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SCALE BASED FEATURES FOR AUDIOVISUAL SPEECH RECOGNITION

I A Matthews, J A Bangham and S J Cox

Abstract

This paper demonstrates the use of nonlinear image decomposition, in the form of a sieve, applied to the task of

audiovisual speech recognition of a database of the letters A–Z for ten talkers. A scale based feature vector is

formed directly from the grayscale pixels of an image containing the talkers mouth on a per frame basis. This is

independent of image amplitude and position information and neither accurate tracking or special markers are

required. Results are presented for audio only, visual only and for early and late integrated audiovisual cases.

1 Introduction

Previous work has shown [1, 7, 9, 12, 14, 16, 17, 19] that the incorporation of visual information with acoustic

speech recognition leads to a more robust recogniser. While the visual cues of speech alone are unable to

discriminate between all phonemes (e.g. [b] [p]) they do represent a useful separate channel that can be used

to derive speech information. Degradation of one modality, for example interfering noise or cross-talk for

audio, or occlusion for video, may be compensated to some extent by information from the other modality. In

some cases information in each modality is complementary, e.g. the phonemes [m] [n] vary only by place of

articulation and are acoustically similar but visually dissimilar.

There are two fundamental problems in audiovisual speech recognition: visual feature extraction and audio-

visual integration. The former can be approached using either model based or data driven methods. Models

reduce the dimensionality of the problem to that of the model and allow the direct incorporation of any a priori

knowledge of visual speech features. However, it is not known which visual features are most useful e.g.

lip position/rounding/protrusion, position/presence of teeth and tongue etc. and these features can be difficult

to extract reliably. Data driven methods do not require us to explicitly define the visual features as they are

automatically learnt by the classifier.

The main problem working directly with images is in how to reduce the dimensionality while retaining as much

essential information as possible. This problem has been addressed for example by [7, 8, 17]. In this paper we

use a nonlinear image decomposition method, a sieve [2–6], to transform an image into the granularity domain.

This completely describes the image in terms of granules that have the attributes position, amplitude and scale.

A visual feature vector is formed using only the scale information in an attempt to define a feature that is

relatively intensity and position invariant and yet entirely derived from the image itself. This scale-based visual

feature vector is used in a Hidden Markov Model (HMM) based recogniser for visual only, early integrated and

late integrated audiovisual cases.

2 Sieve Decomposition

A sieve or datasieve is an algorithm that uses rank or morphological filters to simplify signals over multiple

scales, that preserves scale-space causality, and can reversibly transform a signal to a granularity domain. Sieves

represent the development of mathematical morphology to form an alternative to wavelet decomposition.
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A sieve is defined by,

Φm(X) = φ(Φm−1(X)) where Φ0(X) = X

The operator φm may be an open/close (M sieve) or close/open (N sieve) or a recursive equivalent. In the one-

dimensional case, Φm : Z → Z is based on a series of increasing scale operations. Defining φm,m = 1,2, . . . ,m
as recursive median,

ρm f (x) = med(ρm f (x−m+1), . . . ,ρm f (x−1), f (x), . . . , f (x+m−1))

gives the recursive median or R sieve,

Rm(X) = ρm(Rm−1(X)), R0(X) = X

the granularity of which is obtained from,

GranR(X)(m) = (Rm(X))− (Rm+1(X))

The granularity consists of the set of granules G that represent the non-zero intervals in the granule functions

and are characterised by the triplet {position, amplitude, scale}. The sieve transform maps the signal into a set

of granules,

S : Z → G

The inverse, S−1, may be obtained by summing the re-expanded granules.

3 Visual Feature Extraction

The goal of visual feature extraction is to obtain information from the current image frame that is robust across

varying intensity, scale, translation, rotation, viewing angle and talkers. This is an even more difficult task

for pixel based systems, but the use of e.g. active shape models [13], deformable templates [11] or dynamic

contours [12] to track the lip outline removes the possibility of learning any other visual cues that may be

significant.

The one dimensional recursive median sieve defined above may be used to decompose a two dimensional image

by scanning in a given direction, e.g. over each column of the image for the vertical case—the direction in which

most lip motion occurs during speech. In practice a sieve transform is applied to an entire image in a single

pass. The resulting granularity spectrum contains the position, amplitude and scale information of the set of

granules that describe the image. As a transform of the original image it contains all the information.

We discard the amplitude attribute of the granules as this largely codes the intensity of the image and we require

the visual feature to be independent of intensity variation. The position variation of a granule is dependent on

inter-frame differences of the image feature to which it belongs. To use position information would require

the identification and tracking of ‘interesting’ granules (image features), which is counter to the data driven

paradigm. The scale parameter is relatively insensitive to intensity variations (until quantisation effects become

large) and translation. As the image scene varies between frames (e.g. mouth opens, teeth become visible) the

number of granules at any scale in the image will change.

We can now collapse the granularity spectrum, by ignoring position and amplitude information, and form a

scale histogram. This is the number of granules of each scale summed across the entire image. This also

substantially reduces the dimensionality, from the raw image data to that of the maximum scale used in the

sieve transform, 60 pixels for this work. Figure 1 demonstrates this process.

Example scale histograms are shown in Figure 2 for the utterance sequence “D-G-M”. The top panel shows

typical frames from the image sequence, a neutral frame and the centre frame from each utterance. The mouth

region was roughly located and the scale histogram of the region obtained. This is plotted as intensity, white

represents a large number of granules and scale increases down the y-axis. The number of granules found at a

scale clearly change whenever the mouth moves and remains stationary at other times. The bottom panel shows

the corresponding audio signal. The utterances are isolated letters and, as expected, the visual cues can be seen

to begin before and end after the acoustic signal.
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Figure 1: Forming a scale histogram. The mouth image is sieve transformed to form a granularity spectrum.

Amplitude and position information is removed to form a scale histogram.

Utterance "D G M"

S
ca

le
 H

is
to

gr
am

Frame
20 40 60 80 100 120

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

x 104

−1

−0.5

0

0.5

1

1.5
x 104

S
ou

nd

Sample

Figure 2: Example scale histogram and audio waveform for the utterance sequence “D-G-M”.

4 Database

An audiovisual database was recorded for ten talkers, five male (two with moustaches) and five female. Each

talker repeated each of the letters A to Z three times, a total of 780 utterances. Recording took place in the

University TV studio under normal studio lighting conditions. Three cameras simultaneously recorded different

views of the talker: full face, mouth only and a side view. All recording was done to tape, the full face to SVHS

quality. The output of a high quality tie clip microphone was adjusted for each talker through a sound mixing

desk and fed to all video recorders.

An autocue presented the letters A to Z three times in a non-sequential order. Each talker was asked to return

their mouth to the neutral position after each utterance and allowed to simply watch the autocue. No attempt at

restraining was made but talkers were asked not to move their mouth out of frame of a mouth close up camera.

For this work only the full face data has been used. All 780 utterances have been digitised at quarter frame PAL

(376×288) resolution and full frame rate (25Hz) using the standard frame grabber hardware of a Macintosh

Quadra 660AV. All video was digitised to 8-bit grayscale. Audio was simultaneously digitised using 16-bit

resolution at 22.05kHz to ensure audiovisual time alignment.

Each utterance movie was hand segmented using the video channel so that each image sequence began and

ended with the talkers mouth in the neutral position. The audio data within this window was then hand labelled

as silence–letter–silence.
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5 Unimodal Recognition

The oral region was manually extracted from each of the utterance movies of the database. This was done

by positioning a window of 80×60 pixels centrally on the mouth image of the middle frame of each image

sequence. Although there is some head motion of the talkers the mouth always stays within this region.

Scale histograms were generated for all utterance movies by applying a vertical one dimensional recursive

median sieve to each frame. The vertical dimension of all images is 60 pixels so this is the dimensionality of

each scale histogram. All recognition experiments were performed using the first two utterances from each of

the ten talkers as a training set (20 training examples per utterance) and the third utterance from each talker

as a test set (10 test examples per utterance). Classification was done using 10 state, left to right HMMs

with each state associated with a single Gaussian density with a diagonal covariance matrix. All HMMs were

implemented using the HTK Hidden Markov Model Toolkit V1.4.

To further reduce the size of the visual feature vector principle component analysis (PCA) was applied to the

entire data set. Experiments have used 10 (accounting for 95% of variance) and 20 (99%) coefficients. Further

experiments have compared simple averaging of adjacent values and using scale histograms generated from

zero padded images (this has the effect of preserving the largest scale, i.e. ‘dc’ values) and performing PCA

using both covariance and correlation matrices (to ignore or imply equal importance of all variables). All visual

results were obtained using visual features interpolated from 40ms to 20ms frame rates.
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Figure 3: Unimodal results for each talker. Overall accuracy: visual only 34.23%, audio only 86.15%.

Figure 3 shows the results for the best visual case (20 PCA coefficients calculated using the covariance matrix

of non-dc preserved scale histograms) on a per-talker basis with audio only results for comparison. The audio

features consisted of 12 MFCC coefficients plus an energy term and delta coefficients, i.e. 26 coefficients,

calculated at a frame rate of 20ms. The same HMM topology and training/test data was used for audio only as

visual only tasks.

The variation in visual only performance (20–65% correct) is clearly much greater than that for audio only

(77–92% correct), and there is little correlation between poor audio and poor visual performance.

6 Bimodal Recognition

The two extremes for bimodal integration are the early and late methods. For early integration a single classifier

is used with composite audiovisual features. In contrast late integration combines the result of two independent

classifiers, one audio, one visual. Further methods have been proposed by [15] and implemented by [1] which
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extend both these methods by adding a recoding step. We have implemented an example of both early and late

integration methods.

6.1 Early Integration

For early integration a composite audiovisual feature vector was formed by concatenating audio and visual

features to form 46 coefficient audiovisual features. The HMM topology described for unimodal recognition

was used and Figure 4 shows the recognition accuracy results for audio only, visual only and early integrated

audiovisual tasks over varying signal to noise ratios (SNR). The appropriate amount of Gaussian white noise

was added to take the audio utterances from clean (25–30dB) to the desired SNR.

A problem with early integration is how to segment the utterances, our database is labeled for audio and visual

data independently to allow the inclusion of the visual articulation that occurs before and after the acoustic

utterance. Results using both methods are shown in Figure 4 and the longer visual segmentation gave improved

results over audio segmentation. Both methods improve over audio only results but below 20dB accuracy falls

below that of visual alone.
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Figure 4: Early integration results.

6.2 Late Integration

For late integration a method of combining the output of two independent audio and visual classifiers must be

found. One method for resolving disagreement is to assign the output to the classifier which is most ‘confident’.

A confidence measure may be formed by examining the normalised log-likelihoods of each classifier. A simple

method is to form the ratio of the maximum normalised log-likelihood and the next highest, if this ratio is high

the next best candidate for classification was much lower than the best candidate. The output is then assigned

to the classifier with the highest ratio.

out put =

{

A if A1/A2 >V1/V2

V if A1/A2 <V1/V2

The results in Figure 5 show that for low SNR late integration gives poor results compared to audio alone, this

is due to the visual classifier, by this confidence measure, being confidently wrong on several occasions. At

higher SNR performance was improved over early integrated audiovisual, but falls below visual only at 10dB.
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Figure 5: Late integration results.

7 Conclusions

These results indicate that the scale histogram visual speech feature vector can be successfully used in visual

speech recognition. A recogniser using only visual information attained an average performance of 34% across

ten talkers in a multi-talker, isolated letter recognition task. We have also demonstrated early and late integra-

tion methods of combining this information with standard audio features to improve recognition under noisy

conditions.

Future work will focus on finding more effective ways of integrating the audio and visual information with

the aim of ensuring that the combined performance is always at least as good as the performance using ei-

ther modality [1, 15, 16, 19] and in deriving more discriminative features from a scale histogram to increase

robustness across talkers.

Work is in progress to determine if a scale histogram formed using a two dimensional sieve [3] can also be used

to form visual features. The two dimensional sieve is implemented as described in section 2 but the granules

now describe 2-D extrema, i.e. image patches. This may form more physically meaningful scale histograms as

each granule can be readily interpreted as an image feature.

We are also investigating the use of active shape models [10, 13] as this will allow us to directly compare our

pixel based method with a model based approach. The use of a model/pixel hybrid method would allow us to

normalise a scale histogram with an estimate of the scale of the mouth region and so form features robust to

scale (head motion to and from the camera). This would also provide a method of automatically locating the

mouth region, although this method does not require accurate tracking of the mouth it must remain within the

image frame.
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