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Abstract

Real-time facial performance capture has recently been
gaining popularity in virtual film production, driven by ad-
vances in machine learning, which allows for fast infer-
ence of facial geometry from video streams. These learning-
based approaches are significantly influenced by the quality
and amount of labelled training data. Tedious construction
of training sets from real imagery can be replaced by ren-
dering a facial animation rig under on-set conditions ex-
pected at runtime. We learn a synthetic actor-specific prior
by adapting a state-of-the-art facial tracking method. Syn-
thetic training significantly reduces the capture and annota-
tion burden and in theory allows generation of an arbitrary
amount of data. But practical realities such as training time
and compute resources still limit the size of any training set.
We construct better and smaller training sets by investigat-
ing which facial image appearances are crucial for tracking
accuracy, covering the dimensions of expression, viewpoint
and illumination. A reduction of training data in 1-2 orders
of magnitude is demonstrated whilst tracking accuracy is
retained for challenging on-set footage.

1. Introduction

In recent years, real-time markerless facial performance
capture has received a lot of attention both from academia
and industry. Many of the proposed methods are generic in
that they do not require any user-specific training upfront,
and as such are extremely flexible in their use. The down-
side of these methods is however reduced accuracy, partic-
ularly when it comes to person specific features, but also
in the overall shape and face appearance. Other methods
promise greater accuracy when training the method for a
particular person. Such training requires user specific input
data, such as images and potentially geometry, as well as
labels for that data. Since the variation of the facial appear-
ance caused by changing expressions is rather substantial,
a relatively large training set typically consisting of dozens
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of images has to be provided to train the algorithm for a
single illumination condition from a single viewpoint. Un-
fortunately, restricting acquisition to a single known illumi-
nation and viewpoint is often too much of a limitation and
most methods extrapolate poorly to footage acquired un-
der different environmental conditions and/or from different
cameras. Training the methods for large variation in light-
ing and viewpoint would lead to an unbearable amount of
labour to acquire and label the required training data. Fur-
thermore, the required training data can typically only be
acquired under certain conditions, precluding training the
model for different scenarios. An example is the established
industry practice to capture an actor in a well calibrated,
highly-constrained capture setup first to create a high qual-
ity digital double. This digital puppet is then controlled
from video recorded under vastly different conditions, in-
cluding different and time varying illumination as well as
different camera viewpoints, optics and sensors.

Motivated by these challenges, we propose to instead
synthetically generate the required training data, tuned to
the expected environmental conditions and camera proper-
ties. We discuss in this paper how to effectively use fully
synthetic training for the purpose of facial performance cap-
ture. While synthetic training reduces the burden to capture
and annotate data significantly, and in theory allows gener-
ation and training on arbitrarily large amounts of data, prac-
tical realities such as training time and compute resources
still limit the size of any training set. We show how to
construct better and smaller training sets without sacrific-
ing tracking performance by analyzing which facial appear-
ances, covering the dimensions of expression, viewpoint
and illumination, require denser sampling. Our insights will
enable more informed decisions on how to construct an ac-
tor specific training set when given a defined budget of time,
which is particularly important for on-set facial capture in
film and video game productions.

2. Related work

Current methods for markerless 3D facial performance
capture achieve very high quality 3D reconstruction [5, 8,
,23,31,34]. However, high accuracy typically comes



at the cost of high computation time, and therefore recent
methods have focused on real-time face tracking, generally
sacrificing accuracy for speed. A common approach is to
pre-train a system to recognize faces in different poses and
expressions, and under different environmental conditions,
and then infer the 3D facial performance given novel input
video at run-time.

Generic real-time trackers are typically built from large
databases of many different people posed in many different
environments. Some databases consist of images (e.g. HE-
LEN [24], LFPW [6], 300-W [29]), and others contain 3D
face scans (e.g. BU-4DFE [38], BP4D-Spontaneous [39],
FaceWarehouse [12]), but in both cases individual features
of the face must be labelled to provide training data, which
is tedious and time-consuming. Person-independent tech-

niques include Active Appearance Models [3, 15, 26] and
other deformable model fitting [30], regression-based meth-
ods that infer facial landmark positions [13, 20,21, 28, 40]

or feature trackers using prior motion capture data [14].
While exhibiting robust performance for general facial im-
ages, drawbacks of generic trackers are the lack of person-
specific details and that they are often more prone to failures
resulting from local minima.

To obtain higher fidelity tracking, several methods pro-
pose an offline preprocess to build a person-specific prior.
Tracking of 2D facial features can involve learning a regres-
sor on a training video of the subject [27] or incrementally
re-training to adapt to the subject [4]. A common approach
for 3D facial tracking is to build a person-specific facial rig.
The 3D rig is driven in real-time according to structured
light scans [36], RGBD images [32,35] or monocular RGB
stream [19,33]. Caoetal. [I1]regress to 3D landmark posi-
tions after training on images of person-specific expressions
and head pose and then fit the facial rig. It is possible to
regress directly to rig expression parameters and head pose
as in [37] and also consider training images captured under
varying illuminations. Alternatively, the person-specific fa-
cial rig may be built adaptively during real-time tracking,
in so-called “online learning” methods, avoiding the apriori
training process [7, 10,25]. Cao et al. [9] build upon their
previous work [10] by regressing to actor wrinkle detail,
given generic 3D wrinkle training data, but the overall fi-
delity of actor-specific details is still far from that of offline
methods. The main problem with person-specific tracking
is the extreme difficulty and laborious task of capturing and
labelling training data for all scenarios that might occur dur-
ing runtime, including expression changes, camera view-
point, and changing environment illumination.

Our key observation is to use synthetic training imagery,
with inherent data labelling, for high-quality actor-specific
facial tracking. Real-time head pose estimation from depth
images using random forests [16] utilizes synthetic training
by rendering depth maps of a face model undergoing large

rotations. In the generic facial tracker of Jeni et al. [20], the
regression is trained for a number of different viewpoints
by synthetically rendering a database of facial scans. Feng
et al. [17] use a 3D morphable face model to generate syn-
thesized faces for regression-based training, adding head
pose variations to augment real training data. While sim-
ilar in spirit to our approach, these methods do not consider
synthesizing training imagery tailored to camera properties
and different illumination conditions in the target capture
environment. We will show this is essential for achieving
high-quality tracking in real-world environments. To our
knowledge, ours is also the first facial tracking work to sys-
tematically investigate informed reductions of training set
size, enabling reduced computation time while maintaining
tracking accuracy.

3. Regression based face tracking

Our regression framework for real-time face tracking
learns a mapping between images captured by RGB camera
and an actor blend shape rig. In this regard our framework
follows previous work [ 1,37] which train actor-specific re-
gressors using real imagery. Figure 1 depicts a high-level
workflow illustrating our pipeline consisting of offline train-
ing and online tracking stages.

To train our framework we firstly construct a blendshape
rig B = {B;}7_,, for the target actor. The face rig model
has shape and appearance components that enable generat-
ing realistic synthetic facial imagery for training purposes
(see Section 4). Face model state S = (a, r,t) describes a
facial expression a and camera pose (r, t) with respect to
the face. The blend weight vector a defines the 3D shape of
the expression B = By + Z‘j]:l a;(Bj — By). The pose of
a camera with known intrinsic parameters is represented by
3D rotation vector r and 3D translation vector t. A train-
ing sample pair (1,,, Sn) consists of a synthetic face image
I,, and the ground-truth face model state S,, used to render
it. Training set construction produces /N such sample pairs
that facilitate learning of the mapping (see Section 4).

Our framework predicts the change in face model state
S between a preceding frame and the current frame when
presented with the image [ that corresponds to the cur-
rent frame. This enables online tracking of consecutive
frames. The functionality is implemented by augmenting
input training pairs (I,,,S,,) with a set of initial states S,,
that model potential state transitions. The training sam-
ples provided to the algorithm therefore have the form
(Im, S, Sm). The first group of potential initial states de-
scribe expression transitions which are formed by the mg
expressions closest to &,, in all /V training pairs. Similar-
ity of two expressions is computed as the sum of 3D Eu-
clidean distances between the two face shapes. The sec-
ond group of initial states describe camera pose transitions,
where the ground-truth pose (#,,t,) is locally perturbed
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Figure 1: Overview of real-time face tracking framework.

mq times. Specifically, we generate multiple spatial offsets
from (&, t,,) with constant step sizes along each translation
axis and around each rotation axis. This sample augmenta-
tion strategy differs from previous methods [10,11,37], pro-
viding simpler design yet aiding regression stability. Our
training set augmentation process expands the final number
of training samples to M = (mg + my) - N.

The cascaded regression scheme introduced by Cao et
al. [13] is used to learn the mapping between input image
features sampled from I,,, and transitions from S,,, to Sm.
This scheme consists of 7' stage regressors containing se-
quential chains of F' random ferns. Input features for weak
fern regressors are greyscale pixel differences projected and
sampled from 3D point pairs randomly scattered across the
facial rig. These features are mapped to learned increments
of 4S. The D pixel differences are selected from a pool of
U sampling points for each fern independently. Correlation
across all M training samples is computed between possible
pixel differences and the residuals (S,, — S, ) and the most
correlated differences are selected. Because the output vari-
ables (a, r, t) have different scales, in a vein similar to [15]
we weight their influence on the correlation in a principled
way in contrast to [37]. A unit change is applied to a partic-
ular target variable and we compute the resulting change on
the rig mesh. The weights are determined according to nor-
malised magnitudes of this 3D rig mesh change. We also
enforce spatial locality of features [21], which increases
their robustness against illumination change. We employ
a simple 3D distance threshold (~ 10mm) to reduce the
pool of U? potential pixel differences prior to correlation
computation.

Once trained the regressor can track faces online using
a monocular image stream as input. The random fern ap-
proach provides real-time estimation of model state S. To
increase robustness and temporal coherence of the final so-
lution, multiple independent regressions run in parallel at
every frame and their results are averaged together. They
are initialised from different model states S; which are de-
rived from the solution S in the previous frame. We search
for the [ closest expressions and [ closest camera trans-
forms to S in all training pairs (I,,,S,), applying the simi-

larity metric based on vertex distances used during training.
As a last step, we employ a light-weight Gaussian temporal
filter with window size w to aid temporal smoothness.

4. Training set construction

The performance of any learning-based method is heav-
ily influenced by the quality and amount of available train-
ing data. Construction of a substantial actor specific train-
ing set, consisting of conventional facial images, requires a
lengthy capture session with an actor, whose time is typi-
cally limited. Subsequently, the images I,, need to be man-
ually annotated with facial landmark positions to compute
the corresponding ground-truth model states S,.. This pro-
cess has inherent potential for inaccuracies that likely prop-
agate to the learned model. Synthetic generation of training
imagery using an actor-specific blend shape rig provides ex-
act correspondence between I,, and Sn. Moreover, this al-
lows flexibility to render a training set tailored to the actor’s
expression range, physical properties of a camera rig and
environment lighting conditions. Such systematic customi-
sation is highly impractical with real facial images. The tai-
lored training prevents over-generalisation across many dif-
ferent conditions and yields better tracking performance for
the individual. Also, this naturally limits the size of train-
ing data and therefore leads to faster learning. Reduction of
training time is an important practical requirement, which
we address by careful training set design.

Synthetic training set generation is based on an actor-
specific blend shape rig B. The rig is built beforehand us-
ing a high-quality offline facial capture system [5]. This
provides high-resolution facial expression shapes and asso-
ciated texture and normal maps. Facial appearance is de-
rived from given blend weights a using local blending of
texture maps for several key expressions. This approxima-
tion contains wrinkles and visible skin structure which can
be relit under novel illuminations. The face rig considered
in the current experimental work does not model eyes or in-
ner mouth areas which can be considered a limitation. In ad-
dition to these obvious differences to real imagery, there ex-
ists several other sources that cause a discrepancy between
real images and synthetic renders, such as sensor noise, sub-



surface scattering, etc. It is essential to prevent the regres-
sor from overfitting to the synthetic render style, which we
achieve by varying the appearance in the training set (dis-
cussed in Section 4.1). We utilize an advanced video game
engine to render the facial rig, as real-time rasterization on
GPU provides a good image quality and fast rendering. The
engine allows variable placement of a virtual camera, mod-
eled according to calibration data of a real head-mounted
camera. Our virtual illumination of the facial rig consists of
point lights simulating helmet-mounted illumination and an
environment map models surrounding environmental light-
ing conditions, based on light probe data acquired at the
target location. The background is rendered as white noise
to ensure that the model learns the signal only from valid
foreground regions (see Fig. 2).

4.1. Varying expression, viewpoint and illumination

The first semantic axis E, varying the appearance of
training images, represents facial expressions. The blend
weight component &,, of the model state S,, defines a facial
shape and skin appearance for a given expression. An arbi-
trary number N of different blend weight vectors can be
generated, however we chose to work only with the canoni-
cal blend shapes B; in B (single, fully active weights in &,,
at a time). By the nature of the rig building process, these
shapes represent actor range of expression well and con-
stitute physically plausible facial expressions unlike most
arbitrary points in the blendshape space. We find that re-
stricting the expressions to [3; maintains a practical training
set size whilst providing favourable expression tracking (ex-
perimental details follow in Section 5, Section 6). Example
images rendered from the expression space are provided in
Fig. 2.

illumination

expression viewpoint

Figure 2: Synthetic training image variance - expression,
camera viewpoint and illumination.

The second axis V varies camera viewpoint in training
imagery. The model state S,, contains a rigid transform
(1, t,,) that represents deviation from the camera rest pose.
The rest pose, with respect to the face, is given by a real

camera calibration together with fixed intrinsic parameters.
We find that training for viewpoint variance brings robust-
ness to camera movement at runtime. A model trained only
on expression variation will incorrectly explain minor cam-
era motion using facial expression change and training for
viewpoint variance mitigates this. This is a requirement
since helmet cameras may slide on the head in practice and
camera-shake can become evident during rapid head mo-
tion. We analyse the motion of a real helmet camera rel-
ative to the face to determine ranges of rotation and trans-
lation with respect to the camera rest pose. Approximate
anisotropic distributions over r and t are sampled uniformly
to generate Ny distinct transforms.

The third axis I varies synthetic facial illumination. Note
that lighting is not represented in our model state and is
therefore not explicitly inferred during regression. How-
ever, different lighting conditions in the training set are nec-
essary to handle illumination change of the face due to typi-
cal subject movement or changes of environmental lighting.
Our regression framework does not extrapolate well to real
data using only a single, stationary synthetic illumination.
Furthermore, we find it important to derive the synthetic
training illumination variance from reference lighting, de-
fined by analysis of the target test environment. We typ-
ically capture light probe data at different locations in the
capture volume and populate environment maps for render-
ing. Intensity and position of point lights are defined to em-
ulate the physical helmet camera design and, by addition-
ally varying environment map rotations, we can sample an
informed set of Ny distinct illumination conditions and re-
light facial expressions with illumination conditions likely
to occur at runtime.

4.2. Training set design

Training set construction involves sampling of (I,,, gn)
from a space defined by the three semantic axes described
previously. Imagery is rendered according to different com-
binations of blend weights, camera transforms and lighting
configurations that are selected from the informed sets with
sizes Ng, Ny and Nj. A naive strategy involves gener-
ating a triple crossproduct [ExV xI] containing all possible
combinations. This entails relatively expensive construction
and subsequently long training times. As an alternative, we
explore different design strategies that result in a signifi-
cant reduction of training set sizes and, importantly, train-
ing times. The evaluated design strategies are illustrated
in Fig. 3 and focus on different combinations of individual
axes and the planes defined by sampling axis crossproducts.
The origin of the sample space represents a facial image
with a neutral expression (& = 0), the rest camera pose
((#,t) = identity) and the reference illumination. We con-
sider this a base appearance likely to occur at runtime. As
a notation example, the training set design [ExL, V] con-



tains a full crossproduct of all expressions and illumination
axis samples viewed from (only) the rest camera viewpoint,
combined with the neutral expression under the reference il-
lumination observed from all viewpoint axis samples. This
set design results in (Ng - Ny + Ny) training images.

[ExV]I] [ExXLVXI]
E E
> 1 > 1
\ VK
[ExXV,ExI] [EXV,VXI] [EXLEXV,VXI] [ExVXI]

Figure 3: Different training set designs. The axes represent
the three semantic dimensions - facial expression E, camera
viewpoint V and illumination I.

5. Results on synthetic image data

This section reports evaluation of our real-time face
tracking with synthetic test image sequences. Experiments
are designed to assess systematic training set design strate-
gies according to tracking accuracy. By generating test im-
agery from keyframe animations of a facial rig B, used
for tracking, we allow for per frame comparison between
a regressed model state S and the ground truth. More con-
cretely, a facial mesh B is reconstructed from the estimated
weights a and transformed rigidly according to (r,t). An
error, with respect to the ground truth mesh, is computed as
a mean of 3D distances between corresponding vertices.

Experiments are performed on a synthetic sequence Hel-
metRigSynth which simulates performance capture with a
head-mounted camera on a real set. The sequence contains
large expression changes together with large movement of
a helmet camera and dynamically varying illumination de-
rived from real light probe data. Fig. 2 gives visual exam-
ples analogous to the level of appearance variance observed
at test time. None of the test data is present in the training
sets. We refer the reader to our supplementary video, con-
taining the complete test sequence. The characteristics of
test imagery are 720p at 60fps to match our following real
data experiments Section 6.

The parameter configuration used in our experiments is
as follows. Offline training: T = 7, F = 200,U =
800, D = 5,mp = 20, mp = 26; online tracking: Ip =
10,17 = 10, (w = 5). Note that temporal filtering post-
processing is switched off for all quantitative evaluations.
Training computation time has been measured on a standard
PC; Intel Core i7 5960x (3GHz) CPU and 32GB RAM. Our
framework is implemented using parallelised OpenMP C++
without the use of CUDA or other GPU specific code. On-
line regression takes 4.5ms per frame.

5.1. Informed training image axis selection

Facial expressions: As described in Section 4, a set of Ng
facial expressions from the blend shape rig constitute our
discretized expression axis. In the following sections we
define N = |B| = 73 unless otherwise stated. This simple
model involves full activation of each blendshape weight a;
individually. We find that this strategy generates sufficient
expression variation and allows our method to generalize
well to novel plausible expressions.

Camera viewpoint: Our initial experiment investigates the
importance of varying camera viewpoint during training im-
age generation. Robustness to camera movement at runtime
is necessary even when considering head-mounted cameras.
Moderate head motion or helmet adjustments result in a
noticeable change of viewpoint which affects tracking ac-
curacy. A variant of test sequence HelmetRigSynth con-
taining continuous camera motion, but without illumina-
tion change, is utilised in this experiment. We train two
regressors on different image sets and provide error anal-
ysis for comparison. The first regressor is trained with-
out camera motion (design [E]) and the second regressor
is trained on an informed design [Ex V] where the set of
Ng = 73 expressions and Ny = 72 camera transforms
form a full crossproduct of model states. We sample rigid
camera transforms with magnitudes representative of the re-
stricted 6 DOF motion present in our physical helmets, ex-
perimented with in practice. These result in translation, ro-
tation sampling ranges on the order of ~ 4c¢m and ~ 16°
degrees respectively. Table 1 (rows 1, 2) compares regres-
sion accuracy and numerically shows that the design [E]
misinterprets viewpoint changes as expressions.
INlumination: Sampling the illumination axis is hypothe-
sized to add robustness to dynamic lighting changes at run-
time caused by actor movement or environmental changes.
To investigate this point we use a variant of test sequence
HelmetRigSynth exhibiting dynamic lighting change but
without camera movement. We train on three different
training set designs and provide error analysis for com-
parison. The design [E] makes use of only a single ref-
erence lighting condition for all 73 expressions. The de-
sign [E x I], , utilizes Ny = 75 arbitrary lightning envi-
ronments to relight the face. Environments are obtained



from publicly available lighting databases [!,2]. The de-
sign [E x 1], uses Ny = 75 different illumination con-
ditions derived from light probe data captured on-set (the
same lighting information used to derive HelmetRigSynth).
The two training sets with illumination variance make use
of full Ng x N crossproducts to form training samples. We
find that synthetic training sets containing multiple lighting
conditions perform, as expected, significantly better on test
data containing illumination change. It can also be observed
in Table 1 (rows 3,4,5) that tailoring training samples ac-
cording to the target lighting environment has a large impact
on quantitative error. This training variance proves essential
for bridging the visual gap between synthetic training im-
agery and live test imagery, allowing accurate tracking (see
Section 6).

Testing sequence

Training set a . error  std
ppearance variance (mm)

Design N M E v 1
[E] 73 1606 v v 5.47 2.06
[ExV] 5256 241776 v v 0.93 0.53
[E] 73 1606 v v 1.92 2.28
[Ex1],, 5475 120450 v v 0.62 0.63
[E x I]pmbe 5475 120450 v v 0.26 0.33

Table 1: Training set designs with varying image appear-
ance sampling and per-frame vertex error.

5.2. Exhaustive axes combination

Generating training pairs (I,,, S,,) by combining individ-
ual semantic axes provides an obvious route to improving
accuracy performance as observed in Section 5.1. As a
further axis-combination baseline experiment we generate
a full triple cross product of all expressions, camera trans-
forms and illumination conditions (see the design [Ex V xI]
in Fig. 3). This naive training set construction generates
exhaustive appearance combinations, however the uniform,
and uninformed, nature of construction leads to large image
sets and consequently computationally expensive training.
While broad training data can often aid the learned prior’s
ability to generalise, it does not result in a prior with the best
tracking accuracy. Subsets of a tailored appearance space
potentially allow for computational savings using smaller
image sets whilst retaining regression precision.

Due to computational constraints, in this experiment we
sample the three axes by using subsets of the discrete sam-
ple points used previously in Section 5.1. We use Ng =
Ny = N; = 30 which results in 303 = 27000 exhaus-
tive appearance combinations in the training set. We cre-
ate training sets of various size by randomly downsampling
training pairs from the full [ExV xI] according to a uniform
distribution. Regressors learned on these training sets are
tested on HelmetRigSynth. In order to obtain robust statis-

tics, priors are repeatedly learned for each training image
count N € {90, 450, 900, 1800, 2700, 3375, 6750, 13500},
by randomly drawing training sets five times. Fig. 4 reports
statistics of mean vertex distance averaged over the whole
test sequence. It can be observed that error rates converge
using priors trained on the order of several thousand images.
Larger training image counts >= 3375 have little effect on
the error that converges to ~ 2.3mm and exhibits consis-
tent variance across training set size. We include in Fig. 4
also the full training set to demonstrate lack of improved
accuracy in spite of larger image count.
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Figure 4: Random sampling of [ExVXxI]. Mean error
to ground-truth per training image count over the Hel-
metRigSynth test sequence.

5.3. Comparison of training set designs

Section 5.2 showed that it is possible to drastically re-
duce full axes combination by uniform random downsam-
pling without losing tracking accuracy. In this section, we
progress to selecting samples from the appearance space
in a more informed fashion while retaining small train-
ing set size and high regression precision. We investi-
gate non-uniform sampling by systematically combining
crossproducts of different axes. Fig. 3 illustrates the con-
sidered designs representing different combinations of pla-
nar crossproducts and individual axes. The intuition here
is that some axes may require a full crossproduct, but for
others this could be reduced to a 1D sampling along the
axis. The constructed training sets are again evaluated us-
ing the sequence HelmetRigSynth and resulting mean errors
and standard deviations are reported in Table 2.

Dense sampling of the expression and illumination plane
together with a minimal axis set of all viewpoints, [ExI, V],
provides the leading quantitative performance. This design
is able to reduce quantitative error by 46% in relation to
strategies [ExVI], [VxLE] which have comparable train-
ing set size. The intuition is that two factors contributing
most to facial appearance are expression and illumination.
Minor variation in camera viewpoint alters the image in-
formation significantly less in comparison. Also, supersets
of the design [ExI,V] such as [ExV,ExI] exhibit compa-



rable but slightly higher error while containing many more
images. This may be explained by the process of extend-
ing training set size to include less relevant image sam-
ples “diluting” the focus of the learned prior. Lastly, al-
most all designs achieve lower error than the exhaustive
design [ExVxI] from Section 5.2. This shows that an
informed design can provide better regression capabilities
with a smaller image budget. We find both non-uniform
sampling in the appearance space and informed selection of
discretized axes sample points to be instrumental in training
set construction.

Design N M error (mm) std  time (min)

[EXLV] 5547 255162 1.05 0.66 178.2
[ExLVXxI] 10875 500250 1.09 0.66 397.4
[EXLExV,VxI] 16131 742026 1.10 0.66 623.2
[ExXV,ExXI] 10731 493626 1.11 0.69 408.0
[ExXV,VXI] 10729 493534 1.59 1.17 366.6
[ExVI] 5404 248584 1.94 1.38 212.4

[E, V1] 292 13432 2.13 1.43 2.9
[VXLE] 5473 251758 2.43 2.04 207.9

Table 2: Training set design comparison on synthetic test
sequence HelmetRigSynth. Ordered according to mean ver-
tex error. Training time per design provided in minutes.

5.4. Training set downsampling

We consider further training set size reduction by ran-
dom downsampling which proved beneficial on the naive
exhaustive design from Section 5.2. The best informed de-
sign [ExL,V], found in Section 5.3, is evaluated here in
terms of image count vs. regression accuracy trade-off. The
training pairs are randomly drawn from the crossproduct
plane ExI and the viewpoint axis is left complete. This
is repeated over S trials for each target image count. In
Fig. 5 it is observed that downsampling the training set by
an order of magnitude (922 vs. 5547 images) results in a
mean regression error increase of only 10%, in turn result-
ing in minimal visual difference in tracking. For reference
the design [E,V,I], utilizing only 220 images, can be seen as
an extremely downsampled version of [Ex1,V]. The related
training time savings resulting from this accuracy trade-off
can be assessed in Fig. 6. To summarise, we find training
set size reduction is possible and the best reduction found
experimentally is the scheme [ExLV]. By further reduc-
ing this synthetic training set through downsampling to just
922 images, we create an effective training set using only
~ 3.5% the image count of the exhaustive [ExV xI] set,
with corresponding linear training time savings.
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Figure 5: Random downsampling of the design [ExI,V]
(5547 images). Mean and standard deviation for ground-
truth error over the whole HelmetRigSynth test sequence.
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Figure 6: Linear relationship between training set size and
training time demonstrated on random downsampling of the
best design [ExLV].

6. Results on real image data

We assess our approach on real test imagery and provide
evidence that synthetic experimentation provides valid pre-
diction of tracking quality on real data.

6.1. Quantitative evaluation

To evaluate performance on real imagery we obtain high-
quality tracking using the offline system of [5]. This allows
numerical comparisons analogous to the experiments with
synthetic sequences. Fig. 7 shows an example frame from
a real test sequence StaticRig captured using a static multi-
camera system [5]. Training viewpoint workout is informed
by the natural movement of the actor’s head against a head
rest (Nyy = 73). Training illumination variance is narrow
(N; = 20) because of fixed uniform capture lighting. We
construct training sets according to the designs in Fig. 3.
Tracking accuracy of our trained regressors is compared us-
ing per-frame vertex distance to the tracked meshes of [5].
Aggregate errors over time and training characteristics are
shown in Table 3. The design [ExI,V] achieves the lowest
error with the relatively small number of training images
requiring short training time. This matches the outcome of
synthetic experimentation in Table 2. There is a general
positive correlation in the ranking of individual designs on
synthetic and real data, confirming that our synthetic test-



ing sequences act as reasonable barometer for accuracy on
live imagery. A lack of perfect ranking correlation may be
caused by disparity in the nature of the employed sequences
HelmetRigSynth and StaticRig (e.g. the amount of illumina-
tion change over time).

Comparison to Beeler et al. [5] The experiment de-
scribed above naturally provides a quantitative and quali-
tative comparison to the high-quality offline tracking tech-
nique which performs reconstruction using 7 cameras (see
supplementary video). Our real-time method displays accu-
rate facial tracking and recovers the performance in a frac-
tion of the offline computation time (4.5ms vs. 15min per
frame).

Design N M error (mm)  std
[EXLV] 1533 88914 4.57 2.26
[VXLE] 1533 88914 5.10 2.75

[EXLExXV,VXI] 8249 478442 5.24 2.86
[ExLVxI] 2920 169360 5.33 2.51
[ExXV,ExI] 6789 393762 5.65 2.88

[E,V.I] 166 9628 5.80 2.73
[EXV,VXI] 6789 393762 6.37 2.72
[ExVI] 5349 310242 7.27 3.12

Table 3: Training set design evaluation using a real test im-
age sequence StaticRig. Results ordered according to mean
Vertex error.

6.2. Qualitative evaluation in virtual production

We evaluate fully synthetic training for real-time facial
tracking using a professional virtual production scenario.
Training set designs, assessed previously on synthetic data
in Section 5.3, have been constructed for a live helmet cam-
era scenario. Synthetic viewpoint and illumination train-
ing ranges are informed by the real head-mounted camera
and light probes of the set volume, respectively. A test se-
quence HelmetRig depicted in Fig. 7 contains substantial
changes of helmet illumination strength. The same regres-
sors learned using the training sets in Table 2 tracked the se-
quence HelmetRig with similar qualitative results. The syn-
thetic prior designs performing the best on HelmetRigSynth
yield visually comparable tracking on live data, with our
[Ex1,V] sampling strategy resulting in the shortest training
time. Further training speed-up can be provided by the vari-
ant of [ExI, V], downsampled to 922 images which is able
to maintain very similar visual tracking quality. Our supple-
mentary material exhibits real test sequences that demon-
strate accurate tracking of large expression change, expres-
sive speech and robustness to illumination change.

Comparison to Kazemi et al. [21] We qualitatively
compare to a recent real-time, sparse 2D tracking method
that detects a set of 68 facial landmarks in every frame. An
implementation of this regression-based technique, from

the publically available DIib library [22], was employed us-
ing a regressor trained on the iBUG 300-W dataset [29].
The supplementary video shows visual comparison to 2D
tracks of face rig vertices that were manually selected to
correspond with the detected 2D landmarks. Our result is
more stable over time, handles large expression changes
more successfully and is robust to dynamic illumination
change. This highlights the limitations of learning using
generic facial imagery, commonly available in annotated
face datasets yet not suitable for every scenario. Our rel-
atively cheap to construct synthetic imagery, tailored to a
particular target and capture conditions, can provide con-
siderably better tracking quality.

Figure 7: Example tracked frames from test sequences
StaticRig (left) and HelmetRig (right).

7. Conclusion

In this paper we present an investigation of fully syn-
thetic training for real-time, actor-specific facial tracking.
To achieve high accuracy on real imagery, training data
are synthesized using sets of facial expressions, camera
viewpoints and lighting conditions tailored to a camera set-
up and capture volume illumination. We find that non-
uniformly sampled training set designs are important not
only for data size reduction but also achieve higher regres-
sion precision than naive, exhaustive strategies. Experimen-
tal results show that the best design strategy can reduce
training image counts by 1-2 orders of magnitude and re-
sult in proportional computational savings with no visible
loss of tracking accuracy. The proposed approach presents
a large step towards practical real-time markerless perfor-
mance capture that allows flexible and efficient adaptation
of a prior to conditions found at runtime. Our findings are
applicable for guiding synthetic image generation strategies
under various learning-based tracking techniques.
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