
Panoptic Studio: A Massively Multiview System for Social Motion Capture ∗

Hanbyul Joo Hao Liu† Lei Tan‡ Lin Gui† Bart Nabbe
Iain Matthews§ Takeo Kanade Shohei Nobuhara¶ Yaser Sheikh

The Robotics Institute, Carnegie Mellon University
{hanbyulj,bana,tk,yaser}@cs.cmu.edu, {liu.hao,lin.gui}@ouc.edu.cn, tanlei@hnu.edu.cn

iainm@disneyresearch.com, nob@i.kyoto-u.ac.jp

Abstract

We present an approach to capture the 3D structure and
motion of a group of people engaged in a social interac-
tion. The core challenges in capturing social interactions
are: (1) occlusion is functional and frequent; (2) subtle mo-
tion needs to be measured over a space large enough to host
a social group; and (3) human appearance and configura-
tion variation is immense. The Panoptic Studio is a system
organized around the thesis that social interactions should
be measured through the integration of perceptual analyses
over a large variety of view points. We present a modu-
larized system designed around this principle, consisting of
integrated structural, hardware, and software innovations.
The system takes, as input, 480 synchronized video streams
of multiple people engaged in social activities, and pro-
duces, as output, the labeled time-varying 3D structure of
anatomical landmarks on individuals in the space. The al-
gorithmic contributions include a hierarchical approach for
generating skeletal trajectory proposals, and an optimiza-
tion framework for skeletal reconstruction with trajectory
re-association.

1. Introduction
There is a prevailing scientific consensus that approxi-

mately two-thirds of interpersonal communication is trans-
mitted via nonverbal cues [6, 32]. Yet, despite the fun-
damental role these cues play in enabling social func-
tion, the protocol underlying this communication is poorly
understood—Sapir [34] called it “an elaborate code that
is written nowhere, known to no one, and understood by
all”. Many structures of this code have been identified
through observational study, such as reciprocity [7] or syn-
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chrony [10]. However, systematic studies of such phenom-
ena have remained almost entirely focused on the analy-
sis of facial expressions, despite emerging evidence [28, 3]
that facial expressions provide a fundamentally incomplete
characterization of nonverbal communication. One proxi-
mal cause for this singular focus on the face is that captur-
ing natural social interaction presents challenges that cur-
rent state-of-the-art motion capture systems simply cannot
address.

There are three principal challenges in capturing social
signaling between individuals in a group: (1) subtle mo-
tion has to be measured over a volume sufficient to house
a dynamic social group; (2) strong occlusions functionally
emerge in natural social interactions (e.g., people systemati-
cally face each other while interacting, bodies are occluded
by gesticulating limbs); (3) social signaling is sensitive to
interference. For instance, attaching markers to the face or
body, a pre-capture model building stage, or even instruct-
ing each individual to assume a canonical body pose during
an interaction, primes the nature of subsequent interactions.

In this paper, we present a system designed to ad-
dress these issues, with integrated innovations in hard-
ware design, motion representation, and motion reconstruc-
tion. The organizing principle is that social motion capture
should be performed by the consolidation of a large num-
ber of “weak” perceptual processes rather than the analysis
of a few sophisticated sensors. The large number of views
provide robustness to occlusions, provide precision over the
capture space, and facilitate the boosting of weak 2D human
pose detectors into a strong 3D skeletal tracker. In particu-
lar, our contributions include:

1. Modularized Hardware: We present the modular
design of a massively multiview capture consisting
of 480 simultaneously triggered VGA cameras, dis-
tributed over the surface of an 5.49m geodesic sphere
(sufficient to house social groups).

2. Skeletal Representation: We present a new represen-
tation for social motion capture called articulated non-
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rigidity labeling and embedding a dense 3D trajectory
stream within a moving skeletal frame for each indi-
vidual.

3. 3D Motion Reconstruction Algorithm: To the best
of our knowledge, our method is the first to fully au-
tomatically capture the subtle interactions of multiple
people in a social group (more than 6 people) without
requiring any individual body calibration or markers.
To be scalable to a large number of participants, our
method avoids subject-specific templates such as body
shape, color, bone length, while providing high accu-
racy without jitter.

4. Social Games Dataset: We collect a novel dataset
consisting of 5 vignettes, where multiple people are
engaged in social games (the ultimatum game, mafia,
the haggling game, the 007-bang game). The data are
captured by our hardware system with synchronized
and calibrated 480 cameras. We also provide multiple
Kinect data for a subset of the vignettes calibrated and
time-aligned with the 480 cameras for comparison. All
the data and results will be publicly shared.

The system described in this paper provides empirical data
of unprecedented resolution with the promise of facilitating
data-driven exploration of scientific conjectures about the
communication code of social behavior.

2. Related Work
Almost as soon as they were invented, cameras have

been used to record and study social interaction. Darwin,
in his foundational treatise on the expression of emotion,
used photographs to prompt participant response to expres-
sions [11]. Since then, photographs have been–and con-
tinue to be–a fundamental tool in studying social behav-
ior [19, 21, 13, 40, 33, 9, 1]. When the video camera was
invented, it too became an integral tool to study the dynam-
ics of social interaction [29, 42]. Most recently, with the
rapid proliferation of smart phone cameras, crowd capture
is an emerging medium for analyzing social behavior as it
measures both the attentive behavior of social groups, as
well as their interactive dynamics [15, 30, 2].

Multi-camera systems have been used to measure the 3D
structure and motion of human motion. Kanade et al. [23]
pioneered the use of multi-view sensing systems to “vir-
tualize” reality, using 51 cameras mounted on geodesic
dome of 5 meter in diameter. A number of systems
were subsequently proposed to produce realtime virtualiza-
tions [26, 25, 18, 31]. To obtain greater detail in the 3D
reconstruction, de Aguiar et al. [12], Vlasic et al. [38], and
Furukawa and Ponce [16] deformed pre-defined templates
of fixed topology to recover details that were subsampled or
occluded in the set of views at a time instant.

Markerless motion capture methods have focused on
tracking human body motion in multi-camera systems. One
direction of approaches pursue high-quality motion capture
in well-controlled studio setups [36, 17, 14, 37, 24]. In these
approaches, articulated 3D models are often used to uti-
lize subject-specific information such as shape, color, and
bone-length. These methods usually require a template gen-
eration process, and initial alignment at the beginning of
each capture. Much of this work assumes individual activ-
ity only, but few exceptions consider occlusions caused by
other objects or individuals [14, 37]. In the work of [24],
Liu et al. tackle motion tracking of three interacting people.
In their work, individual specific color and appearance in-
formation is mainly used to resolve the ambiguity cased by
occlusions. Recently, other approaches consider markerless
motion capture in more general setups with simpler model
assumptions [20, 8, 5].

Besides RGB cameras, marker-based motion capture
methods provide precise dynamics measurements and have
also been used to study social behavior [27], despite the in-
terference caused by markers on social signaling. Depth
sensor such as the Kinect [35, 4] are also emerging as a
promising sensing modality.

3. Modular Massively Multiview Capture
We present a massively multiview system designed to re-

construct the labelled time-varying 3D structure and motion
of multiple people engaged in a social interaction. The com-
plexity of human motion and frequent occlusions within
social groups cause failures in estimating their structure
and motion. To handle these challenges, our system uses
480 synchronized cameras mounted over the surface of a
geodesic dome, providing redundancy for weak perceptual
processes (such as pose detection and tracking) and robust-
ness to occlusion. The large number of cameras placed at
unique viewpoints also provides a working volume suffi-
cient for multiple interacting people. The cameras are ar-
ranged uniformly to observe the scene from all directions,
so that the subjects’ motion is not restricted by a prede-
fined dominant system direction. The system produces 29.4
Gbps, and to handle this we present a modularized archi-
tecture for parallel and distributed capture and processing.
In this section, we describe the modular design of the stu-
dio structure and architecture consisting of the acquisition,
communication, and synchronization, as shown in Figure 1
and Figure 2.

3.1. Structural Design

The physical frame of the studio is a face-transitive solid
called a truncated pentagonal hexecontahedron. This partic-
ular structure was selected because it has among the largest
number of transitive faces of any geodesic dome [39]. The
transitivity of the faces enables the modular architecture,



Figure 1. The studio structure. (Left) The exterior of the dome
with the equipment mounted on the surface; (Center) The pan-
els are face-transitive to ensure interchangeability across panels;
(Right) An optimization was performed to ensure uniform angles
with respect to the center between each camera and all its neigh-
bors (e.g., Camera i is a neighbor of Camera j).

and ensures that the structure remains easy to upgrade and
customize with different panels of the same configuration.
The structure has a radius of 5.49m and a total height of
4.15m. The center of the dome is at a height of 1.40m, and
it was raised above a hemisphere to allow increased access
to the edges of the dome as shown in Figure 1. In all, the
structure consists of 6 pentagonal panels, 40 hexagonal pan-
els, and 10 trimmed base panels.

Our design was modularized so that each hexagonal
panel houses a set of 24 VGA cameras. To determine the
placement of the cameras, we initialized their positions by
tessellating the hexagon face into 24 triangles and using this
initialization to define a 3-neighborhood structure shown in
the right-most panel of Figure 1(c). Using this neighbor-
hood structure and the initialization we determine the place-
ment of the cameras over the geodesic dome by minimizing
the difference in angles between all neighbors of every cam-
era,

{θij}∗ = arg min
{θij}

P∑
p=1

N∑
i=1

∑
j∈N (i)

∑
k∈N (i)6=j

(r(θij |p)−r(θik|p))2,

where P = 20 is the number of panels, N = 24 is the
number of cameras in each panel,N (·) is the neighborhood
of a camera, r(·|p) is a function transforming the angle on
a reference panel to the p-th panel. The cameras sample
the span of the vertical axis of the space and sample 48.71◦

of the horizontal axis. With this distribution, the minimum
baseline between any camera and its nearest three neighbors
is 21.05cm.

3.2. System Architecture

Figure 2 shows the architecture of our system which con-
sists of 480 cameras. The 480 cameras are arranged mod-
ularly with 24 cameras in each of 20 standard hexagonal
panels on the dome. Each module in each panel is man-
aged by a Distributed Module Controller (DMC) that trig-
gers all cameras in the module, receives data from them,
and consolidates the video for transmission to the local ma-
chine. Each individual camera is a global shutter CMOS
sensor, with a fixed focal length of 4.5mm, that captures
VGA (640× 480) resolution images at 25Hz.

Figure 2. Modularized system architecture. The studio houses 480
cameras synchronized to a central clock system and controlled by
a master node. 5 kinects are also located in the studio calibrated in
the same coordinate with cameras.

Cameras of each panel produce an uncompressed video
stream at 1.47 Gbps, and, thus, for the entire set of 480
cameras the data-rate is approximately 29.4 Gbps. To han-
dle this stream, the system pipeline has been designed with
a modularized communication and control structure. For
each subsystem, the clock generator sends a frame counter,
trigger signal, and the pixel clock signal to each DMC asso-
ciated with a panel. The DMC uses this timing information
to initiate and synchronize capture of all cameras within the
module. Upon trigger and exposure, each of the 24 camera
heads transfers back image data via the camera intercon-
nect to the DMC, which consolidates the image data and
timing from all cameras. This composite data is then trans-
ferred via optical interconnect to the module node, where
it is stored locally. Each module node has dual purpose: it
serves as a distributed RAID storage unit 1 and participates
as a multi-core computational node in a cluster. All the lo-
cal nodes of our system are on a local network on a gigabit
switcher. The acquisition is controlled via a master node
that the system operator can use to control all functions of
the studio.

4. Notation and Overview
Our algorithm takes, as input, 480 videos of a social in-

teraction (with calibration and time-stamps) and, as out-
put, produces skeletal trajectories with an associated set
of labeled 3D trajectories for each body part. We present
a bottom-up sampling-based approach that fuses low-level
appearance and motion cues of local landmarks into pro-
gressively compounded constructions—from node propos-
als (e.g., left shoulder), to part proposals (e.g., upper arm),
to part trajectory proposals (e.g., rigid motion of the upper
arm), to skeletal trajectory proposal (e.g., multi-part motion
of one individual).

To produce evidence of the location of different anatom-
ical landmarks, we compute appearance-based 2D human
pose detection [41] for each view and at each time instance.
The i-th 2D skeleton in a camera view c at time t is de-
noted by sci (t) ∈ R30, which is composed of fifteen 2D

1Each module has 4 HDDs integrated as RAID-0 to have sufficient
write speed without data loss, which ends up with 80 HDDs for 20 mod-
ules.



(a) An example view (b) Node proposals (c) Part proposals (d) Part trajectory proposals (e) Skeletal trajectory propos-
als

Figure 3. Several levels of proposals generated by our method. (a) An example view out of 480 views. (b) Node proposals generated
after Non-Maxima Suppression. (c) Part proposals by connecting a pair of node proposals. (d) Part trajectory proposals generated by
propagating part proposals. The image in the left-bottom rectangle shows locations of all part trajectory proposals at a time instance.
(e) Skeletal trajectory proposals generated by piecing together part trajectory proposals. The image in the left-bottom rectangle shows
locations of each skeletal proposals at a time instance, representing each subject. In (b-c), color means part labels: neck (red), head (blue),
torso (black), shoulder (green), upper arm (cyan), lower arm (magenta), hip (yellow), upper leg (orange), and lower leg (gray). In (e), color
means subject’s label.

anatomical landmarks or nodes (3 for the head/torso and
12 for the limbs), and the j-th node of sci (t) is denoted by
scij(t) ∈ R2. The sci (t) is also associated with its detec-
tion score αc

i (t) ∈ R and a scale σc
i (t) ∈ R, provided by

the 2D pose detector. Given the detected 2D skeletons in
view c at time t, we generate a 2D score map φcj(z, t) for
each node j, where z ∈ R2 indexes 2D image space. The
2D score maps of node j from all views are then combined
into a 3D score map Φj(Z, t), where Z ∈ R3 indexes 3D
event space. To produce evidence of the motion of different
anatomical landmarks, we compute a set of dense 3D trajec-
tories F = {fi}NF

i=1, or a 3D trajectory stream, by tracking
each 3D particle independently. Each 3D trajectory fi is
initiated at an arbitrary time, and tracked for an arbitrary
duration using the method of Joo et al. [22].

Our approach generates several levels of proposals. A
set of node proposals for a node j is denoted by Xj(t),
and the k-th proposal Xk

j (t) ∈ R3 is a putative 3D po-
sition of that anatomical landmark at time t. Similarly,
the set of part proposals at time t is denoted by Puv(t),
where (u, v) ∈ B is the set of all parts composing a skele-
ton hierarchy. Since our skeleton is a tree structure and
has fifteen nodes, |B| = 14. The k-th part proposal,
Pk

uv(t) = (Xk1
u (t),Xk2

v (t)) ∈ R6, is a body part con-
necting two node proposals, Xk1

u (t) and Xk2
v (t), at time t.

Our method also estimates trajectory proposals for nodes
and parts. We refer to the k-th node trajectory proposal as
Yk

j = {Yk
j (t)}t, and the k-th part trajectory proposal as

Qk
uv = {Qk

uv(t)}t. In our method, a part trajectory pro-
posal is generated by selecting an initial part proposal, and
propagating it across time using a set of associated trajecto-
ries. Note that a part trajectory proposal is composed of a
pair of selected node-trajectories proposals. As a final out-
put, our algorithm produces skeletal trajectory proposals;
we refer to the k-th proposal as Sk = {Qkuv

uv }uv∈B. The S
can be directly converted to a set of fifteen node-trajectories
{Yj}15j=1, by fusing corresponding common nodes of the

neighboring part trajectory proposals. Our method asso-
ciates a set of labelled trajectories Fk

uv out of F correspond-
ing to each Qk

uv of a subject. These trajectories determine a
series of rigid transformations, T (t | Fk

uv, t0) ∈ SE(3), be-
tween any time t and the initiating time instance t0 of Qk

uv;
the part trajectory proposal Qk

uv is generated by propagat-
ing a part proposal using the T (t | Fk

uv, t0).

5. Skeletal Proposal Generation
We adopt an incremental approach to estimating skeletal

motion, fusing appearance and motion cues across the set
of views. In this section, we describe how the proposals are
generated and built upon from these cues.

5.1. Node Proposals

A single-view 2D pose detector is computed on all 480
views at a time instant, and is used to generate 2D score
maps for each node in each image. These 2D score maps
from all views are combined in 3D via a spatial voting
method, similar to 3D volumetric reconstruction. For 2D
pose detection, we use the publicly available pose detector
of [41], but any 2D human pose detection method may be
used. Since we do not assume any prior knowledge about
the number of people, each image may have multiple peo-
ple, and, thus, we keep all the 2D skeletons above a fixed
detection threshold in every view. Each 2D skeleton sci (t)
in a view c and time t contains a tree like skeletal hierar-
chy composed of 15 nodes, as shown in Figure 4 (a)2. For
clarity, we will consider a fixed time instant t, and drop the
time variable. From the detected 2D skeletons, we generate
a 2D score map for each node j in each view, by convolving
a Gaussian kernel on the node locations scij . The score map
of a node j in a view c is defined as

φcj(z) = max
i
αc
iG(z | scij , σc

i ), (1)

2We modify the skeleton hierarchy of [41] to have a single torso bone,
by taking the center of the two hip nodes as a body center node.



Figure 4. 2D pose detection and score map generation. (Column 1) A few example views out of 480 views with proposals by the pose
detector (Column 2-10) Score map for each joint on each view. Pose detection results are noisy due to occlusions among people.

where z ∈ R2 is a 2D location, and G is a Gaussian kernel
centered on scij with covariance σc

i , and scaled by the de-
tection score αc

i . Considering the region where multiple 2D
skeletons are located nearby, we take the maximum value
among all valid filter responses on the region. Note that we
have a score map for each node and for each view. However,
we do not distinguish left-side node with right-side node,
because they are dependent on the camera view point3. We
treat the left-side nodes and corresponding right-side nodes
together, producing 9 probability maps (3 for head/torso
nodes, and 6 for limbs) in each view. Score maps of exam-
ple views are shown in Figure 4. Note that pose detection
results are noisy, due to the challenging hand gestures and
occlusions among people (e.g., see wrists and elbows).

To combine 2D node score maps from multiple views,
we generate a 3D score maps for each node using a spatial
voting method. We first index the 3D working space into a
voxel grid, and compute the node-likelihood score of each
voxel by projecting the center of the voxel to all views and
taking the sum of the 2D scores at the projected locations.
The 3D score map Φj for a node j at the 3D position Z is
defined as

Φj(Z) =
∑
c

φcj

(
McẐ

(McẐ)3

)
, (2)

where the Mc is a projection matrix for view c, and ·̂ is
a homogeneous coordinate representation. The (·)3 means
the third column of the vector. Note that 3D score map for
each node is computed separately, producing nine 3D score
maps at each time. We perform this process at every frame
independently.

From the 3D score map for each node at each time in-
stance, we perform Non-Maxima Suppression (NMS), and
keep all the candidates above a fixed threshold. The results
are shown in the Figure 3(b). Each 3D point, denoted as Xk

j

for the node j, is a putative candidate for the j-th anatom-
ical landmark of a participant, which we refer to as a node
proposal.

3Recent methods provide a person-centric detection result that distin-
guishes left side and right side. In such cases, we can consider the left and
right parts separately.

5.2. Part Proposals

Given the generated node proposals, we infer part pro-
posals by estimating connectivity between each pair of
nodes consisting of a body part. The 2D detector as [41]
uses appearance information during the inference, and, thus,
the result tends to preserve the connectivity information
(e.g., left knee is connected to left foot). Although this in-
formation is noisy in a single view, our approach fuses them
in 3D, by voting for 3D node score maps. More specifi-
cally, we define a connectivity score between a pair of node
proposals by projecting them on to all views and checking
their connectivity in the pose detection for that view. The
connectivity score of a part Puv composed of between two
node proposals (Xk1

u ,X
k2
v ), where (u, v) ∈ B, is defined

as

L(Puv) =
∑
c

δcuv

(
McX̂k1

u

(McX̂k1
u )3

,
McX̂k2

v

(McX̂k2
v )3

)
,

where

δcuv(xu,xv) =

{
1 if ‖xu − sciu‖ < σc

i and ‖xv − scic‖ < σc
i

0 otherwise.

The L function counts how many connections exist in the
2D pose results across all views. The line segments in Fig-
ure 3(c) represent examples of part proposals. We compute
this connectivity score for every pair of nodes, and retain the
parts above a fixed threshold, which we call part proposals.
Intuitively, each part proposal is a putative candidate of a
body part at a time instance.

5.3. Part Trajectory Proposals

Using a part proposal as an initialization, we estimate
a part trajectory proposal by propagating it backwards and
forwards using the 3D trajectory stream F. A part trajectory
proposal is a potential candidate of a moving body parts,
preserving its (approximate) rigidity. To propagate a part
proposal, we associate it with a set of trajectories, and the
trajectories constrains the computation of a part specific se-
ries of rigid transformations. Using the 3D score maps gen-
erated in subsection 5.1 in every time instance, we can score
the validity of the part trajectory proposals to discriminate



(a) Epsilon-ball (b) Rigid (ours) (c) Associated trajectories

Figure 5. Trajectory association to body parts. We use the approx-
imate rigidity and spatial proximity to associate unlabelled points
trajectories to body parts.

true parts from outliers. The detailed explanation is pro-
vided below, and examples are shown in the Figure 3(d).

3D Trajectory Stream Generation. We briefly overview
the method of [22] to generate dense 3D trajectories by
leveraging large number of views. The algorithm of [22]
tracks each 3D point separately. Given an initial 3D point
reconstructed by feature matching and triangulation, it is
projected on all views where the point is visible, and opti-
cal flow is computed from the projected 2D positions. Next
3D position is reconstructed by back-projecting the tracked
2D flow positions using RANSAC, and this process is iter-
ated. The core idea to fully leverage large number of views
is to reason about time-varying camera visibility for each
point. The visibility is optimally estimated in a MAP frame-
work combining photometric consistency, motion consis-
tency, and visibility regularization priors. See [22] for more
details.

Trajectory Association. To propagate a part proposal
generated at a time t0, we want to find related trajectories
f corresponding to the part, out the 3D trajectory stream
F. To select an initial trajectory set, we first use proximity
information by selecting all trajectories within an epsilon-
ball from the part proposal. Usually, this selection contains
trajectories that originated from other body parts especially
when they are close each other, as shown in Figure 5(a). Al-
though solving this problem is challenging for a point cloud
at a single time instance, it can be distinguishable in our
case by analyzing the trajectories for long duration of time.
To score the likelihood that two trajectories f1 and f2 origi-
nated from the same rigid part, we define a distance

d(f1, f2) = max
t
‖f1(t)− f2(t)‖ −min

t
‖f1(t)− f2(t)‖.

(3)

When trajectories arise from the same rigid body part, this
distance is close to zero, whereas trajectories from differ-
ent parts have a large error once they move with a distinct
motion. To find the correct inlier set given the initial trajec-
tories by fixed radius thresholding, we perform RANSAC

based on this distance. In each iteration, we select a refer-
ence trajectory and find corresponding inliers in a distance
lower than a threshold. An example result is shown in Fig-
ure 5.

From a set of trajectories Fuv associated with a part pro-
posal Puv , we can estimate a series of rigid transformations
T (t | Fuv, t0) from t0 to any time t where a rigid transfor-
mation can be estimated from trajectories. Our approach
then generates a part trajectory proposal as,

Quv(t) = T (t | Fuv, t0) ·Puv

= (T (t | Fuv, t0) ·Xu, T (t | Fuv, t0) ·Xv)

= (Yu(t),Yv(t)) ,

where Puv = (Xu,Xv). Note that the Yu and the Yv

move rigidly since they are propagated by same rigid trans-
formations.

Part Trajectory Scoring. We compute the score of each
part trajectory proposal using the 3D score maps generated
in subsection 5.1. The 3D score map at a time instance
measures the node likelihood at that 3D location. Thus,
we can compute the score of the part trajectory proposal
by aggregating the 3D scores of all locations where the part
traverses. That is,

Θuv(Quv) =
∑
t

(
Φu(Yu(t)) + Φv(Yv(t))

)
. (4)

This measurement means that we favor part trajectory pro-
posals that go though the region of high detection scores,
with rigidity constraint between two end nodes (note that
the two end nodes are rigid by construction).

5.4. Skeletal Trajectory Proposals

Each part trajectory proposal is a candidate for moving
body parts. Skeletal trajectory proposals are obtained by
selecting the best combination of part trajectory propos-
als. Since our skeletal hierarchy is a tree structure, we
use Dynamic Programming (DP) over part trajectory pro-
posals. We can consider our model as an undirected graph
G = (V,E), where each vertex is a part trajectory pro-
posal Qk

uv , and the graph edges are defined by the parts in
a child-parent relationship. The edge score is defined us-
ing the distance of Equation 3. For example, an instance
of upper arm part trajectory has an edge with a lower arm
part trajectory, and the edge score between them is deter-
mined by the elbow node trajectories of both parts, which
should ideally be coincident. Using DP, we maximize the
following objective:

ΘS(Sk) =
∑

(u,v)∈B

Θuv(Qk
uv)− λ

∑
(u,v),(v,w)∈B

Ψ(Qk
uv,Q

k
vw),



where

Ψ(Quv,Qvw) = d(Y v
−, Y

v
+).

Ψ(Quv,Qvw) is a pairwise term of two part trajectory pro-
posals, where Y v

− is a node trajectory from Quv and Y v
+

is a node trajectory from Qvw (e.g., Quv is an upper arm
and Qvw is a lower arm and both Y v

− and Y v
+ are elbow’s

trajectories from the two different parts respectively). We
subtract two terms, because the first term is a score and the
second term is a distance. The λ is a weight factor balancing
between them. As mentioned, a skeletal trajectory proposal
can be represented by 15 node trajectories {Yj}15j=1. We
perform dynamic programming on our part trajectory pools,
and retain all skeletal trajectories after NMS and threshold-
ing.

6. Trajectory Optimization and Reassociation
From the method described above, initial skeletal trajec-

tory proposals and initial part association for trajectories are
generated. Using these as an initialization, we refine the
estimates by optimizing the skeletal trajectories and subse-
quently re-associating trajectories. Each skeletal trajectory
is optimized as:

argmin
{Yi}

NY∑
i=1

Φi(Yi),

where

Yi(t) = T (t | Fi) ·Yi(0).

The Yi(0) is the initial 3D location of Yi and the T (t | Fi)
is the transformation determined by the associated trajec-
tories Fi. Assuming the trajectory association is fixed,
T (t | Fi) is given, and we can optimize this objective by
varying {Yi(0)}.

For trajectory re-association, for each trajectory we use
a distance measurement similar to Equation 3 as

dQ(f1,Quv) = max
t
‖f1(t)−Quv(t)‖ −min

t
‖f1(t)−Quv(t)‖,

where the ‖f1(t)−Quv(t)‖ represents orthogonal distance
from a 3D location to a line segment. Our method iteratively
performs skeleton optimization and re-association, and, as
output, we obtain refined skeletons with labelled trajectories
corresponding to each body part.

7. Results
7.1. Dataset

We capture people engaged in various social interac-
tions using our massive camera system with 480 views.
To evoke natural interactions, we involved participants in

Table 1. Average Errors (cm) of Haggling Sequence (subject 1:
short hair, subject 2: grey hoodie, subject 3: stripe sweater).

Subject Index K1 K2 K3 K4 K5 OracleKinect 3DPS Ours
1 10.66 9.86 9.50 16.10 10.92 5.00 8.01 3.94
2 9.32 8.61 39.36 68.33 96.26 5.84 9.83 3.91
3 81.27 79.37 33.10 12.43 8.83 5.77 27.13 5.32

(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 6. Average 3D error on varying number of cameras in the
Haggling sequence. A significant number of cameras (more than
100 in this case) are necessary to achieve accurate motion capture.
The result of subject 3 in (c) shows higher errors as the pose detec-
tion severely failed (due to occlusion). With 20 cameras, our algo-
rithm could not find subject 3, and 3D Pictorial Structure (3DPS)
also shows large error.

Table 2. Average Errors (cm) of 007-bang sequence
Subject Index K1 K2 K3 K4 K5 OracleKinect 3DPS Ours

Xulong 151.27 70.24 10.14 9.75 163.38 5.98 8.34 5.83
Hanbyul 96.57 12.00 10.69 79.73 183.33 7.26 10.97 5.44
Tomas 40.75 11.88 42.03 86.03 133.11 8.06 46.32 11.17

various games: Ultimatum (with 3 subjects), Prisoner’s
dilemma (with 8 subjects), Mafia (with 8 subjects), Hag-
gling (with 3 subjects), and 007-bang game (with 5 sub-
jects)4. The first three games are used in experimental eco-
nomics and psychology to study conflict and cooperation,
and we select additional two games where rich natural inter-
actions can be induced. The number of participants in each
session varies from three to eight. From captured data, we
selected 5 vignettes containing interesting non-verbal inter-
actions among people. We will publicly share these dataset
with all 480 synchronized camera feeds, calibration, 3D tra-
jectory stream, 3D pose reconstruction, and articulated non-
rigidity representation result.

7.2. Quantitative Evaluation

We compare our method with two different baselines:
multiple Kinects and 3D pictorial structure method simi-
lar to [8, 5]. We use 5 Kinect IIs calibrated in the same
coordinate with our cameras. Since Kinects do not accept
external time signal for sync, we manually align them to
our VGA cameras up to frame level. The 3D pose esti-
mation of Kinects are performed individually. For the 3D
pictorial structure (3DPS) method, we implement the spa-
tial message passing algorithm based on our skeletal hier-
archy in the reconstructed 3D volume space of our method.
Since the 3DPS method does not produce temporally coher-
ent subject identity, and may have false positives and false

4Refer the supplementary material for the descriptions of the games
and our capture procedures



Figure 7. We perform our method to capture social interactions of multiple people on 5 vignettes: Haggling (shown in Figure 3), Prisoner’s
dilemma (top left), Ultimatum (top right), Mafia (bottom left), and 007-bang game (bottom right). For each scene, figures describe
the following: (left) example views; (middle) skeletal structure estimation results with visualized node trajectories; (right) labelled 3D
trajectories representing articulated non-rigid body parts of each subject (colors represent the same part as in Figure 3).

negatives. To favour of the method, we save all estimations
in every frame using a sufficiently low threshold, and com-
pute 3D error by finding the candidate with lowest 3D error
from each ground truth data.

We select the haggling and 007-bang sequences, and
manually generate ground truth data by clicking each per-
son’s node location in multiview. Table 1 and 2 show aver-
age errors for each subject from all methods. As shown in
the results, all individual Kinects show failure to at least
one subject, since they are dependent on frontal views.
Moreover, people are facing each other, and, thus, they fre-
quently occlude each other’s frontal view, which severely
affects Kinect’s performance. To see the limit of multiple
Kinect system, we also compute the lowest error at each
time among all Kinects, assuming that an Oracle selects the
best view for each node at each time, which is still out-
performed by ours. The 3D pictorial structure also shows
frequent failures, because it only relies on appearance cue,
while our method utilizes motion cue together. The appear-
ance cue becomes often weak because : (1) there exist se-
vere occlusions; (2) many views are observing only subpart
of each subject; (3) the view of our scenes may not be sim-
ilar to the dataset used to train the pose detector of [41].
Note that directly retraining the detector for each view of
our system would require a large annotated training set for
each view. See our supplementary material for the complete
table of errors for each node of every subject.

Accuracy on Varying Camera Number. We applied our
method and the 3DPS algorithm for the Haggling sequence
with varying number of cameras (20, 40, 120, and 480).
As shown in the Figure 6, if a small number of cameras
is used, both our method and 3DPS have higher 3D error.
The error saturates around 100 cameras, which depends on
the complexity of the scene. The difference in performance
between ours and 3DPS is caused by the tolerance on pose
detection inaccuracy. By using dense 3D trajectories, our
method can better utilize temporal relation, and outperforms
methods relying on 2D pose detection only.

7.3. Qualitative evaluation

We use our method to capture social motion of multi-
ple interacting people in all of our dataset, and the results
are shown in Figure 7. Our approach automatically recon-
structs each subject’s moving skeletal structure and its non-
rigid part models by associating trajectories. The test scenes
contain naturally emerged social motion of people, includ-
ing subtle gestures, gaze direction changes, and topological
changes. Note that the results are generated without know-
ing the subject number or individual specific information.
Our results demonstrate the robustness in capturing rich so-
cial signals in various challenging scenarios.

8. Discussion
We present a system to capture the social interaction of

multiple people. Our system is composed of a massively



multiview camera system in a modularized design, and a
novel algorithm fusing “weak” detection and tracking cues
from multiple views for robust human skeletal pose estima-
tion, associated with detailed labelled trajectories for each
body parts. Our method is well suited for sociological anal-
yses since both our hardware and software systems are de-
signed to be unobtrusively robust to occlusions that emerge
during socials interactions and capture subtle details of mo-
tions. The fact that our system does not require any time-
consuming model generation is also a crucial advantage to
be used as a tool for behavioral analysis. Additional, the
labelled trajectories associated to each body part can pro-
vide further detail of motions. There are two major failure
cases of our method. Since our current algorithm relies on
both detection and tracking cues, it generates failure if ei-
ther one fails. Examples are: (1) detection fails over all time
instances or consistently produces a strong false positives;
(2) no trajectory is reconstructed due to the lack of texture
such as dark pants in our data set.
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