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Abstract

Active Appearance Models (AAMs) are a well studied 2D deformable model.
One recently proposed extension of AAMs to multiple images is the Coupled-
View AAM. Coupled-View AAMs model the 2D shape and appearance of a
face in two or more views simultaneously. The major limitation of Coupled-
View AAMs, however, is that they are specific to a particular set of cameras,
both in geometry and the photometric responses. In this paper, we describe
how a single AAM can be fit to multiple images, captured simultaneously
by cameras with arbitrary geometry and response functions. Our algorithm
retains the major benefits of Coupled-View AAMs: the integration of infor-
mation from multiple images into a single model, and improved fitting ro-
bustness.

1 Introduction

Active Appearance Models (AAMs) are a well studied model [3] which have a wide va-
riety of applications, including face recognition, pose estimation, expression recognition,
and lip-reading [7,9].

One recently proposed extension of AAMs is the Coupled-View AAM (CVAAM) [4].
CVAAMs model the 2D shape and appearance of a face in two or more views simultane-
ously. The main motivation for CVAAMs is to take advantage of multiple cameras. For
example, a CVAAM that is fit to a frontal and a profile view of a face integrates the data
from the two images into a single set of model parameters. As shown in [5] (albeit using
a slightly different technique), combining information from multiple images can improve
face recognition performance.

The major limitation of CVAAMs is that they are specific to a particular set of cam-
eras. A CVAAM can only be used with the same camera setup used to collect the training
data. If a different number of cameras are used, the cameras are moved, or cameras with
different photometric responses are used, the CVAAM cannot be re-used.

In this paper, we describe how a single AAM can be fit to multiple images, captured si-
multaneously by cameras with arbitrary geometry and response functions. Our algorithm
removes the restriction on the cameras, but retains the major benefits of Coupled-View
AAMs: the integration of information from multiple images into a single set of model
parameters, and improved fitting robustness.



The main technical challenge is relating the 2D AAM shape parameters in one view
with the corresponding parameters in the other views. This relationship is particularly
complex because shape is modelled in 2D. It would be far easier if we had a 3D shape
model. Fortunately, AAMs have recently been extended to 2D+3D AAMs [11]. A 2D+3D
AAM containsboth a 2D shape model and a 3D shape model. The 2D+3D AAM is fit
using an extension of the inverse compositional algorithm [8]. As the algorithm runs, the
2D shape model is fit in the usual manner, but subject to the constraint that the 2D shape
is a valid projection of the 3D shape model. The 2D+3D algorithm recovers the 2D shape
parameters, the appearance parameters, the 3D shape parameters, and the camera param-
eters (which include 3D pose). Because it uses a fundamentally 2D fitting algorithm, the
2D+3D AAM can be fit very efficiently in real-time.

To generalise the 2D+3D fitting algorithm to multiple images, we use a separate set of
2D shape parameters for each image, but just a single, global set of 3D shape parameters.
We impose the constraints that for each view separately, the 2D shape model for that view
must approximately equal the projection of the single 3D shape model. Imposing these
constraints indirectly couples the 2D shape parameters for each view in a physically con-
sistent manner. Our algorithm can use any number of cameras, positioned arbitrarily. The
cameras can be moved and replaced with different cameras without any retraining. The
computational cost of the multi-view 2D+3D algorithm is only approximatelyN times
more than the single-view algorithm whereN is the number of cameras.

2 2D+3D Active Appearance Models

2.1 2D Active Appearance Models

The2D shapes of an AAM is a 2D triangulated mesh, and in particular the vertex loca-
tions of the mesh. AAMs allow linear shape variation. This means that the shapescan be
expressed as a base shapes0 plus a linear combination ofmshape matricessi :

s = s0 +
m

∑
i=1

pi si (1)

where the coefficientspi are the shape parameters. AAMs are normally computed from
training data consisting of a set of images with the shape mesh (hand) marked on them [3].
The Procrustes alignment algorithm and Principal Component Analysis (PCA) are then
applied to compute the the base shapes0 and the shape variationsi .

Theappearanceof an AAM is defined within the base meshs0. Let s0 also denote the
set of pixelsu = (u,v)T that lie inside the base meshs0, a convenient abuse of terminology.
The appearance of the AAM is then an imageA(u) defined over the pixelsu ∈ s0. AAMs
allow linear appearance variation. This means that the appearanceA(u) can be expressed
as a base appearanceA0(u) plus a linear combination ofl appearance imagesAi(u):

A(u) = A0(u)+
l

∑
i=1

λi Ai(u) (2)

where the coefficientsλi are the appearance parameters. The base (mean) appearance
A0 and appearance imagesAi are usually computed by applying Principal Components
Analysis to the (shape normalised) training images [3].



Although Equations (1) and (2) describe the AAM shape and appearance variation,
they do not describe how to generate amodel instance.The AAM model instance with
shape parametersp and appearance parametersλi is created by warping the appearanceA
from the base meshs0 to the model shape meshs. In particular, the pair of meshess0 and
s define a piecewise affine warp froms0 to s denotedW(u;p).

Note that for ease of presentation we have omitted any mention of the 2D similarity
transformation that is used with an AAM to normalise the shape [3]. In this paper we
include the normalising warp inW(u;p) and the similarity normalisation parameters in
p. See [8] for a description of how to include the normalising warp inW(u;p) and also
how to fit an AAM with such a normalising warp.

2.2 3D Active Appearance Models

The 3D shapes of a 3D AAM is a 3D triangulated mesh and in particular the vertex
locations of the mesh. 3D AAMs also allow linear shape variation. The shape matrixs
can be expressed as a base shapes0 plus a linear combination ofmshape matricessi :

s = s0 +
m

∑
i=1

pi si (3)

where the coefficientspi are the shape parameters. 3D AAMs are normally computed
from training data consisting of a number of3D range images with the mesh vertices
(hand) marked in them [2]. Note that there is no difference between the definition of a 3D
AAM in this section and a 3D Morphable Model (3DMM) as described in [2].

The appearance of a 3D AAM is an imageA(u) just like the appearance of a 2D AAM.
The appearance variation of a 3D AAM is also governed by Equation (2) and is computed
in a similar manner by applying Principal Components Analysis to the input texture maps.

To generate a 3D AAMmodel instance, an image formation model is needed to con-
vert the 3D shapes into a 2D mesh, onto which the appearance is warped. In [10] the
following weak perspective imaging model was used:

u = Px =
(

ix iy iz
jx jy jz

)
x+
(

ox

oy

)
. (4)

where(ox,oy) is an offset to the origin and the projection axesi = (ix, iy, iz) and j =
( jx, jy, jz) are equal length and orthogonal:i · i = j · j ; i · j = 0, andx = (x,y,z) is a 3D
vertex location. The model instance is then computed by projecting every 3D shape vertex
onto a 2D vertex using Equation (4). The appearanceA(u) is finally warped onto the 2D
mesh (taking into account visibility.)

2.3 2D+3D Active Appearance Models

A 2D+3D AAM [11] consists of the 2D shape variationsi of a 2D AAM governed by
Equation (1), the appearance variationAi(u) of a 2D AAM governed by Equation (2), and
the 3D shape variationsi of a 3D AAM governed by Equation (3). The 2D shape variation
si and the appearance variationAi(u) of the 2D+3D AAM are constructed exactly as for
a 2D AAM. The 3D shape variationsi we use is automatically constructed from the 2D
shape variationsi using a non-rigid structure-from-motion algorithm [11].



3 Fitting Algorithms

Our algorithm to fit a 2D+3D AAM to multiple images is an extension of the algorithm
to fit a 2D+3D AAM to a single image [11] which itself is an extension to the algorithm
to fit a 2D AAM to a single image [8]. To describe our algorithm, we first need to review
the algorithms on which it is based.

3.1 Fitting a 2D AAM to a Single Image

The goal of fitting a 2D AAM to an imageI [8] is to minimise:

∑
u∈s0

[
A0(u)+

l

∑
i=1

λiAi(u)− I(W(u;p))

]2

=

∥∥∥∥∥A0(u)+
l

∑
i=1

λiAi(u)− I(W(u;p))

∥∥∥∥∥
2

(5)

with respect to the 2D shapep and appearanceλi parameters. In [8] it was shown that
the inverse compositional algorithm [1] can be used to optimise the expression in Equa-
tion (5). The algorithm uses the “project out” algorithm [6, 8] to break the optimisation
into two steps. The first step consists of optimising:

‖A0(u)− I(W(u;p))‖2span(Ai)⊥
(6)

with respect to the shape parametersp where the subscript span(Ai)⊥ means project the
vector into the subspace orthogonal to the subspace spanned byAi , i = 1, . . . , l . The second
step consists of solving for the appearance parameters:

λi = − ∑
u∈s0

Ai(u) [A0(u)− I(W(u;p)] (7)

where the appearance vectorsAi have been orthonormalised. Optimising Equation (6)
itself can be performed by iterating the following two steps. Step 1 consists of computing:

∆p = −H−1
2D ∆pSD where ∆pSD = ∑

u∈s0

[SD2D(u)]T [A0(u)− I(W(u;p)] (8)

and the following two terms can be pre-computed to achieve high efficiency:

SD2D(u) =
[

∇A0
∂W
∂p

]
span(Ai)⊥

, H2D = ∑
u∈s0

[SD2D(u)]T SD2D(u). (9)

Step 2 consists of updating the warp:

W(u;p) ← W(u;p)◦W(u;∆p)−1. (10)

3.2 Fitting a 2D+3D AAM to a Single Image

The goal of fitting a 2D+3D AAM to an imageI [11] is to minimise:∥∥∥∥∥A0(u)+
l

∑
i=1

λiAi(u)− I(W(u;p))

∥∥∥∥∥
2

+ K ·

∥∥∥∥∥s0 +
m

∑
i=1

pi si−P

(
s0 +

m

∑
i=1

pi si

)∥∥∥∥∥
2

(11)



with respect top, λi , P, andp whereK is a large constant weight. Equation (11) should
be interpreted as follows. The first term in Equation (11) is the 2D AAM fitting criterion.
The second term enforces the (heavily weighted, soft) constraints that the 2D shapes
equals the projection of the 3D shapes with projection matrixP. See Equation (4).

In [11] it was shown that the 2D AAM fitting algorithm [8] can be extended to a
2D+3D AAM. The resulting algorithm only requires approximately 20% more computa-
tion per iteration to process the second term in Equation (11). Empirically, however, the
3D constraints in the second term result in the algorithm requiring approximately 40%
fewer iterations.

As with the 2D AAM algorithm, the “project out” algorithm [8] is used to break the
optimisation into two steps, the first optimising:

‖A0(u)− I(W(u;p))‖2span(Ai)⊥
+ K ·∑

i
F2

i (p;P;p) (12)

with respect top, P, andp, whereFi(p;P;p) is the error inside the L2 norm in the second
term in Equation (11) for each of the meshx andy vertices. The second step solves for
the appearance parameters using Equation (7). The 2D+3D has more unknowns to solve
for than the 2D algorithm. As a notational convenience, concatenate all the unknowns
into one vectorq = (p;P;p). Optimising Equation (12) is then performed by iterating the
following two steps. Step 1 consists of computing1:

∆q = −H−1
3D ∆qSD = −H−1

3D

[(
∆pSD

0

)
+K ·∑

i

(
∂Fi

∂q

)T

Fi(q)

]
(13)

where:

H3D =
(

H2D 0
0 0

)
+K ·∑

i

(
∂Fi

∂q

)T
∂Fi

∂q
. (14)

Step 2 consists of first extracting the parametersp, P, andp from q, and then updating the
warp using Equation (10), and the other two sets of parametersP andp additively.

3.3 Fitting a Single 2D+3D AAM to Multiple Images

Suppose that we haveN imagesIn : n = 1, . . . ,N of a face that we wish to fit the 2D+3D
AAM to. We assume that the images are capturedsimultaneouslyby synchronised, but
uncalibrated cameras. The naive algorithm is to fit the 2D+3D AAMindependentlyto
each of the images. This algorithm can be improved upon, however, by noticing that,
since the imagesIn are captured simultaneously, the 3D shape of the face should be the
same whichever image it is computed in. We therefore pose fitting a single 2D+3D AAM
to multiple images as minimising:

N

∑
n=1

 ∥∥∥∥∥A0(u)+
l

∑
i=1

λ
n
i Ai(u)− In(W(u;pn))

∥∥∥∥∥
2

+

K ·

∥∥∥∥∥s0 +
m

∑
i=1

pn
i si−Pn

(
s0 +

m

∑
i=1

pi si

)∥∥∥∥∥
2
 (15)

1For ease of presentation, in this paper we omit any mention of the additional correction that needs to be
made toFi(p;P;p) to use the inverse compositional algorithm. See [11] for more details.



simultaneously with respect to theN sets of 2D shape parameterspn, theN sets of appear-
ance parametersλ n

i (the appearance may be different in different images due to different
camera response functions), theN sets of camera matricesPn, and the one, global set of
3D shape parametersp. Note that the 2D shape parameters in each image are not inde-
pendent, but are coupled in a physically consistent2 manner through the single set of 3D
shape parametersp. Optimising Equation (15) therefore cannot be decomposed intoN
independent optimisations. The appearance parametersλ n

i can, however, be dealt with
using the “project out” algorithm in the usual way; i.e. we first optimise:

N

∑
n=1

 ‖A0(u)− In(W(u;pn))‖2span(Ai)⊥
+ K ·

∥∥∥∥∥s0 +
m

∑
i=1

pn
i si−Pn

(
s0 +

m

∑
i=1

pi si

)∥∥∥∥∥
2

(16)

with respect topn, Pn, andp, and then solve for the appearance parameters:

λ
n
i = − ∑

u∈s0

Ai(u) · [A0(u)− In(W(u;pn))] . (17)

Organise the unknowns in Equation (16) into a single vectorr = (p1;P1; . . . ;pN;PN;p).
Also, split the single-view 2D+3D AAM terms into parts that correspond to the 2D image
parameters (pn andPn) and the 3D shape parameters (p):

∆qn
SD =

(
∆qn

SD,2D
∆qn

SD,p

)
and Hn

3D =
(

Hn
3D,2D,2D Hn

3D,2D,p
Hn

3D,p,2D Hn
3D,p,p

)
. (18)

Optimising Equation (16) can then be performed by iterating the following two steps.
Step 1 consists of computing:

∆r = −H−1
MV ∆rSD = −H−1

MV


∆q1

SD,2D
...

∆qN
SD,2D

∑N
n=1 ∆qn

SD,p

 (19)

where:

HMV =


H1

3D,2D,2D 0 . . . 0 H1
3D,2D,p

0 H2
3D,2D,2D . . . 0 H2

3D,2D,p
...

...
...

...
...

0 . . . 0 HN
3D,2D,2D HN

3D,2D,p
H1

3D,p,2D H2
3D,p,2D . . . HN

3D,p,2D ∑N
n=1Hn

3D,p,p

 . (20)

Step 2 consists of extracting the parameterspn, Pn, andp from r , and updating the warp
parameterspn using Equation (10), and the other parametersPn andp additively.

The N image algorithm is very similar toN copies of the single image algorithm.
Almost all of the computation is just replicatedN times, one copy for each image. The

2Note that directly coupling the 2D shape models would be difficult due to the complex relationship between
the 2D shape in one image and another. Multi-view face model fitting is best achieved with a 3D model. A
similar algorithm could be derived for 3D AAMs such as 3D Morphable Models [2]. The main advantage of
using a 2D+3D AAM [11] is the far greater fitting speed.
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Figure 1:An example of using our algorithm to fit a single 2D+3D AAM to three images of a face.
Each image is overlaid with the corresponding 2D shape for that image in blue dots. The head pose
(extracted from the camera matrixPN) is displayed in the top left of each image as roll, pitch and
yaw. The single 3D shapep for the current ‘frame’ is displayed in the top right of the centre image.
This 3D shape is also overlaid in each image, using the correspondingPN, as a white mesh.

only extra computation is adding theN terms in the components of∆rSD andHMV that
correspond to the single set of global 3D shape parametersp, inverting the matrixHMV ,
and the matrix multiply in Equation (19). Overall, theN image algorithm is therefore
approximatelyN times slower than the single image 2D+3D fitting algorithm; i.e. the
computational cost is almost identical to performingN independent 2D+3D AAM fits.

4 Experimental Results

An example of using our algorithm to fit a single 2D+3D AAM to three concurrent images
of a face is shown in Figure 1. The initialisation is displayed in the top row of the figure,
the result after 5 iterations in the middle row, and the final converged result in the bottom
row. In each case, all three input images are overlaid with the 2D shapepn plotted in
blue dots. We also display the recovered pose angles (roll, pitch and yaw) extracted from
the weak perspective camera matrixPn for each view in the top left of the image. Each
camera computes a different relative head pose, illustrating that the estimate ofPn is view
dependent. The single 3D shapep for all views at the current iteration is displayed in the
top-right of the centre image. The view-dependent camera projection of this 3D shape is
also plotted as a white mesh overlaid on the face.

Applying the multi-view fitting algorithm sequentially to a set of concurrent frames
allows us to track the face simultaneously inN video sequences. Some example frames
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Figure 2:An example of our multi-view fitting algorithm being using to track a face in a trinocular
stereo sequence.

of the algorithm being using to track a face in a trinocular stereo sequence is shown in
Figure 2. The tracking remains accurate and stable both over time and between views.

In Figure 3 we show quantitative results to demonstrate the increased robustness and
convergence rate of our multi-view fitting algorithm. In experiments similar to those
described in [8], we generated a large number of test cases by randomly perturbing from
a ground-truth obtained by tracking the sequence. For this experiment the 2D parameters
of each view were randomly perturbed independently from the other views (but all views
were perturbed each time). The 3D initial parameters were computed from the perturbed
2D mesh coordinates. We then run each algorithm from the same perturbed starting point
and determine whether they converge by comparing the RMS error between the 2D mesh
location of the fit result and the ground-truth 2D mesh coordinates. The algorithm is
considered to have converged if this error is less than 1 pixel. We repeat the experiment 20
times for each set of 3 images and average over all 300 image triples in the test sequence.
This is repeated for different values of perturbation energy to determine the robustness and
convergence properties of each algorithm. The magnitude of the perturbation is chosen
to vary on average from 0 to 4 times the 2D shape standard deviation. The 2D similarity
parameters are perturbed to introduce a spatial offset of 4 times this value. The multiplier
is not a critical value, it simply introduces significant similarity perturbation [8].

In Figure 3(a) we plot a graph of the likelihood (frequency) of convergence against
the magnitude of the random perturbation for the 2D algorithm, the 2D+3D algorithm,
and the new multi-view 2D+3D algorithm for the trinocular 300× 3 frame sequence
shown in Figure 2. The results clearly show that the multi-view algorithm is more robust
than the single-view 2D+3D algorithm [11], which itself is more robust than the original
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Figure 3: (a) The likelihood (frequency) of convergence plot against the magnitude of a ran-
dom perturbation to the ground-truth fitting results computed by tracking through the trinocular
sequence in Figure 2. The results show that the multi-view 2D+3D algorithm is more robust than
the single-view 2D+3D algorithm, which itself is more robust than the 2D algorithm. (b) The rate
of convergence is estimated by plotting the average error after each iteration against the iteration
number. The results show that the multi-view 2D+3D algorithm converges slightly faster than the
single-view 2D+3D algorithm, which converges slightly faster than the 2D algorithm.

2D algorithm [8]. We also compute how fast the algorithms converge by computing the
average RMS mesh location error after each iteration. Only trials that actually converge
are used in this computation. The results are included in Figure 3(b) and show that the
multi-view algorithm converges slightly faster than the single-view 2D+3D algorithm,
which converges slightly faster than the 2D algorithm.

5 Discussion

We have described an algorithm to fit a single 2D+3D AAM toN concurrent images
captured simultaneously byN uncalibrated cameras. In the process, our algorithm com-
putes: 2D shape parameters for each image, a single set of global 3D shape parameters,
the weak-perspective camera matrix for each view (3D pose), and appearance parameters
for each image (which may be different due to different camera response functions.) Our
algorithm enforces the constraints that all of these quantities are physically consistent in
the 3D scene. The algorithm operates approximatelyN times slower than the real-time
(over 60fps) single image 2D+3D AAM fitting algorithm [11]. We have shown our multi-
view 2D+3D AAM algorithm to be both more robust and converge more quickly than the
single-view 2D+3D AAM algorithm, which is itself more robust than the single-view 2D
AAM algorithm [8].

Because our fitting algorithm computes the camera matrices, it can also be used to
calibrate the cameras (as weak perspective). Once they are calibrated, it may be possible
to reformulate the fitting problem with less unknowns, and hopefully achieve even greater
robustness. We plan to investigate this in a future paper. Other areas for future work
include fitting 2D+3D AAMs simultaneously over time. The difficulty with a temporal
sequence is that the face can deform non-rigidly. Note that fitting a single AAM to an
entire sequence is one large global optimisation into which we can add global temporal



smoothness constraints which may improve fitting performance, whereas tracking a head
through a video is a sequence of independent optimisations that may yield inconsistent
results at each frame. The best way to do this is an interesting research question.
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