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ABSTRACT

This paper compares three methods of lipreading for
visual and audio-visual speech recognition. Lip shape
information is obtained using an Active Shape Model
(ASM) lip tracker but is not as effective as modelling
the combined shape and enclosed greylevel surface
using an Active Appearance Model (AAM). A non-
tracked alternative is a nonlinear transform of the im-
age using a multiscale spatial analysis (MSA). This
performs almost identically to AAM’s in both visual
and audio-visual recognition tasks on a multi-talker
database of isolated letters.

1. INTRODUCTION

Two clear paradigms for lipreading, or visual speech
recognition, are the high-level, model-based, and low-
level, pixel-based, approaches. Between these two ex-
tremes is a continuum of possibilities and in this pa-
per we present three different methods in the same
experimental context. The first method uses active
shape models (ASM’s) [6] to track the inner and outer
lip contours [11, 12]. This uses a statistical, learned,
model of valid lip shapes to constrain the tracking
process. An extension to our previous ASM track-
ing results [12] is the addition of coarse to fine im-
age multiscale tracking. The second method is a re-
cent extension to ASM’s, the active appearance model
(AAM) [5]. This models both shape and greylevel
appearance in a single statistical model, unifying
ASM tracking and an eigen analysis of the underlying
greylevels. The third method is a pixel-based analysis
using a nonlinear multiscale spatial analysis (MSA) to
transform images into a more robust scale-space do-
main that is related to pixel values before extracting
features.

Here we compare ASM’s, AAM’s and MSA on the
AVletters database of the isolated letters ‘A’–‘Z’ from

ten talkers using a standard implementation of hidden
Markov model recognition.

We then compare all of these methods using best
weighted late integrated audio-visual recognition, up-
dating our previous results [8].

2. DATABASE

The AVletters database consists of three repetitions by
each of ten talkers, five male (two with moustaches)
and five female, of the letters A–Z. Each utterance was
digitised at quarter frame PAL resolution (376�288
at 25fps) using a Macintosh Quadra 660AV in ITU-R
BT.601 8-bit headroom greyscale. Audio was simulta-
neously recorded at 22.05kHz, 16-bit resolution1. The
mouth images were further cropped to 80� 60 pix-
els after locating the centre of the mouth in the mid-
dle frame of each utterance. Table 1 summarises the
database.

Task ‘A’–‘Z’
Talkers 10
Repetitions 3
Utterances 780
Frames 18,562
Mouth size 80�60
Lighting studio ceiling

Table 1: Summary of AVletters database.

3. METHODS

3.1. Active Shape Model Tracking

Active shape models are a high-level, model-based,
method of extracting lip shape information from im-
age sequences. An active shape model (ASM) is a

1This database is available on CDROM by contacting the au-
thors.
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shape constrained iterative fitting process. The con-
straint comes from a statistical shape model built from
labelled training data. The model compactly describes
the space of valid lip shapes, in the sense of the train-
ing data, and points in this reduced space are repre-
sentations of lip shape that can be directly used for
lipreading.

To form the model a mean shape,x, is calculated from
points hand located in 1,144 aligned images and prin-
cipal component analysis (PCA) applied to identify
the directions of the variations about this shape. The
inner and outer lip contour are defined using 44 land-
mark points. Any valid shape,x, in the sense of the
training data, can then be approximated by adding the
weighted sum of a reduced subset,t, of these modes
of variation to the mean shape,

x = x+Pb (1)

whereP is a matrix containing the firstt eigenvectors
andb is a vector oft weights.

The order of the point distribution model is chosen so
that 95% of the variance of the models is represented
in thet modes of variation. The first three modes (out
of seven) are shown in Figure 1.

Mode 1 Mode 2 Mode 3

Figure 1: First three modes of variation at�2 standard
deviations about the mean.

In order to iteratively fit a shape model to an ex-
ample image some cost function is required that can
be evaluated to determine the current goodness of
fit. A model of the concatenated gray level profiles
of the normals of each point of a shape model is
used [11]. This model is formed in the same way as
the shape model and called a grey level profile distri-
bution model (GLDM).

xp = xp+Ppbp (2)

The sum of squares error between the concatenated
grey level normals vector and thetp modes of the
GLDM is,

R2
p = (xp�xp)

T(xp�xp)�bT
pbp (3)

To locate modelled features the model is placed at
an initial location on an image and (3) is iteratively
minimised using the simplex algorithm for transla-
tion, rotation, scale and shape parameters until con-
vergence. During minimisation shape and grey level
profile model parameters are constrained to lie within
�3σ of the mean.

For this paper we have also used a coarse to fine mul-
tiscale image search, initially used for ASM’s in [7]
but using a point-wise iterative fit rather than a sim-
plex minimisation over parameter space. For multi-
scale fitting each training image is successively Gaus-
sian filtered and subsampled a number of times and
a set of GLDM’s are built, one for each scale. Each
example image is likewise subsampled and the search
begins at the most coarse scale with the correspond-
ing GLDM and scaled shape model. When converged
the next scale image and GLDM are selected until a
fit is obtained in the original image. This allows much
greater tolerance in the initial parameters: for exam-
ple, at the coarse scale, a displacement of five pixels
is much more significant than at fine scale.

We also examine the use of separate shape models for
each talker. When tracking the lips for a given talker
their shape model is used in the ASM. This always
has fewer modes of variation than the seven of the
talker independent shape model so the tracking is a
minimisation in a dimensionally smaller search space
and should be improved.

However, to avoid training a separate HMM for each
talker (which is difficult with a small training set)
we attempt to map the low number of talker depen-
dent modes into the talker independent space. This
is achieved by minimising the talker dependent mean
shape difference and mapping through the 88 dimen-
sional point coordinate space into the seven dimen-
sional talker independent shape space. The limitations
of this approach are discussed later.

3.2. Active Appearance Model Tracking

An Active Appearance Model (AAM) fits a statisti-
cal model of appearance to a new image using a fast
iterative technique [5]. The appearance model is an
extension of the statistical shape models described in
Section 3.1. It combines a model describing the shape
variation of a set of landmark points with a statistical



model of the greylevels in the region bounded by the
points.

The greylevel texture model is built by warping each
training image so that the landmark points lie on the
mean shape positions,x. This effectively normalises
for shape. If we then sample the intensity values from
each normalised image into a vector,g, we can com-
pute the mean,g, and main modes of variation,Pg,
giving a model

g= g+Pgbg (4)

The combined appearance model is generated by con-
catenating the shape parameters,b and the texture pa-
rameters,bg, and building a similar model of the re-
sult, (with modesQ)�

b
bg

�
= Qc (5)

Figure 2 shows the effect of varying the first three pa-
rameters of an appearance model trained on the lip
data.

Figure 2: First three modes of variation at�2 standard
deviations about the mean.

To match such a model to the image we use the it-
erative Active Appearance Model algorithm. Given a
pose and a set of parametersc, we can project a model
estimate into a target image. If we compute the differ-
ence,dg, between the model and the image (measured
in the shape normalised reference frame) we can use
this to update our estimates of the parameters using

c! c�Rdg (6)

whereR is a matrix describing the relationship be-
tween displacements of the parameters and the differ-
ence vector. This can be estimated from the training
set (see [5] for details). A similar process can update
the estimate of the pose.

To match a model to an image, we simply repeatedly
update the current estimate of the pose and parameters
until no significant change occurs.

For instance, Figure 3 shows frames from an AAM
search matching the lip model to an image, given an
initial estimate in the centre of the image. In this case
only 15 iterations were required to get a good match.
The search completes in less than one second on a
166MHz Pentium machine.

Original Initial Model

After 4 it.s After 15 it.s

Figure 3: Example of AAM Search.

3.3. Multiscale Spatial Analysis

Multiscale spatial analysis is a low-level, pixel based,
method of image analysis. The image is decom-
posed using a nonlinear scale-space decomposition al-
gorithm called asieve [1]. This is a mathematical
morphology serial filter structure that progressively
removes features from the input signal by increasing
scale, Figure 4 shows this structure. At each stage
the filtering elementφ removes extrema of only that
scale. The first stage,φ1, removes extrema of scale
1, φ2 removes extrema of scale 2 and so on until the
maximum scalem. The extrema removed are called
granulesand a decomposition into agranularity do-
main is invertible.

A full sieve decomposition of an image retains all of
the information in the original image, since the gran-
ule amplitudes at a particular position form a partition
of the intensity at that position.

We have previously investigated using 2D area
sieves to extract the ‘blob’ associated with the open
mouth [9] in a similar approach to the original lipread-
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Figure 4: Sieve structure.

ing work [13]. A more successful approach has been
to build scale histogramsusing a 1D length decom-
position to find the distribution of image features over
scale. A sieve can be applied in 1D to a 2D image by
raster scanning vertically.

A full analysis of the methods used for different types
of sieve under different conditions is given in [12].
We find that best results are obtained using a closing
sieve, one that processes only negative extrema in the
signal, and using the top twenty coefficients of a PCA
analysis of the resulting magnitude scale histogram.
A magnitude scale histogram is formed by summing
the absolute values of the granules at each scale rather
than simply counting them. Figure 5 illustrates this
process.

4. RESULTS

Recognition experiments were performed using the
first two utterances from each of the ten talkers as a
training set (20 training examples per utterance) and
the third utterance from each talker as a test set (10
test examples per utterance).

All classification was done using left to right HMM’s,
each state associated with a one or more Gaussian
densities with a diagonal covariance matrix. All
HMM’s were implemented using the HMM Toolkit
HTK V2.1.

4.1. Lipreading Results

All ASM results were obtained using a two stage mul-
tiscale fit initialised to the mean shape in the centre of
the coarse 40�30 image for each frame. Three model
fitting conditions were tested, talker dependent shape
models and GLDM’s (DD in Table 2), talker inde-
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Figure 5: Multiscale spatial analysis. The image (a) is ver-
tically raster scanned, an example cutaway (b) highlights
a single slice. The entire image is decomposed by scale
(vertical length) into granularity (c) and a scale histogram
formed by summing or counting over position at each scale
(d). PCA transforms the 60 dimensional scale histogram to
form feature vectors of the top 20 directions, (e) shows the
result for several frames in sequence.

pendent shape model with talker dependent GLDM’s
(ID in Table 2) and talker independent shape model
and GLDM (II). The best results are obtained using
the talker independent shape model with per talker
GLDM’s. The performance of the talker dependent
ASM’s mapped to the talker independent space was
poor. We attribute this to the large variation between
talkers. Mapping low dimensional talker dependent
axes is only sensible if the rotations map the same
sort of modes of variation onto the same global axes
and this cannot be guaranteed with talkers whose lip
shapes vary greatly.

The AAM results were obtained by initialising to the
mean appearance in the centre of each frame. The
four AAM rows of Table 2 differ in the number of
model parameters used for recognition. Best results
are obtained using all 37 appearance modes but little
accuracy is lost by taking only the most significant 20
or 10 modes.



States 5 7 9
Modes 1 3 5 1 3 5 1 3 5

ASM DD 10.8 15.0 20.4 12.7 15.8 21.2 12.3 16.9 23.5
ASM ID 10.4 19.2 21.2 15.8 25.8 24.6 18.5 22.7 26.9
ASM II 7.7 13.9 8.9 12.3 13.1 10.0 12.3 11.2 -
AAM 5 16.2 25.4 - 18.9 32.7 31.2 19.2 28.9 -
AAM 10 16.5 28.1 35.4 23.1 33.1 37.3 23.1 36.2 38.1
AAM 20 23.8 33.8 41.5 27.3 35.0 40.8 30.0 36.9 39.6
AAM 37 23.1 32.3 41.9 30.0 38.5 39.2 31.9 36.9 38.9
MSA 20 24.6 36.1 41.5 27.3 36.5 40.4 32.7 44.6 41.2

Table 2: Recognition accuracy, % correct, for varying number of HMM states and Gaussian modes per state.

The best MSA result from [12] is shown for compari-
son. The maximum accuracy is very close to that ob-
tained using AAM’s.

4.2. Integration Results

We have previously published late integration results
using MSA on the AVletters database [8]. Here we
update those results with better MSA lipreading per-
formance and compare them with ASM and AAM re-
sults.

If we assume that the output of each recogniser is a
set of probabilities, one for each of theV vocabulary
words, the recognition decision is to choose wordw�

where

w�

= arg max
i=1;2;::: ;V

fαPr(wijA)+(1�α)Pr(wi jV)g (7)

where Pr(wijA) and Pr(wi jV) are the respective prob-
abilities of the i’th word from the audio and video
recognisers andα is a weighting factor.

To chooseα we used a confidence measure based on
the uncertainty of the audio recogniser about a word at
a given SNR. If the set of legal input words is denoted
X and the recognised wordsY a possible entropy de-
rived confidence measure (EDCM) estimate forα is,

α = 1�
H(XjY)

H(XjY)max
(8)

Previous results [8] suggest that using this estimate of
α gives results that are close to those obtained using
an exhaustive search to find the best possible value of
α at each SNR.

Figure 6(a) plots recognition accuracy over a range of
SNR’s. Spectrum subtraction [2] is used to improve

the audio-only results and as the noise level increases
the benefit of adding the best ASM visual recognition
can be seen.

Figure 6(b) plots the same using the best AAM visual
information and Figure 6(c) likewise for the best MSA
results. A comparison between ASM, AAM and MSA
is shown in Figure 6(d). The results obtained using
AAM and MSA are remarkably similar.

5. DISCUSSION

This paper compares three methods of lipreading for
visual and audio-visual speech recognition under the
same experimental conditions. Pure shape informa-
tion obtained using an ASM’s is not as effective as
modelling the combined shape and greylevel surface
using AAM’s. Active Appearance Models extend pre-
vious ‘eigenlip’ lipreading approaches [3, 4] and the
results support the assertation that shape information
alone does not allow accurate lipreading [3].

In both ASM and AAM methods the errors may be
due to a combination of tracking error and modelling
error. The use of a predictive temporal tracking frame-
work can be expected to improve tracking perfor-
mance [10]. Reducing modelling error may require
further labelled training data.

The low-level MSA approach requires neither training
nor, in this crudely hand aligned application, accurate
tracking to deliver identical performance. However,
we would expect to improve accuracy by combining
with lip tracking to identify the mouth area and nor-
malise for image scale.
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Figure 6: Late integration results for all methods.
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