

where gdminpn�1
means “perform a gradient descent minimiza-

tion” starting at p ¼ pn�1. To correct the drift in Strategy 2, we

therefore propose to compute updated parameters:

p�
n ¼ gdmin

p¼pn

X
x2T1

InðWðx;pÞÞ � T1ðxÞ½ �2: ð5Þ

Note that this is different from tracking with the constant template

Tn ¼ T1 using:

gd min
p¼pn�1

X
x2T1

InðWðx;pÞÞ � T1ðxÞ½ �2 ð6Þ

because the starting point of the gradient descent is different. It is

pn rather than pn�1. To correct the drift, we use p�
n rather than pn

to form the template for the next image. In summary (see also

Fig. 2), we update the template using:

Strategy 3: Template Update with Drift Correction

If kp�
n � pnk � �; then Tnþ1ðxÞ ¼ InðWðx;p�

nÞÞ
else Tnþ1ðxÞ ¼ TnðxÞ;

where � > 0 is a small threshold that enforces the requirement that

the result of the second gradient descent does not diverge too far

from the result of the first. If it does, there must be a problem and

so we act conservatively by not updating the template in that step.

A minor variant of Strategy 3 is to perform the drift-correcting

alignment using the magnitudes of the gradients of the image and

the template rather than the raw images to increase robustness to

illumination variation.

2.2 Qualitative Comparison

We now present a qualitative comparison of the strategies. Although

we only have room to include one set of results, these results are

typical. A quantitative evaluation is included in Section 2.4.
We implemented each of the three update strategies above and

ran them on a 972 frame video of a car being tracked using the

2D similarity transform in (1). Sample frames are shown in Fig. 1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004 811

Fig. 1. A qualitative comparison of update Strategies 1, 2, and 3. With Strategy 1, the template is not updated and tracking eventually fails. With Strategy 2, the template

is updated every frame and the template “drifts.” With Strategy 3, the template is updated every frame, but a “drift correction” step is added. With this strategy, the object

is tracked correctly and the template updated appropriately across the entire sequence.

for each of the update algorithms. If the template is not updated

(Strategy 1), the car is no longer tracked correctly after frame 312. If

we update the template every frame using the naive approach

(Strategy 2), by around frame 200 the template has drifted away

from the car. With update Strategy 3 “Template Update with Drift

Correction,” the car is tracked throughout the entire sequence and

the template is updated correctly in every frame, without

introducing any drift. See the accompanying movie1 “car-

track.mpg” for tracking results on the sequence.

2.3 Reinterpretation of Update Strategy 3

A schematic diagram of Strategy 3 is included in Fig. 2a. The image

InðxÞ is first tracked (left box) with template TnðxÞ starting from

the previous parameters pn�1. The result is the tracked image

InðWðx;pnÞÞ and the parameters pn. The new template Tnþ1ðxÞ ¼
InðWðx;p�

nÞÞ is then computed (right box) by tracking T1ðxÞ in

InðxÞ starting at parameters pn.
If we reorganize Fig. 2a slightly, we get Fig. 2b. The only change

made in this reorganization is that the “tracked output” is

InðWðx;p�
nÞÞ rather than InðWðx;pnÞÞ. The difference between

Figs. 2a and 2b is not the computation (the two diagrams result in

the same sequence of parameters pn), but their interpretation.

Fig. 2a can be interpreted as tracking with TnðxÞ followed by

updating TnðxÞ. Fig. 2b can be interpreted as tracking with TnðxÞ to
get an initial estimate to track with T1ðxÞ. This initial estimate

improves robustness because tracking with T1ðxÞ is prone to local

minima. Tracking with In�1ðWðx;p�
n�1ÞÞ is less prone to local

minima and is used to initialize the tracking with T1ðxÞ and start it

close enough to avoid local minima. In summary, there are two

equivalent ways to interpret Strategy 3:

1 The template can be updated every frame, but it must be
realigned to the original template T1ðxÞ to remove the drift
that would otherwise build up.

2 Not updating the template and tracking using the constant
template T1ðxÞ is fine, so long as we first initialize pn by
tracking with TnðxÞ ¼ In�1ðWðx;p�

n�1ÞÞ to avoid local
minima.

2.4 Quantitative Evaluation

We now present a quantitative evaluation of Strategy 3 in the

context of the second interpretation above. We measure how much

more robust tracking is if we initialize it by first tracking with

In�1ðWðx;p�
n�1ÞÞ; i.e., use Strategy 3 rather than Strategy 1.

Our goal is to track the car in the 972 frame video sequence

shown in Fig. 1. First, using a combination of Lucas-Kanade

tracking and hand reinitialization, we obtain a set of ground-truth

parameters pn for each frame. We then generate 50 test cases for

each of the 972 frames by randomly perturbing the ground-truth

parameters pn. Note that the ground truth is perturbed randomly

for each frame, not just the first frame. In a sense, we evaluate the

fitting robustness independently for each frame, and then average

over the 972 images. The perturbation is computed using a normal

distribution so that the root-mean-square template coordinate

locations in the image are displaced by a known spatial standard

deviation. We then run the two tracking algorithms starting with

the same perturbed parameters and determine which of the two

algorithms converged by comparing the final pn with the ground-

truth. A trial is said to have converged if all four corners of the

template are within 1.0 pixels of the ground-truth locations. This

experiment is repeated for all frames over a range of perturbation

standard deviations. The final result is a graph plotting the

frequency of convergence against the perturbation magnitude. The

results of this comparison are shown in Fig. 3. We plot two curves,

one for update Strategy 1 “No Update” and one for update

Strategy 3 “Template Update with Drift Correction.” No results are

shown for Strategy 2 because, after a few frames, the template

drifts and, so, none of the trials converge to the correct location.

The accompanying movie “car-exp.mpg” shows example trials for

both algorithms with the ground truth marked in yellow and the

perturbed position tracked in green. Fig. 3 clearly demonstrates

that updating the template using Strategy 3 dramatically improves

the tracking robustness.

3 TEMPLATE TRACKING WITH APPEARANCE VARIATION

We now consider the problem of template tracking with linear
appearance variation. Instead of tracking with a single template
TnðxÞ (for each frame n), we assume that a linear model of

812 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

1. The movies can also be downloaded from http://www.ri.cmu.edu/
projects/project_513.html.

Fig. 2. (a) Update Strategy 3. (b) Update Strategy 3 (reorganized). Two equivalent schematic diagrams for update Strategy 3. The diagrams are equivalent in the sense

that they result in exactly the same sequence of parameters pn. (a) Can be interpreted as first tracking with template Tn and then updating Tn using the drift correction

step. (b) Can be interpreted as tracking with constant template T1, after first tracking with TnðxÞ ¼ In�1ðWðx;p�
n�1ÞÞ to avoid local minima.

appearance variation is used; i.e., a set of appearance images Ai
nðxÞ

where i ¼ 1; . . . ; dn. Instead of the template TnðxÞ appearing

(appropriately warped) in the input image InðxÞ, we assume that:

TnðxÞ þ
Xdn
i¼1

�iAi
nðxÞ ð7Þ

appears (appropriately warped) in the input image for a unknown

set of appearance parameters �� ¼ ð�1; . . . ; �dn ÞT. The appearance

images Ai
nðxÞ can be used to model either illumination variation [6]

or more general linear appearance variation [4], [5]. In this paper,

we focus particularly on Active Appearance Models [5], [8] which

combine a linear appearance model with a (low parametric)

piecewise affine warp to model the shape deformation Wðx;pÞ.
The process of tracking with such a linear appearance model then

consists of minimizing:

ðpn; ��nÞ ¼ argmin
ðp;��Þ

X
x2Tn

InðWðx;pÞÞ � TnðxÞ �
Xdn
i¼1

�iAi
nðxÞ

" #2

: ð8Þ

Several efficient gradient descent algorithms have been proposed

to solve this nonlinear optimization problem including [6] for

translations, affine warps, and 2D similarity transformations, [1]

for arbitrary warps that form a group, and [8] for Active

Appearance Models. Denote the result:

ðpn; ��nÞ ¼ gd min
ðpn�1 ;��n�1Þ

X
x2Tn

InðWðx;pÞÞ � TnðxÞ �
Xdn
i¼1

�iAi
nðxÞ

" #2

;

ð9Þ

where the gradient descent is started at ðpn�1; ��n�1Þ.

3.1 Updating both the Template and the
Appearance Model

Assume that the initial template T1 and appearance model Ai
1 are

given. The template update problem with linear appearance

variation consists of estimating Tnþ1 and Ai
nþ1 from I0ðxÞ; . . . ;

InðxÞ, T1ðxÞ; . . . ; TnðxÞ, and Ai
1; . . . ; A

i
n. Analogously to the above,

denote the result of aligning with respect to the initial template T1

and appearance model Ai
1, but starting the gradient descent from

the result of aligning with respect to the current template Tn and

appearance model Ai
n, as follows:

ðp�
n; ��

�
nÞ ¼ gd min

ðpn;��nÞ

X
x2Tn

InðWðx;pÞÞ � T1ðxÞ �
Xd1
i¼1

�iAi
1ðxÞ

" #2

:

ð10Þ

One way to update the template and appearance model is then as

follows:

Strategy 4: Template and Appearance Model Update with

Drift Correction

If kp�
n � pnk � �;

then ðTnþ1ðxÞ; Ai
nþ1Þ ¼ PCAðI1ðWðx;p�

1ÞÞ; . . . ; InðWðx;p�
nÞÞÞ

else Tnþ1ðxÞ ¼ TnðxÞ; Ai
nþ1 ¼ Ai

n;

where PCAðÞ means perform Principal Components Analysis

setting Tn to be the mean and Ai
n to be the first dn eigenvectors,

where dn is chosen to keep a fixed amount of the energy, typically

95 percent. (Other variants of this exist, such as incrementally

updating appearance model Ai
n to include the new measurement

InðWðx;p�
nÞÞ.) If we reinterpret this algorithm as in Section 2.3, we

end up with the following two step tracking algorithm:

Step 1: Apply PCA to I1ðWðx;p�
1ÞÞ; . . . ; In�1ðWðx;p�

n�1ÞÞ. Set Tn to

be the mean vector and Ai
n to be the first i ¼ 1; . . . ; dn

eigenvectors. Once computed, track with template Tn and

appearance model Ai
n.

Step 2: Track with the a priori template T1ðxÞ and linear

appearance model Ai
1ðxÞ, starting the gradient descent at the

result of the first step.

One way to interpret these two steps is as performing “progressive

appearance complexity,” analogously to “progressive transforma-

tion complexity” [3], the standard heuristic for improving the

robustness of tracking algorithms by increasing the complexity of

the warp Wðx;pÞ. For example, tracking with an affine warp is

often performed by first tracking with a translation, then a 2D

similarity transformation and, finally, a full affine warp. Here,

tracking with one appearance model is used to initialize tracking

with another. Based on this analogy, we add another step to the

algorithm above:

Step 0: Track using the template TnðxÞ ¼ In�1ðWðx;p�
n�1ÞÞ with no

appearance model.

This step is performed before the two steps above and is used to

initialize them.

3.2 Quantitative Evaluation

We evaluate Strategy 4 “Template and Appearance Model Update

with Drift Correction” in the same way that we evaluated

Strategy 3 in Section 2.4. We use a 600 frame video of a face and

construct an initial AAM for it by hand-marking feature points in a

random selection of 80 frames. We then generate ground-truth

parameters by tracking the AAM through the video using a

combination of AAM fitting [8], pyramid search, progressive

transformation complexity, and reinitialization by hand. The

accompanying movie “face-gt.mpg” plots the ground-truth AAM

feature points on all images in the video sequence. The sequence

shows the face of a car driver and includes moderate face pose and

lighting variation. We generate 50 test cases for each of the 600

frames in the video by randomly perturbing the AAM parameters.

Similarly to Section 2.4 and following the exact procedure in [8],

we generate perturbations in both the similarity transform of the

AAM and the shape parameters. Specifically, the RMS similarity

displacement standard deviation is chosen to be four times the

shape eigenvector standard deviation so that each is weighted

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004 813

Fig. 3. The frequency of convergence of Strategies 1 and 3 plot against the

magnitude of the perturbation to the ground-truth parameters, computed over

50 trials for each frame in the sequence used in Fig. 1. As can be seen, updating

the template using Strategy 3 results in far more robust tracking.

according to their relative importance. For each test case, we

compared four algorithms:

Algorithm 1: Step 2 (no update).

Algorithm 2: Step 1 followed by Step 2.

Algorithm 3: Step 0 followed by Step 1 followed by Step 2.

Algorithm 4: Step 0 followed by Step 2.

We plot the frequency of convergence of these four algorithms

computed on average across all 50� 600 test cases against the

magnitude of the perturbation to the AAM parameters in Fig. 4.

(The accompanying movie “face-exp.mpg” shows example

trials for one of the algorithms with the ground truth marked in

yellow and the perturbed position tracked in green.) As for the

single template tracking case in Section 2, the template and

appearance model update algorithms (Algorithms 2, 3, and 4) all

outperform the algorithm which does not update the template

and appearance mode (Algorithm 1). As one might imagine,

Algorithm 3 (Steps 0, 1, and 2) marginally outperforms Algorithm

2 which just uses Steps 1 and 2. Algorithm 4 performs significantly

worse than both Algorithms 2 and 3 indicating that Step 1 is

essential for the best performance. Finally, we also plot a curve for

a fifth algorithm. Algorithm 5 consists of tracking the sequence

with the final AAM computed by the update algorithm; i.e., we use

constant template T600ðxÞ and constant linear appearance model

814 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

Fig. 4. A comparison of the frequency of convergence of five template and

appearance model update algorithms. The three algorithms which actually update

the template and/or appearance model (Algorithms 2, 3, and 4) all dramatically

outperform the algorithms which do not (Algorithms 1 and 5).

Fig. 5. An illustration of the conversion of a generic AAM to a person-specific AAM. (a) Four frames from the video that is tracked. (b) An illustration of the appearance

variation of the generic AAM. (c) An illustration of the appearance variation of the computed person-specific AAM. (d) The appearance eigenvalues of the two AAMs.

Note how the person-specific AAM requires far fewer parameters and just codes illumination variation, whereas the generic AAM mainly codes identity variation.

Ai
600ðxÞ. Since this is an AAM computed using all 600 frames in the

sequence, the performance is significantly better than the a priori

AAM computed using only 80 frames. The results are still not as

good as Algorithm 2 where the AAM is updated every frame.

3.3 Converting a Generic AAM into a
Person-Specific AAM

When we use Step 1 above, a new template and appearance model
are computed online as we track the face through the video. To
illustrate this process, we applied Algorithm 2 to track a video of a
face using a generic, person-independent AAM. The accompany-
ing movie “face-app.mpg” shows the tracked face, T1ðxÞ and the
first two Ai

1ðxÞ. Also, shown are the current TnðxÞ and the first two
Ai

nðxÞ for each frame. The result is that at the end of the sequence,
the template and appearance model update algorithm has
computed a person-specific appearance model.

This process is illustrated in Fig. 5. Fig. 5a shows four frames of
the face that is tracked. Note that no images of the person in the
video were used to compute the generic AAM. Fig. 5b shows the
appearance eigenvectors of the generic AAM. Note that the
appearance eigenvectors mainly code identity variation. Fig. 5c
shows the appearance eigenvectors of the person-specific AAM
computed using our algorithm. Note that the eigenvectors mainly
code illumination variation, and no identity variation. Fig. 5d plots
the appearance eigenvalues of both AAMs. There is far less
appearance variation in the person-specific AAM and it therefore
requires far fewer appearance parameters to provide the same
representational power.

4 CONCLUSION

We have investigated the template update problem. We first
proposed a template update algorithm that does not suffer from
the “drift” inherent in the naive algorithm. Next, we showed how
this algorithm can be reinterpreted as a heuristic to avoid local
minima and quantitatively evaluated it as such. The results show
that updating the template using “Template Update with Drift
Correction” improves tracking robustness. We then extended our
algorithm to template tracking with linear appearance models and
quantitatively compared five variants of the update strategy. The
results again show that updating both the template and the
appearance model with drift correction results in more robust
fitting. Finally, we showed that our linear appearance model
update strategy can also automatically compute a person-specific
AAM while tracking with a generic AAM. Note that updating a
template can be regarded as one form of unsupervised model

building. As such, it is related to the growing body of work on that
problem, one example of which is [9].

One implication of the success of our algorithm is that it shows
that when the appearance of an object changes, the result is to
make the template tracking problem more susceptible to local
minima. Informally, the local minima must get “closer” or the
global minima (i.e., more correctly, the one corresponding to
correct tracking) “less deep.” If the template is not updated, the
tracking algorithm eventually falls into one of the local minima
and tracking fails. A template extracted from the previous frame is
far less likely to suffer from these local minima than the original
template because the appearance variation is less.

Our algorithm suffers from a number of limitations. First,
updating the template (and the appearance model) dramatically
increases the computational cost of tracking because much of the
cost of tracking only needs to be performed once per template (and
appearance model) [6], [2], [8]. Although, in our experimental
results, the template is updated every frame, this is just to illustrate
the drift problem more clearly. Instead of updating the template
every frame, it could just be updated whenever it is determined

that it has changed significantly, thereby reducing the average
computational cost.

Second, our algorithm only covers the case where the visibility
of the object being tracked does not change. We have not
attempted to address the question of how to update a template
when new parts of the object come into view. For example, when
tracking a human head with a cylinder model, different parts of the
head come into view as the head rotates [10]. Our algorithm will
not help with such scenarios. We have concentrated on the case
that the visibility is constant, but the appearance changes.
Extending our algorithm to combine it with techniques for
extending the template when the visibility changes [10] is left as
future work.

ACKNOWLEDGMENTS

The research described in this report was partially supported by
Denso Corporation, Japan, and was conducted at Carnegie Mellon
University while Takahiro Ishikawa was a visiting industrial
scholar. This research was also supported, in part, by the
US Department of Defense through award number N41756-03-
C4024. The generic AAM model in Section 3.3 was trained on the
ViaVoice2 AV database provided by IBM Research. The authors
also thank Bob Collins and the anonymous reviewers.

REFERENCES

[1] S. Baker and I. Matthews, “Equivalence and Efficiency of Image Alignment
Algorithms,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1,
pp. 1090-1097, 2001.

[2] S. Baker and I. Matthews, “Lucas-Kanade 20 Years on: A Unifying
Framework,” Int’l J. Computer Vision, vol. 53, no. 3, pp. 221-255, 2004.

[3] J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani, “Hierarchical
Model-Based Motion Estimation,” Proc. European Conf. Computer Vision,
pp. 237-252, 1992.

[4] M. Black and A. Jepson, “Eigen-Tracking: Robust Matching and Tracking of
Articulated Objects Using a View-Based Representation,” Int’l J. Computer
Vision, vol. 36, no. 2, pp. 63-84, 1998.

[5] T. Cootes, G. Edwards, and C. Taylor, “Active Appearance Models,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-685,
June 2001.

[6] G. Hager and P. Belhumeur, “Efficient Region Tracking with Parametric
Models of Geometry and Illumination,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 10, pp. 1025-1039, Oct. 1998.

[7] B. Lucas and T. Kanade, “An Iterative Image Registration Technique with
an Application to Stereo Vision,” Proc. Int’l Joint Conf. Artificial Intelligence,
pp. 674-679, 1981.

[8] I. Matthews and S. Baker, “Active Appearance Models Revisited,” Int’l J.
Computer Vision, 2004, also appeared as Technical Report CMU-RI-TR-03-
02, Robotics Inst., Carnegie Mellon Univ., Pittsburgh, Penn.

[9] T. Vetter, M. Jones, and T. Poggio, “A Bootstrapping Algorithm for
Learning Linear Models of Object Classes,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 40-46, 1997.

[10] J. Xiao, T. Kanade, and J. Cohn, “Robust Full-Motion Recovery of Head by
Dynamic Templates and Re-Registration Techniques,” Proc. IEEE Int’l Conf.
Automatic Face and Gesture Recognition, pp. 163-169, 2002.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004 815

