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ABSTRACT

Four different visual speech parameterisation methods are com-
pared on a large vocabulary, continuous, audio-visual speech recog-
nition task using the IBM ViaVoiceTM audio-visual speech database.
Three are direct mouth image region based transforms; discrete
cosine and wavelet transforms, and principal component analysis.
The fourth uses a statistical model of shape and appearance called
an active appearance model, to track and obtain model parameters
describing the entire face.

All parameterisations are compared experimentally using hid-
den Markov models (HMM’s) in a speaker independent test. Visual-
only HMM’s are used to rescore lattices obtained from audio mod-
els trained in noisy conditions.

1. INTRODUCTION

The motivation for using visual speech information to improve
speech recognition performance is well documented in both the
psychological and technical literature [7]. We can expect to im-
prove classifier accuracy and robustness to acoustic noise by con-
sidering lip (and facial) motion during speech.

This paper focuses on the visual front end for an audio-visual
large vocabulary continuous speech recognition (LVCSR) system.
The task is to locate and parameterise salient visual speech cues
from video sequences.

Most previous computer lipreading efforts can be classified
somewhere between image transform based techniques, that di-
rectly use pixel values in a region of interest, and model based
approaches that fit some prior model to the data. This paper com-
pares principal component analysis (PCA), discrete wavelet trans-
form (DWT) and discrete cosine transform (DCT) image trans-
forms, with a model based approach using active appearance mod-
els (AAM’s). Two additional processing steps are used on all pa-
rameterisations to further remove redundancy and generate a more
discriminant representation [4]. First, linear discriminant analysis
(LDA) is used to project into a more distinct space for classifica-
tion. This is followed by a maximum likelihood linear transform
(MLLT) that transforms the feature space to better match the mod-
elling conditions.

To obtain meaningful experimental results we compare recog-
nition word error rates (WER) for each visual parameterisation on
a substantial subset of the IBM ViaVoiceTM audio-visual speech
database [4]. The hidden Markov model (HMM) toolkit HTK [11]
is used to rescore audio lattices in a large vocabulary (10,500 words),
speaker independent, continuous speech recognition task.

2. ACTIVE APPEARANCE MODELS

An active appearance model (AAM) is a statistical model that
combines shape and appearance information to form a non-rigid
model of an image region. The AAM algorithm [1] describes an
iterative scheme to fit this model to an example image. An AAM
is built by first considering shape and appearance variation inde-
pendently across a training set of images, then combining to form
a single model.

2.1. Shape Modelling

Shape deformations of an image region, e.g. face or lips, seen in
a training set can be described using the eigenspace of a set of
landmark points. The entire face is modelled using 68 points to
outline the eyebrows, eyes, jaw, mouth inner and outer contour,
and line down the bridge and under the nose, see figure 1.

Figure 1: Example of the 68 landmark points used for shape
modelling.

Landmark points were manually located in a training set of
4,072 images. Shape s, is described by the 2N -dimensional vector
of N concatenated landmark (x , y) coordinates,

s = [x1, y1, x2, y2,..., xN , yN ]T . (1)

A similarity transform (translation, rotation and scaling) is used
in an iterative Procrustes analysis [1] to align each shape in the
training set. This step ensures that the variation in the training set
is due only to shape differences.

The main modes of shape variation, i.e. axes of greatest vari-
ance, are found using PCA. Valid shape variation is compactly
modelled as a projection into a subset of this eigenspace,

s ≈ s + Psbs , (2)

0-7695-1198-8/01/$10.00 (C) 2001 IEEE

1032

HTML Paper

2001 IEEE International Conference on Multimedia and Expo  
ISBN 0-7695-1198-8/01 $17.00 © 2001 IEEE 



where s is the mean aligned shape, Ps is the matrix of t shape
eigenvectors [ps1 ,ps2 ,...,pst ] , and bs is the t dimensional vec-
tor of corresponding weights (the principal components). The di-
mensionality, t is chosen so that the sum of the top t eigenvectors
describes some portion of the total variance.

Figure 2 shows the mean face shape deformed by projecting
up to ±3 standard deviations for the first four modes. The final
shape model uses 11 modes to describe 85% of the variance of the
labeled training images from the IBM ViaVoiceTM database.

mode 1 mode 2 mode 3 mode 4

Figure 2: Statistical shape model. Each mode is plotted at ±3
standard deviations around the mean. The top four modes de-
scribe 65% of the variance of the training set.

2.2. Shape-Free Appearance Modelling

PCA can also be used to compactly model pixel intensity, or colour,
variation over a training set of images, and is often called “eigen-
faces” [9]. Pixel values in an N × M image are represented as
a single NM -dimensional vector by sampling the image from its
rows or columns. The extension to a colour image is simply to
sample each colour attribute for each pixel. All appearance mod-
elling in this paper uses colour images.

A problem using this approach is that background pixels in the
image can introduce significant unwanted variance. Typically, a
region of interest (ROI) in the image is located to remove as much
background as possible. This is the approach used in section 3. A
more specific model can be obtained by sampling only the pixel
values that lie within the region to be modelled, for example the
face. However, this region is generally deformable and cannot be
sampled reliably. One solution is to warp all training images to a
reference shape before sampling.

A warp is defined using the landmark points labelled for shape
modelling as source vertices, and the mean shape points s, as desti-
nation vertices. The image then forms the texture map for a texture
mapping operation that can be implemented using a graphics API
such as OpenGL, and is usually hardware accelerated. The size of
the reference shape can be chosen to define the number of appear-
ance pixels to be modelled, 6000 in this case. Figure 3 illustrates
this process. The reference shape could be arbitrary, but the mean
shape is convenient.

labelled image face region warped image

Figure 3: Appearance shape normalisation. Labelled landmark
points are texture mapped to the mean reference shape.

The appearance can now be sampled in this reference frame,
where each pixel has approximately equivalent meaning for all

training examples. Shape-normalised appearance is approximated
using the top t eigenvectors from PCA,

a ≈ a + Paba , (3)

where Pa is the matrix of t shape normalised appearance eigenvec-
tors, and ba is the t-dimensional vector of corresponding weights.

Figure 4 shows the mean shape-normalised appearance and
projections at ± 3 standard deviations for the first four modes. The
shape-free appearance model uses 186 modes to describe 85% of
the variance of the labelled training images from the IBM ViaVoiceTM

database.

+3σ

mean

−3σ

mode 1 mode 2 mode 3 mode 4

Figure 4: Shape free appearance. Centre row, mean appear-
ance. Top and bottom row, +3 and −3 standard deviations from
the mean respectively. The top four modes describe 33% of the
training set variance.

2.3. Combined Shape and Appearance Model

Often there is significant correlation between shape and appear-
ance. For example, lips look different when the mouth is open and
the oral cavity is seen. A third PCA can be used to decorrelate the
individual shape and shape-normalised appearance eigenspaces and
create a combined shape and appearance model.

The combined shape and appearance space is generated by
concatenating the shape and appearance model parameters into a
single vector,

c = [bT
s ,bT

a ]T . (4)

As these parameters represent projections on (x , y) coordinates
and pixel intensity values respectively, PCA cannot be applied
directly on the combined vectors. A weighting factor is used to
equalise the relative variance contribution from shape and appear-
ance parameters. When the weighted, concatenated parameters are
transformed using a final PCA the combined shape and appearance
model is obtained,

c ≈ Pcbc , (5)

where Pc is the matrix of t combined shape and appearance eigen-
vectors and bc is the t-dimensional vector of weights. Figure 5
shows the top four, out of 86 modes of the final model describing
95% of the combined variance.

2.4. Fitting

Small perturbations in the model parameter set, δm, are assumed
to have a linear relationship to the difference between the current
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Figure 5: Combined shape and appearance. Centre row, mean
shape and appearance. Top and bottom row, +3 and −3 stan-
dard deviations respectively. The top four modes describe 46%
of the combined variance.

model projection and the image, δa = ai − a, where a is the
shape-normalised image appearance, and ai is the current model
appearance. For fitting, m includes pose parameters as well as
combined model parameters bc.

Given a training set of model perturbations δm, and corre-
sponding difference appearances δa, a linear update model,

δm = R δa , (6)

can be solved for R, using linear regression. The training set can
be synthesised to an arbitrary size using random perturbations of
the model parameters and recording the resulting difference ap-
pearance.

The combined model (5) is fitted to an example image by it-
eratively applying the update prediction (6). Visual speech fea-
tures can be directly obtained using the resulting 86 dimensional
model parameters bc. Images in the IBM ViaVoiceTM database are
704 × 480 pixels and were tracked at 4–5 frames per second.

3. IMAGE TRANSFORMATION FEATURES

An alternative method for coding visual features is to directly trans-
form the image pixel values around the lips into a lower dimen-
sional space. Ideally this transform will remove redundant in-
formation and code only salient visual speech features. In prac-
tice, linear transforms provide good results and are readily imple-
mentable. Three are considered here; the discrete cosine transform
(DCT), the discrete wavelet transform (DWT) and principal com-
ponent analysis (PCA).

The face region is automatically located in each image using
the algorithm described in [6]. The lip region is then extracted
using lip contour points, and scaled to 64 × 64 pixels. Pixel lu-
minance values are sampled to form a 4096 dimensional vector.
Some example faces are shown in figure 6 with corresponding
mouth regions.

The discrete cosine transform is similar to the discrete Fourier
transform (DFT) but represents the data using only (real) cosine
basis functions. The discrete wavelet transform [5] is another or-
thogonal, linear transform, but the basis functions are more com-
plex and localised. Both second and third order Daubechies class
wavelet filters (DWT 2 and DWT 3) are used. Full details of the
implementation can be found in [3, 4].

Figure 6: Region of interest extraction. Top rows show exam-
ple video frames from 8 database subjects. Lower row shows
corresponding extracted mouth regions of interest.

Principal component analysis has been described in section 2.1.
The only difference when applying directly to image regions is that
the data are scaled according to the variance in each dimension.
This normalises the feature space and accords equal importance to
each dimension. This is computed by calculating the eigenvectors
and eigenvalues of the correlation matrix. To simplify the PCA
calculation the mouth region images were further subsampled to
32 × 32 pixels.

In all cases, visual features are formed by taking the 24 high-
est energy components from the transform, considered over all the
training data.

4. MATCHED DISCRIMINANT FEATURES

All the visual front ends, AAM, DCT, DWT and PCA, are fur-
ther subject to a two stage transformation to form the final visual
features.

The first stage uses linear discriminant analysis (LDA) to find
the best linear transform to separate the feature space according to
a set of classes. In this case 2808 HMM states are used to classify
the data. To explicitly model dynamic visual speech information,
LDA is applied to 15 temporally concatenated features. Only the
top 41 features in the LDA transformed space are retained.

The final step is a feature space rotation using a maximum
likelihood linear transform (MLLT). MLLT considers the observa-
tion data likelihood in the feature space under the assumption of
diagonal data covariance in the transformed space. Further details
of the implementation can be found in [4]. The final features in all
cases are 41 dimensional.

5. DATABASE AND EXPERIMENTAL RESULTS

A subset of 4,952 sequences, representing 1,119,256 images, of
the IBM ViaVoiceTM database was used for all experiments. This
covers 10 hrs, 22 mins of video data at 30 frames per second. From
this 4,441 sequences are used for training data, and 506 sequences
are used for test data in a speaker independent task on a 10,500
word vocabulary A further subset of 4,072 images taken from 323
sequences was used to train the AAM. This took significant effort,
as each image had 68 points manually labelled, but covers only 2
mins 13 secs of video data.
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The mean square pixel error between the model fit and image
can be computed for each frame of the AAM tracked images. The
average error over an entire sequence varies between 89.1 (best
fitted) to 548.9 (worst) with a mean fit error of 254.2. Visual in-
spection of the results show that the AAM often failed to follow
small facial motions.

Visual features were compared by training visual-only HMM’s.
Three state, 12 Gaussian mixture, triphone models were created
using standard acoustic decision tree based clustering. The visual
HMM’s were then used to rescore lattices obtained using noisy,
audio-only HMM’s. The noisy audio models were obtained by
training on acoustic data corrupted by additive ‘babble’ noise at
8.5 dB.

Because of the rescoring methodology, the recognition results
cannot be interpreted as visual-only results. These experiments
are to determine whether the visual parameterisation used is able
to extract useful additional speech information. Further details of
the experimental setup are described in [2].

The large vocabulary, continuous, audio-visual speech recog-
nition word error rate (WER) scores obtained for all features are
summarised in table 1. The best visual results are obtained using
the DCT transform-based features. The oracle result (best path
through the lattice), anti-oracle (worst path), and best path using
only the language model are also shown. The best overall perfor-
mance was obtained using noisy acoustic (MFCC) features, similar
to those used to obtain the lattice.

Modality Parameterisation WER %

Visual DCT 58.1
DWT 3 58.8
PCA 58.8
DWT 2 59.4
AAM 64.0

Acoustic MFCC (noisy audio) 55.0

None Oracle 31.2
Anti-oracle 102.6
LM best path 62.0

Table 1: Speaker independent, large vocabulary, continuous,
audio-visual recognition word error rates (WER) for each of
the proposed visual feature parameterisations, based on lattice
rescoring. Audio-only (at 8.5 dB SNR), and characteristic lat-
tice WERs are also shown.

6. SUMMARY

This paper compares four different visual speech parameterisa-
tions in a large vocabulary, continuous, audio-visual speech task.
Three of these methods, DCT, DWT and PCA, are image-transform
based techniques that require the ROI around the mouth to be lo-
cated. The fourth, AAM, attempts to model the entire face as a
deformable model of facial appearance and includes a tracking al-
gorithm. Using the entire face improves tracking performance as
the region has more appearance constraints. There is also evidence
that including additional facial features will be beneficial [8, 10].

Experimental results show that the image transform methods
perform better. The AAM based features suffer from the com-
mon problems of a model-based method; modelling and tracking
errors. Most significant is the measurable poor tracking perfor-
mance. This is a function of the extremely small amount of model

training data and the fitting algorithm. In particular, the linear re-
gression approach to calculating model updates suffers from being
undersampled for high dimensional models. The AAM features
were the only ones to perform worse than using only the language
model to decode the noisy audio-only lattice.

By incorporating suitable prior knowledge and integrating track-
ing and parameterisation we hope that a more robust model-based
approach may yet turn out to be a useful method.
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