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ABSTRACT

A mathematical morphology based filter structure called
a sieve is used to process mouth image sequences of a
talker’s mouth and form visual speech features. The
effects of varying the type of filter, the post-processing
and hidden Markov model (HMM) parameters on recog-
nition accuracy are investigated using two audio-visual
speech databases.

1 INTRODUCTION

It is well known that visual speech information is used to
improve the intelligibility of speech, especially in noisy
conditions [10, 20]. Audio-visual blend-illusions [15]
where the perceiver ‘hears’ something other than ei-
ther of the, deliberately different, audio or visual speech
signals demonstrate how fundamentally bimodal our
speech perception is. The addition of visual speech fea-
tures to computer speech recognition has also demon-
strated improved accuracy, for example [1,8,18]. A re-
cent overview of the field can be found in [13].

In this paper we address the problem of visual speech
feature extraction. At the extremes, the methods for ex-
tracting visual features can be classified as either model-
based or low-level. An example of the model-based ap-
proach is to use some form of ‘snake’, for example [14].
Low-level methods, such as ‘eigenlips’ [8], do not assume
any prior information and operate directly on the pixel
values.

Our low-level approach is to use a robust non-
linear multiscale morphological filter structure called a
sieve [3-5]. This allows us to decompose an N-D signal
by scale. In 1-D scale is length, in 2-D scale is area and
so on. We apply a 1-D sieve to a 2-D image by scanning
the image vertically and so measure the vertical lengths
that form the image. This information is further pro-
cessed to form scale-histograms that represent a measure
of the overall structure of the image independent of posi-
tion information. Finally, principal component analysis
(PCA) is used to form a reduced vector in the directions
of most variance. We assess the effects on visual speech
recognition accuracy of varying the type of processing
used to build these features.
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2 DATABASES

In the absence of a standard database each research
group has collected their own. Two easily obtained are
the Tulips database of isolated digits recorded by Javier
Movellan at UCSC [17] and our own AVletters database
of isolated letters [9,11].

The AVletters database consists of three repetitions
by each of ten talkers, five male (two with moustaches)
and five female, of the letters A-Z. Each utterance was
digitised at quarter frame PAL resolution (376 x 288
at 25fps) using a Macintosh Quadra 600Av in ITU-R
BT.601 8-bit headroom greyscale. Audio was simulta-
neously recorded at 22.05kHz, 16-bit resolution '. The
mouth images were further cropped to 80 x 60 pixels af-
ter locating the centre of the mouth in the middle frame
of each utterance.

The Tulips database contains two repetitions of
the digits 1-4 by each of 12 talkers, 9 male and
3 female. The database was digitised at 100 x
75 resolution at 30fps using a Macintosh Quadra
840Av in ITU-R BT.601 8-bit headroom greyscale.
Audio was simultaneously recorded at 11kHz, 8-
bit resolution. This database is available from
http://cogsci.ucsd.edu/ "movellan/.

Table 1 compares both databases.

AVletters Tulips
Task £A77£Z7 4177447
No. talkers 10 12
Repetitions 3 2
Utterances 780 96
Frames 18,562 934
Image size 80 x 60 100 x 75
Lighting ceiling ceiling + side

Table 1: Comparison of databases.

3 MULTISCALE SPATIAL ANALYSIS

The method we use has its theoretical roots in mathe-
matical morphology and is similar to granulometry. A

1This database is available on CDROM by contacting the au-
thors.



sieve is related to alternating sequential filters (formed
from openings and closings) and recursive median filters.
Sieves preserve scale-space causality [3-5] and they can
transform the signal to another domain, called granu-
larity, and such a transformation is invertible [2].

The sieve may be defined in any number of dimen-
sions by defining the image as a set of connected pix-
els with their connectivity represented as a graph [12],
G = (V,E) where the set of vertices, V, are pixel la-
bels and FE, the set of edges, represent the adjacencies.
Defining C,-(G) as the set of connected subsets of G with
r elements allows the definition of C,.(G, x) as those el-
ements of C,.(G) that contain x.

CT(G"T) :{gecr(G”er} (1)

Morphological openings and closings, over a graph, may
be defined as

Urfx) = 56611’1%21(,z)11{1€i?f(U) (2)
Y f(x) = min max f(u) (3)
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The effect of an opening of size one, s, is to remove
all mazima of area one when working in 2-D. In 1-D it
would remove all maxima of length one. 5 would re-
move minima of scale one. Applying 5 to o f(z) will
now remove all maxima of scale two and so on. Sieves,
and filters in their class such as alternating sequential fil-
ters with flat structuring elements, depend on repeated
application of such operators at increasing scale. Each
stage removes maxima and/or minima of a particular
scale. The output at scale r is denoted by f,(z) with

fi=Qf =fand frpg=Q ", (4)

where Q is one of the -y or ¢ operators. Illustrations of
sieves and formal proofs of their properties appear else-
where [3]. The differences between successive stages of
a sieve, called granule functions, d, = f, — fr4+1, contain
non-zero regions, called granules, of only that scale.

In one-dimension the graph, (1), becomes an interval

Cr(x) ={[z,x+r—1]|x € Z} (5)

where Z is the set of integers and C. is the set of inter-
vals in Z with r elements and the sieves so formed give
decompositions by length. For lipreading a 1-D sieve is
used to measure the lengths of features seen vertically
down the face in the mouth region and these vary as the
mouth opens and shuts.

The sieves used in this paper differ in the order in
which they process extrema. In 1-D the effect of apply-
ing an opening of size one, 15, is to remove all maxima
of length one, an o-sieve. Likewise a 72 would remove
minima of length one, a c-sieve. These are identical to
granulometries.

For this work, we also use a variant in which the max-
ima and minima are removed in a single pass. This is
equivalent to applying a recursive median filter at each

scale [5]. The sieve so formed is called an m-sieve. It
inherits the ability to robustly reject noise in the man-
ner of medians [7] and is much quicker to compute than
conventional scale-space preserving schemes.

A granularity is obtained for each mouth image of
an utterance, in turn, by applying a one-dimensional
sieve along each vertical line. A large number gran-
ules are obtained and the problem is how to reduce the
number of values to manageable proportions. Here, we
take the simple step of creating a histogram of granule
scales. This is a rough measure of the overall shape of
the mouth. It provides a simple method of substantially
reducing the dimensionality from that of the raw image
data to the maximum scale used in the sieve. In these
examples between 60 and 100 scales are used. The ob-
servation vector for the HMM classification is formed by
further processing each “scale-histogram”.

The simplest form of scale-histogram is obtained by
counting the number of granules found at each scale,
from 1 to maximum scale and plotting this as a his-
togram, sh. An alternative is to calculate “granule en-
ergy” by summing the squared amplitudes, a?. Other
alternatives include summing the raw amplitudes, a and
the absolute amplitudes, |a|, noting that granules can
have negative amplitude. Examples of these are shown
in Figure 1.

The changes in a scale-histogram can be followed over
time in Figure 2 for a |a| histogram. The scale-histogram
is plotted as intensity, white represents a large number
of granules. The top row is the smallest scale and the
bottom the largest.

The dimensionality of the scale-histograms is further
reduced to 5, 10, 15 or 20 features by principal compo-
nent analysis.

4 RESULTS

For the AVletters database recognition experiments
were performed using the first two utterances from each
of the ten talkers as a training set (20 training exam-
ples per utterance) and the third utterance from each
talker as a test set (10 test examples per utterance).
For the Tulips database recognition was performed us-
ing the first utterance from each of the twelve talkers as
a training set (12 examples per utterance) and the sec-
ond utterance from each talker as a test set (12 examples
per utterance).

Classification was done using left to right HMM’s,
each state associated with a one or more Gaussian densi-
ties with a diagonal covariance matrix. All HMM’s were
implemented using the HMM Toolkit HTK V2.1 [21].

The first step is to find some ground rules on what
best characterises the mouth movement. For example
Figure 2 shows that the type of analysis could affect the
result. We investigated the following options:

i. processing with the m-sieve, o-sieve or c-sieve;



Scale histogram

Amplitude scale histogram

Amplitude” scale histogram |Amplitude] scale histogram

RS
8 3
8 8

°

No. granuies
No. granuies

2
8

00|
200|
o

8000)
6000]

4000

1000f
500|
o o

No. granuies
g
&
8

0 20 40 60
Scale

Scale histogram

h 2 40 6

Amplitude scale histogram

2000
0 ] 20 40 60 0 20 40 60
Scale Scale Scale
L 1" Amplitude* scale histogram |Amplitude] scale histogram

400|

200|

400)
200 200
20 20 400

No. granuies
2
8

No. granuies

mouth

Figure 1: Comparison of scale-histograms for closed,

0 20

5|

1 §

No. granules

=
8
S
3

°
N
a B8
g 8
o 8 8
N
8
5
&

40 60

Scale Scale

la

Scale

a a2

top panel and open, bottom panel, mouths. Abscissa runs

from scale 0 to scale 60 and the ordinate shows the number of granules.

|Amplitude| scale histogram - m

|Amplitude| scale histogram - o

|Amplitude| scale histogram - ¢

5 10
Frame

m-sieve

5

1
Frame

c-sieve

Figure 2: The changes in three different |a| histograms over time observed for the utterance ‘M’. Intensity is a
function of absolute amplitude, the abscissa is time and the ordinate scale with small scale granules shown at the
top. Left panel, m-sieve, middle panel o- and right panel c-sieve.

—-

i. preserving DC component of the image or ignore it;

iii. temporally interpolating the visual features or not;

iv. varying the number of principal components;

v. using the covariance or correlation matrix;

vi. varying the number of states in the HMM;

vii. varying the number of Gaussian modes per state.

We form features using PCA so all that needs to be
determined are the eigenvectors of the covariance or cor-
relation matrix. Exploring all the above variables was a
lengthy computational task, however, the results show
several clear trends that allow us to discount some op-
tions and present the only the interesting results. For
example the experiments show that it is generally better
to ignore the DC component and to use the covariance
matrix when calculating the PCA.

It would be expected that most of the information
would be associated with the boundary of the dark inte-
rior of the mouth. This is most effectively distinguished
by a closing granulometry, and very badly characterised
by an opening granulometry. The recognition results
confirm this and we therefore concentrate on results
from the ¢ and m-sieve, which is bipolar and more ro-

bust [7].

The remaining results are summarised in Table 2. Us-
ing nine states and three Gaussian modes per state are
preferred. There also seems to be a slight advantage in
using interpolated data. The best results are obtained
using the |a| histograms from a c-sieve, followed closely
by the m-sieve. The best results, 44.6% and 40.8%, are
obtained with interpolated |a| histograms for ¢ and m-
sieves respectively.

The trends in the results shown for the AVletters
database are reflected in the results obtained with the
Tulips database. Table 3 shows a direct comparison of
results obtained using the best analysis options (]a| his-
togram using a c-sieve, ignoring DC, PCA with covari-
ance matrix).

States 5 7 9
Modes 1 3 1 3 1 3
AVletters 10 | 16.5 30.8 | 25.4 37.7 | 30.0 37.3
AVletters 20 | 24.6  36.1 27.3 36.5 | 32.7 44.6
Tulips 10 66.7 54.2 | 77.1 583 | 75.0 72.9
Tulips 20 62.5 52.1 | 66.7 583 | 64.6 68.7

Table 3: Recognition accuracies, %, for Tulips
and AVletters with variations in the HMM param-
eters: no. states and no. Gaussian modes per state.
For 10 and 20 PCA coefficients.



c-sieve m-sieve

T S I I NI
1 3 1 3 1 3 1 3
5 | 26.2 36.2 | 24.6 346 | 21.9 38.1 | 185 36.2
sh 7 (242 366 | 285 34.6 | 27.3 40.8 | 25.8 41.2
9 | 308 377 | 30.8 392|273 389 | 285 40.8
5 | 189 358 | 200 335 | 21.2 315 | 204 323
a 7239 373|235 342|208 331|219 304
9| 273 385 | 285 362 | 27.8 346 | 227 339
5 | 246 362 | 22.3 40.0 | 19.6 36.2 | 20.8 35.8
la] 7 | 273 365 | 269 362 | 28.1 369 | 258 38.9
9 | 327 44.6 | 30.0 41.5 | 30.0 40.8 | 28.1 39.6
5 | 177 342 | 13.1 319 | 181 31.9 | 19.6 296
a®> 7| 231 346 | 21.2 346 | 20.0 326 | 21.5 304
9| 215 373 | 277 284|234 315 | 21.2 30.8

Table 2: Shows how varying the HMM parameters: number of states, S, and Gaussian mixtures (1 or 3) affect
recognition accuracy, %, for interpolated, I, and non-interpolated, NI, AVletters data for both c-sieve and m-sieve.

5 DISCUSSION

A major problem in this field, unlike acoustic speech
recognition, is the lack of a standard task. Here we
have attempted to overcome this by performing tests
on two databases. However, there is an urgent need
to compare this method with alternative visual feature
extraction methods, particularly those using a model-
based approach. We are currently addressing this.

A notable shortcoming of this system is that it is sen-
sitive to scale variation. For example motion of the
talker towards the camera introduces unwanted varia-
tion. This might be solved by using an automatic head
tracker, such an approach has been implemented else-
where [8,16].
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