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ABSTRACT

There has recently been increasing interest in the idea of enhancing

speech recognition by the use of visual information derived from

the face of the talker. This paper demonstrates the use of a nonlinear

image decomposition, in the form of a ‘sieve’, applied to the task

of visual speech recognition of a database of the letters A–Z for ten

talkers. A scale histogram is formed directly from the grayscale

pixels of a window containing the talkers mouth on a per frame

basis. Results are presented for visual-only, audio-only and for early

and late-integrated audiovisual cases.

1. INTRODUCTION

It has already been shown [1,6,8,10,12,14,15,17] that the incorpo-

ration of visual information with acoustic speech recognition leads

to a more robust recogniser. While the visual cues of speech alone

are unable to discriminate between all phonemes (e.g. [b] [p]) they

do represent a useful separate channel that can be used to derive

speech information. Degradation of one modality, e.g. interfering

noise or cross-talk for audio, or occlusion for video, may be com-

pensated to some extent by information from the other modality. In

some cases information in each modality is complementary, e.g. the

phonemes [m] [n] vary only by place of articulation and are acous-

tically similar but visually dissimilar.

A major problem in audiovisual speech recognition is that of visual

feature extraction. There are two general methods for extracting

these features: model based or data driven. The model based ap-

proach immediately reduces the dimensionality of the problem to

that of the model and allows the direct incorporation of any a priori

knowledge of visual speech features. The problem arises that we do

not know exactly which visual speech features to use, e.g. lip po-

sition/rounding/protrusion, presence and position of teeth, tongue

etc. and these features are difficult to extract because they require

the use of complex tracking algorithms. Using data driven methods

we do not have to explicitly define the visual features as they are au-

tomatically learnt by the classifier. The main problem with images

lies in how to reduce the dimensionality while retaining as much

essential information as possible. This problem has been addressed

for example by [6, 7, 15].

In this paper we use a nonlinear image decomposition method, a

sieve [2–5], to decompose an image into the granularity domain.

This completely describes the image in terms of granules that have

the attributes position, amplitude and scale. A visual feature vector

is formed using only the scale information in an attempt to define

a feature that is relatively intensity and position invariant and yet

entirely derived from the image itself.

This scale-based visual feature vector is used for Hidden Markov

Model (HMM) recognition for visual only, early integrated and late

integrated audiovisual cases.

2. SIEVE DECOMPOSITION

A sieve or datasieve is an algorithm that uses rank or morphological

filters to simplify signals over multiple scales, that preserves scale-

space causality, and can reversibly transform a signal to a granu-

larity domain. Sieves represent the development of mathematical

morphology to form an alternative to wavelet decomposition.

A sieve is defined by,

Φm(X) = φ(Φm−1(X)) where Φ0(X) = X

The operator φm may be an open/close (M sieve) or close/open

(N sieve) or a recursive equivalent. In the one-dimensional case

used in this paper, Φm : Z → Z is based on a series of increas-

ing scale operations. Defining φm,m = 1, 2, . . . ,m as recursive

median,

ρmf(x) = med(ρmf(x−m+ 1), . . . ,

ρmf(x− 1), f(x), . . . , f(x+m− 1))

gives the recursive median or R sieve,

Rm(X) = ρm(Rm−1(X)), R0(X) = X

the granularity of which is obtained from,

GranR(X)(m) = (Rm(X))− (Rm+1(X))

The granularity consists of the set of granules G that represent the

non-zero intervals in the granule functions and are characterised by

the triplet {position, amplitude, scale}. The sieve transform maps

the signal into a set of granules,

S : Z → G

The inverse, S−1, may be obtained by summing the re-expanded

granules.
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3. VISUAL FEATURE EXTRACTION

The goal of visual feature extraction is to obtain information about

the current image frame that is robust across varying intensity, scale,

translation, rotation, viewing angle and talkers. This is an even more

difficult task for pixel based systems, but the use of e.g. active shape

models [11], deformable templates [9] or dynamic contours [10] to

track the lip contours removes the possibility of learning any other

visual cues that may be significant.

The one dimensional recursive median sieve defined above can be

used to decompose two dimensional image by scanning in a given

direction, e.g. over each column of the image for the vertical case—

as this is the direction in which most motion occurs during speech.

In practice the sieve transform is applied to an entire image in a sin-

gle pass. The resulting granularity contains the position, amplitude

and scale information of the set of granules that describe that image.

As a transform of the original image it contains all the information.

We must discard the amplitude attribute of the granules as this

largely codes the intensity of the image and we require the visual

feature to be independent of intensity variation. The position varia-

tion of a granule is dependent on inter-frame differences of the im-

age feature to which it belongs. To use position information would

require the identification and tracking of ‘interesting’ granules (im-

age features), which is counter to the data-driven paradigm. The

scale parameter is relatively insensitive to to intensity variations

(until quantisation effects become large) and translation. As the im-

age scene varies between frames (e.g. mouth opens, teeth become

visible) the number of granules of a given scale in the image will

change.

We can now collapse the granularity spectrum, by ignoring position

and amplitude information, and form a scale histogram. This is the

number of granules of each scale summed across the entire image.

This provides a simple method of substantially reducing the dimen-

sionality of the raw image data to that of the maximum scale used

in the sieve transform, 60 pixels in this work.

Example scale histograms are show in Figure 1. The top panel

shows typical frames from the image sequence–a neutral frame

and the centre frame from each utterance. The mouth region was

roughly located and the scale histogram of the region obtained. This

is plotted as intensity, white represents a large number of granules

and scale increases down the y-axis. The number of granules clearly

change whenever the mouth moves. The bottom panel shows the

corresponding audio signal. Figure 2 shows a single utterance in

more detail. The utterances are isolated letters and, as expected, the

visual cues can be seen to begin before and end after the acoustic

signal.

4. DATABASE

An audiovisual database was recorded for ten talkers, five male (two

with moustaches) and five female. An example frame from each

talker is shown in Figure 7. Each talker repeated each of the let-

ters A to Z three times, a total of 780 utterances. Recording took

place in the University TV studio under normal studio lighting con-
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Figure 1: Example scale histogram and audio waveform for the

utterance sequence “D-G-M”.
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Figure 2: Example scale histogram and audio waveform for the

utterance “J”.

ditions. Three cameras simultaneously recorded different views of

the talker: full face, mouth only and a side view. All recording was

done to tape, the full face to SVHS quality. The output of a high

quality tie clip microphone was adjusted for each talker through a

sound mixing desk and fed to all video recorders.

An autocue presented the letters A to Z three times in a non-

sequential order. Each talker was asked to return their mouth to the

neutral position after each utterance and allowed to simply watch

the autocue. No attempt at restraining was made but talkers were

asked not to move their mouth out of frame of the mouth close up

camera.

For this work only the full face data has been used. All 780 utter-

ances have been digitised at quarter frame PAL (376×288) resolu-

tion and full PAL frame rate (25Hz) using the standard frame grab-
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ber hardware of a Macintosh Quadra 660AV. All video was digitised

to 8-bit grayscale. Audio was simultaneously digitised using 16-bit

resolution at 22.05kHz to ensure audiovisual time alignment.

Each utterance movie was hand segmented using the video channel

so that each image sequence began and ended with the mouth in the

neutral position. The audio data within this window was then hand

labelled as silence–letter–silence.

5. UNIMODAL RECOGNITION

The oral region was manually extracted from each of the utterance

movies of the database. This was done by positioning a window of

80×60 pixels centrally on the mouth image of the middle frame of

each image sequence. Although there is some head motion of the

talkers the mouth always stays within this region.

Scale histograms were generated for all utterance movies by apply-

ing a vertical one dimensional sieve to each frame. The vertical

dimension of all images is 60 pixels so this is the dimensionality of

each scale histogram. All recognition experiments were performed

using the first two utterances from each of the ten talkers as a train-

ing set (20 training examples per utterance) and the third utterance

from each talker as a test set (10 test examples per utterance). Clas-

sification was done using 10 state, left to right HMMs with each

state associated with a single Gaussian density with a diagonal co-

variance matrix. All HMMs were implemented using the HTK Hid-

den Markov Model Toolkit V1.4.

To further reduce the size of the visual feature vector principle com-

ponent analysis was applied to the entire data set. Figure 3 shows

the variance accounted for as a function of the number of PCA co-

efficients used. Experiments have used 10 (95%) and 20 (99%)

coefficients. Further experiments have compared simple averag-
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Figure 3: Principle Component Analysis.

ing of adjacent values and using scale histograms generated from

zero padded images (this has the effect of preserving the ‘dc’, i.e.

largest scale, values) and performing PCA using both covariance

and correlation matrices (to ignore or imply equal importance of all

variables). All results are summarised in Table 1 which also shows

results for classification with appended delta coefficients. All visual

results were obtained using visual features interpolated from 40ms

to 20ms frame rates. Figure 4 shows the results for the best visual

Accuracy %
Method

Normal +Delta

15 23.85 30.00
Average

30 25.00 28.08

Corr 23.85 25.00
PCA10

Cov 28.46 30.77

Corr 21.92 27.31
PCA20

Cov 34.23 33.46

Corr 28.46 29.62
PCA10 (DC)

Cov 24.62 28.46

Corr 27.31 29.62
PCA20 (DC)

Cov 23.08 30.77

Table 1: Summary of visual-only results.

case (20 PCA coefficients calculated using the covariance matrix of

non-dc preserved scale histograms) on a per-talker basis with au-

dio only results for comparison. The audio features consisted of

12 MFCC coefficients plus an energy term and delta coefficients,

i.e. 26 coefficients, calculated at a frame rate of 20ms. The same

HMM topology and training/test data was used for audio only as vi-

sual only tasks. The variation in visual only performance is clearly
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Figure 4: Unimodal results for each talker. Overall accuracy: visual

only 34.23%, audio only 86.15%.

much greater than that for audio only (20–65% correct), and there is

little correlation between poor audio and poor visual performance.

6. BIMODAL RECOGNITION

The two extremes for bimodal integration are the early and late

methods. For early integration a single classifier is used with com-

posite audiovisual features. Late integration combines the result of

two independent classifiers, one audio, one visual. Further methods

have been proposed by [13] and implemented by [1] which extend

these methods by adding a recoding step. Both early and late inte-

gration methods have been implemented.
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6.1. Early Integration

For early integration a composite audiovisual feature vector was

formed by concatenating audio and visual features to form 46 co-

efficient audiovisual features. The HMM topology described for

unimodal recognition was used. Figure 5 shows the recognition ac-

curacy results for audio-only, visual-only and early integrated au-

diovisual tasks over varying signal to noise ratios (SNR). The ap-

propriate amount to Gaussian white noise was added to take the

audio utterances from clean (25–30dB) to the desired SNR.

A problem with early integration is how to segment the utterances—

our database is labeled for audio and visual data independently to

allow the inclusion of the visual articulation that occurs before and

after the acoustic utterance. Both methods are shown in Figure 5

and the longer visual segmentation gives improved results over au-

dio segmentation. Both methods improve over audio only results

but below 20dB accuracy fall below that of visual alone.

Seg. Visual

Seg. Audio 

Audio      

Visual     

Clean 20dB 10dB 6dB  0dB  −6dB 
0

10

20

30

40

50

60

70

80

90
Early Integration

SNR

A
cc

ur
ac

y 
%

Figure 5: Early integration results.

6.2. Late Integration

For late integration a method of combining the output of two inde-

pendent audio and visual classifiers must be found. One method,

when there is disagreement, is to assign the output to the classifier

which is most ‘confident’. A confidence measure may be formed

by examining the normalised log-likelihoods of each classifier. A

simple method is to form the ratio of the maximum normalised log-

likelihood and the night highest, if this ratio is high the next best

candidate for classification was much lower than the best candidate.

The output is then assigned to the classifier with the highest ratio.

output =

{

A if A1/A2 > V1/V2

V if A1/A2 < V1/V2

The results in Figure 6 show that for low SNR late integration gives

poor results compared to audio alone, this is due to the visual classi-

fier, by this confidence measure, being confidently wrong on several

occasions. At higher SNR performance is improved over early inte-

grated audiovisual, but falls below visual only at 10dB.
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Figure 6: Late integration results.

7. CONCLUSIONS

These results indicate that the scale histogram visual speech fea-

ture vector can be successfully used in visual speech recognition.

A recogniser using only visual information attained an average per-

formance of 34% across ten talkers in a multi-talker, isolated let-

ter recognition task. We have also demonstrated two methods of

combining this information with standard audio features to improve

recognition under noisy conditions using both early and late inte-

gration methods. Future work will focus on finding more effective

ways of integrating the audio and visual information with the aim of

ensuring that the combined performance is always at least as good

as the performance using either modality [1,13,14,17] and in deriv-

ing more discriminative features from a scale histogram to increase

robustness across talkers.
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Figure 7: Example frame from each talker in the database.

5


