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Abstract

Tracking objects like a basketball from a monocular view
is challenging due to its small size, potential to move at high
velocities as well as the high frequency of occlusion. How-
ever, humans with a deep knowledge of a game like bas-
ketball can predict with high accuracy the location of the
ball even without seeing it due to the location and motion of
nearby objects, as well as information of where it was last
seen. Learning from tracking data is problematic however,
due to the high variance in player locations. In this paper,
we show that by simply “permuting” the multi-agent data
we obtain a compact role-ordered feature which accurately
predict the ball owner. We also show that our formulation
can incorporate other information sources such as a vision-
based ball detector to improve prediction accuracy.

1. Introduction

The task we focus on in this paper is tracking the ball in
basketball from a monocular camera. To detect and track
the ball, the intuitive thing to do would be to run an image-
based ball detector on every frame and link the detections
together. However in practice this approach is problematic
as the ball is similar in appearance to human heads causing
false alarms, and it is constantly occluded by players. An
example of this is shown in Fig. 1 where we show a snapshot
from a fixed monocular video camera capturing footage of
a basketball match, where the players are clearly visible but
the ball is not. However, given a lot of training data it is pos-
sible that we would have seen this particular situation before
and would have found that it is highly probable that the ball
is owned by the point-guard (circled). Instead of using mul-
tiple cameras to resolve where the ball is, our approach is
to infer the most probable location of the ball given lots of
previously seen tracking data.
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Figure 1. When the ball is not visible (left), output from a ball
detector (red circle) is unreliable. In this paper, we predict the ball
owner by taking into account other player motion paths.

1.1. Problem Definition

In this paper, our task is to predict which player has the
ball in each frame given a monocular camera view of a bas-
ketball game. We focus on ball ownership - that is predict
which player has the ball at each time instant (i.e., frame).
We do this as the ball is an inanimate object, which means
that its movement relies solely on the actions of intelligent-
agents surrounding it which can be predictive of its loca-
tion. The added benefit of this approach is that the vari-
ance of behaviors of an agent is significantly smaller than
the object, making learning and predicting behaviors of the
object as a function of an agent a more viable task. In
group/team settings, the behavior of an intelligent agent is
further constrained by the actions/motions of the other in-
telligent agents. The key problem we tackle in this paper is
dealing with the high variance of player tracking data. An
example highlighting this issue is shown in Fig. 2(a), where
we show the player locations of each player of one team
across a half of a game (i.e., 5 players in a team and each
color refers to each player). As can be seen in this example,
players tend to be in all parts of the court – devoid of any
team structure – which we call the “misalignment” of player
tracking data. By effectively “aligning” the tracking data to
a team-template which enforces team structure, we mini-
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(a) (b)
Figure 2. (a) Player locations of a team in basketball (M = 5)
across a half (T=29432). Each color refers to a player in a partic-
ular starting position – players are randomly located over the half.
(b) If we align the data, structure of team emerges.

mize the variance of the tracking data which improves the
prediction performance (Fig. 2(b)). This alignment essen-
tially tells us which position a player is in relative to his/her
teammates in each frame – which we call player role. We
show how we can learn a team template (i.e., set of roles) di-
rectly from data in an unsupervised fashion (Sec. 3). Using
this representation we then show by predicting which player
role has the ball and not player identity we can greatly im-
prove ball ownership prediction performance.

The specific tasks we focus on are predicting which
player has the ball given the following information:

1. Full player location information only (Sec. 4),

2. Full player location information + partial (noisy) ball
information (Sec. 5), and

In terms of data, we used two sources: a) 36 games of fully
annotated player and ball tracking data, and b) an automat-
ically tracked game via a vision system, coupled with an-
notations (33min) which has both noisy and its cleaned-up
counterpart. We conducted tasks i)-ii) to see how predictive
player motion was of ball location.

2. Related Work
In terms of tracking and predicting behaviors of multi-

ple agents, an abundance of work has recently focussed on
the topic due to the influx of real-world data sources and
a myriad of useful applications, most notably in the crowd
and security domains [1, 2, 3, 4, 5, 6, 7]. Recent progress
in this area has been gained by utilizing contextual features
which can greatly reduce the solution space, making predic-
tion tractable [5, 3, 7]. Tracking multiple objects moving
in formation has predominantly pertained to rigid forma-
tions, such as the approach proposed by Khan and Shah [8].
Recently, Liu and Liu [9] used a mixture of Markov net-
works to dynamically identify and track lattice and reflec-
tion patterns in video. However, the rigid assumption falls
down when considering more dynamic scenarios like track-
ing sports players [7], where the formations tend to be non-
rigid (i.e., particles freely move around locally, whilst ad-

hering to the overall global structure). With respect to track-
ing objects like a ball, typical approaches [10, 11, 12, 13]
detect the ball frame by frame then extract the optimum path
by linking and smoothing detections. While effective if the
ball is observable, these fail when the ball is occluded for a
period of time. Recently, Wang et al. [14] proposed a ball
occupancy map (BOM) to predict the ball owner when the
ball is hard to track. BOM is built by accumulating multi-
view evidence for the ball in a sparse ground-plane repre-
sentation. However, such an approach is not applicable for
monocular view apporaches. Wang et al. [15] proposed a
fully connected graphical model to track interactive objects
where one type of object may contain the other. However,
inference in this approach is computational expensive.

In terms of minimizing the variance of the tracking data,
the task is given the position information of multiple agents
across many frames, permute them to a fixed canonical tem-
plate. This is similar to the idea of ensemble image align-
ment, where the requirement is to align all images to a
canonical template [16]. Learned-Miller [17] proposed one
of the first methods to do this where he aligned a stack of
images which minimized the total entropy. Cox et al., [18]
formulated congealing as a least-squares problem, while the
RASL algorithm [16] uses rank as a measure of similarity.
Other low-rank objectives, such as transformed component
analysis [19] or robust parameterized component analy-
sis [20] have also been used. More recently, methods which
can deal with multiple modes (or semantically meaningful
groups), have been used to simultaneously align and clus-
ter images [21, 22]. The key difference between the work
in image alignment compared to multi-agent data is that we
want to find the set of permutation matrices rather than a
warp, which makes it a non-convex problem. To counter
this issue, Lucey et al. [23] recently used hand-crafted tem-
plates to form a “role-representation” to align the data to
clean up noisy detections. In this paper, we aim to learn the
templates directly from data and apply it to object predic-
tion. This approach is similar to one recently proposed by
Bialkowski et al. [24, 25].

Our work differs from current approaches as we: i) use
the permuted location data of to represent multi-agent be-
havior to predict the location of an object (i.e., ball), and
ii) incorporate image-based object detector with our group
representation to improve the prediction.

3. Aligning Multi-Agent Team Tracking Data

Given we have the continuous raw positions of M agents
within a team, we can represent the set of observations, O,
across T of multi-agent behavior as the matrix of concate-
nated sequence of 2D points
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Figure 3. Shows the drop in entropy of the probability distribution for each agent as we converge to a solution.
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] denotes the 2D coordinates of the
jth agent at the ith time instance and X
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is the represen-
tation of all M agents for the ith frame. The first problem
we address is that of representation. In terms of fine-grain
analysis, we can use the raw position data which is attrac-
tive as we do not have to quantize the input signal (which
is lossy), and it provides a low-dimensional representation
of the signal. For example in basketball, we can represent
a team of five players by their 2D locations which results
in a 10 dimensional vector. However, if we plot their loca-
tions across T frames, we can see by Fig. 2(a) that the data
is the variance is quite large. But if we permute the data at
each frame which minimizes the variance (or entropy), we
can discover the hidden structure of the data which enables
us to perform better prediction. Given that our similarity
measure is entropy, Hm

(x
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) = � N

T

log

2

N

T

, where N is
the frequency of the jth agent occupying the nth spatial bin,
our goal is to find the permutation matrix at each frame P

i

that minimizes the overall entropy of each agent’s position.
Given we have a reasonable initialization, we can use the
EM algorithm [26] to learn a probability distribution tem-
plate for each agent. The method is summarized in Algo-
rithm 1. We first estimate the set of 2D probability distribu-
tions of the M agents, R = {P (x

1, . . . , P (x

M

)}, where
P (x

m

) =

P
N

n=1

P (x

m|n)P (n) and N is the number of
areas of the quantized court. As the court is 94 ⇥ 50 feet,
we used an occupancy map of 120 ⇥ 60 as the players are
sometimes off the court at times, and we estimated the prob-

ability distribution by a normalized count for each bin. We
then iterate through each frame by calculating the permu-
tation for each frame which has the lowest entropy. We do
this by calculating the change in entropy that assigning each
agent to a particular probability distribution. The assign-
ment is then done using the Hungarian algorithm [27] on
the basis of minimizing the total entropy. We then permute
each frame by the current alignment X

t

and the permutation
matrix P

t

. We then recalculate the probability distribution,
and calculate the change in entropy. We continue this pro-
cess until the change is below a threshold or the number of
maximum iterations is reached. Given training data, we use
this approach to learn the probability distribution for a tem-
plate for each particular role. In Fig. 3 we show how these
converge to lower the overall entropy. At test time, given
a frame of detections we find the cost matrix between these
detections and the set of probability distributions. The Hun-
garian algorithm is then used to find the permutation matrix
at each frame. This gives us the aligned data D

⇤ which can
be described as
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where r

j

i

refers to the jth role a player is performing at
time i. We use the term role to denote the dynamic posi-
tion an agent has at any time relative to their team-mates
instead of an agent maintaining the same feature correspon-
dence which has high variance. Using this method we see
distinct group patterns emerge (Fig. 2(b)).



Algorithm 1 EM to Learn Templates
1: procedure LEARNTEMPLATES(D)
2: Estimate the initial probability distributions, R
3: whilerEntropyD < threshold or iterations < max do
4: for 1 to T do
5: Calculate C

t

(i, j) = � log P (R(j) | X
i

)

6: Find P
t

using Hungarian algorithm
7: Permute current frame X

t

by P
t

8: end for
9: Update probability distributions, R

10: Find change in total entropy,rEntropyD
11: end while
12: return R⇤  R . Our final set of templates
13: end procedure

4. Prediction using Clean Data
Given the clean data source, we assume we know the

identity, location and team affiliation for every player at ev-
ery frame. Additionally, in training we know the current
owner of the ball. At test time, our aim is to predict the
owner of the ball solely from the spatial location and short-
term motion patterns of all the players across a window of
time. This can translated to the problem of predicting the
most likely state sequence Y = {y

1

, . . . , y
T

}, given a set
of observations O = {X

1

, . . . ,X
T

} over T frames, where
y
t

is the state of the ball at time t where y
t

2 {1, ...,M+1}.
As the ball is an inanimate object, we assign the state to be
the ball owner, which can be one of the M players on the
court. We have an additional state which corresponds to
when the ball is in the air (i.e., shot or pass). Formulating
ball tracking as a ball ownership problem was first intro-
duced by Wang et al. [14], but instead of assigning the ball
to a player identity, we assign ball ownership to a particu-
lar role. We formulate the cost of the sequence in terms of
a Conditional Random Field
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where 
1

is the unary potential which measures the compat-
ibility between a label and observations at each frame.  

2

is the pairwise potential which measures the compatibility
between two labels and the observations. The set of param-
eters, ✓

1

, correspond to O and the state y, and ✓
2

is a set of
parameters that correspond to feature O and edges between
y
t

and y
t+1

. In our formulation, both potential functions
take the negative log form
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The assignment of ball owner can be found by minimizing
the loss function with dynamic programming. By modeling
group behavior via a CRF, we are able to incorporate spatial
prior within the unary term by aligning the data, in addition
to team tactics and game context via the pairwise terms.
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Figure 4. Training and testing error against model complexity.

4.1. Unary Term: Frame-Based Prediction

Given observations, we first want to determine how well
we can predict the owner of the ball at a given frame. In
terms of the CRF, this corresponds to calculating the unary
potential p(y

t

;O, ✓
1

). This term refers to the probability of
an agent in a particular role owning the ball given features
and parameters. Due to its simplicity, the representation
given in Eqn. 2 is ideal as there is no need to and store spe-
cific hand-crafted features. The trade-off though, is that the
representation maybe needlessly high-dimensional which
can effect the overall prediction. An alternative is to explic-
itly specify the more relevant features by hand-engineering
as set of features (e.g., distance from basket and other play-
ers etc.). Another approach which circumvents this issue is
to quantize the court into a spatial grid and count the occu-
pancy of players in each grid. As such, we compared the
following representations: i) hand-crafted features, ii) oc-
cupancy maps, and iii) raw position data (aligned and mis-
aligned).

For the raw position data as well as occupancy maps,
not only do we include their spatial positions, but also their
deltas to incorporate their short-term motion. Our classifier
takes the form of a Random Decision Forest, which is robust
against the overfitting that might occur via bootstrapping. It
also has good local-feature space adaptivity via randomly
splitting the feature space at multiple levels of each tree.
We use 70% for the data for training and 30% for testing.
To determine the hyper-parameters of the classifier, we fur-
ther split the training set into k folds for cross validation.
Each time k � 1 folds are used for training and the remain-
ing one is for validation. Fig. 4(left) plots the out of bag
error against different number of trees. Fig. 4(right) shows
the training error and the validation error with respect to the
model complexity (minimum number of observations in the
leaf). We set number of trees to 150 and minimum leafs
as 30 to avoid overfitting. As our aim is to learn behaviors
from a lot of data, we first compared performance using 30
games for training. The quantitive results for the different
representations are shown in Table 1. We first compared
performance by just using the information about the offen-
sive team. We then incorporated the defensive team into the
representation, which further boosted performance. As it
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Figure 5. An example of our frame-based prediction: (a) the player trajectories of the offensive team, (b) ground-truth the ball owner (red
curve), (c) Our predicted ball owner (green curve).

27.10%63.42% 49.43%

(a) (b) (c)
Figure 6. More examples of our frame-based prediction only using player positions. Issues such as prediction flicker and passing and
shooting caused the most error.

can be seen, the permuted raw detections yield the best per-
formance with a prediction rate of over 63%. While this rate
may not appear to be high, visualizing the prediction shows
its impressive performance, which we explain via Fig. 5. In
(a), we first show the trajectories for the offensive team in
blue, in (b) we have superimposed a red-line on top to de-
pict the ball owner on the relevant trajectory, and in (c) we
show our frame-based prediction in green. In Fig. 6, we
show three more examples with varying degrees of success.
An issue with doing it at the frame-level is that there is con-
stant flicker between the predictions, and the prediction also
fails when the ball is in the air. The first issue can be dealt
with by incorporating the pairwise term, while the second
can be overcome by using an image-based ball detector. As
expected, the performance drops when reduce the number
of games used for training (> 50%). However, this is very
useful, as we can incorporate the vision-based ball detec-
tions to boost performance.

4.2. Pairwise Term: Tactics and Context
The pairwise potential, p(y

t+1

|y
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;O, ✓
2

), measures the
transition probability between potential owners at two con-
secutive frames given observation O and parameter ✓

2

.
Similar to [14], we factorize this term into p
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p
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Team Used Representation Prediction Rate (%)
30 games 1 game

Offense Hand-crafted 52.3± 1.0 44.0± 1.6
Occ map 4⇥ 2 53.5± 1.6 40.1± 2.3

Occ map 10⇥ 6 47.7± 2.5 31.5± 2.0

Offense Original Data 32.1± 1.2 35.9± 3.7
Permuted Data 58.6± 1.5 45.9± 2.0

Off & Def Permuted Data 63.1± 2.3 50.2± 3.0
Table 1. Ball ownership prediction performance with different fea-
tures and different number of games for training.

where p
tactics

describes the passing preference between
two roles regardless of location (Fig. 7(left)). The other
term, p

context

, is the transition probability conditioning on
current observation. In our work, p

context

is conditioned
on the distance between roles at two consecutive frames
(Fig. 7(right)). We use this term to add penalty into the
system if owners between two frames are not close to each
other which forces the continuity of owner’s trajectory. The
term p

tactics

can be learnt directly from the data, while
p
context

is computed by putting the distance between two
roles into a laplacian distribution. We then learn the param-
eter b of the laplacian distribution from the held-out set. In
our experiment, b is set to �5. The contribution of each
pairwise term is listed in Table 2, and we can see adding
these pairwise terms boosts performance.
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5. Incorporating Image-Based Ball Detector
In the previous section, while we obtained reasonable

performance, poor prediction was experienced when the
ball was either passed or shot. This is fortuitous however, as
these are the situations where image-based detectors work
very well. Incorporating this into our model as an auxiliary
information source should boost performance as it reduces
the number of predictions we need to make, and thus lim-
its the number of possibilities (see Fig. 8). Given F frames
from a monocular video, our system will segment it into two
states F

1

and F
2

, where F
1

are frames in which the ball is
clearly visible (i.e., long passes) and F

2

are frames in which
the ball is hard to detect. After detecting the frames which
we can reliably detect the ball, we assign labels in all those
frames in the CRF as observed and set to in the air before
decoding the sequence. Since CRFs are undirected model,
these revealed labels will also help predicting the owner be-
fore and after.

5.1. Estimating Ball Candidates

To estimate possible locations of the ball, we employ
a standard ball detection framework which consists of: i)
background subtraction using eigen-background segmenta-
tion, ii) color filtering, iii) region selection and iv) Hough
transform. A visualization of this pipeline is shown in
Fig. 9. To test the performance of the ball detector, we
randomly extracted 3796 frames of images where the ball
is visible. Even though it was visible, there were examples
where the frames where partially occluded or had a similar
color to the background. We tested two color space which
are RGB and HSV, with the RGB working best. The per-
formance is reported in Table 3. Parameters are set loosely
since we want to keep the precision high (false alarms can
be filtered at a later stage).

Method Percentage Accuracy
30 games 1 game

unary only 63.1 50.2
unary + P

tactics

63.8 51.3
unary + P

context

+ P
tactics

66.4 56.0
Table 2. Ownership prediction for unary and pairwise potentials.

y air air y air y

x x x x x x

t = 1 t = F

unary

pairwise

Figure 8. By knowing the frames in which we can accurately locate
the ball position via an image-based ball detector, we can limit the
number of predictions we need to make.

Detector Hit Rate Avg False Alarm
HSV 1802/3796 (49.56%) 4.93/frame
RGB 2435/3796 (64.15%) 2.83/frame

Table 3. Performance of the various color spaces for ball detection.

Method Percentage Accuracy
Without Ball Evidence 55.98%

With Ball Evidence 71.33%
Table 4. Ball prediction rates with and without ball evidence.

5.2. Segmentation

To segment long trajectories, we fit a 3D projectile
model [10] into ball detections across n frames. Depending
on how many detections can be fit into the model, the sys-
tem will decide if a pass or shot is detected. This threshold
is set to 10 in our experiments. To test its performance, we
annotated 206 long passes in our data set. Each pass has at
least 10 frames in the air. Our algorithm is able to detect
157 of them (76.21% hit rate). The performance of the sys-
tem after adding ball evidences are reported in Table 4. Ex-
amples from the fixed cameras are shown in Fig. 10, while
Fig. 11, shows an example of the result of our tracking sys-
tem based on each component.

6. Summary

In this paper, we presented a method to predict the owner
of the ball by learning the spatial and motion patterns of
multiple agents. Due to the amount of data available, we
focussed on basketball to show the utility of this approach.
We first show that there is high variance in the tracking data,
and that by permuting the data by finding the set of permu-
tation matrices to minimize the total variance/entropy of the
data, we can use this as a representation to predict the ball
owner at a high rate. Incorporating the prediction problem
into a CRF, we show we can include contextual and tac-
tic features which can boost performance. Additionally, as
there are instances where image-based detectors work quite
well, we incorporate this information source into our model
to boost performance.



(a) (b) (c) (d)
Figure 9. Images depicted each stage of our ball detector: (a) input image, (b) output after eigen-background segmentation, (c) output after
color filtering, (d) output after region constraints and Hough transform.

(a) (b) (c)
Figure 10. Examples where the ball is visible and occluded (both fully and partial): (a) In the far corner the resolution is low, and the
background is of a similar color to the ball, (b) The ball is occluded by the player, (c) A pass is clearly visible.
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