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Abstract

Systems that attempt to recover the spoken word from

image sequences usually require complicated models of the

mouth and its motions. Here we describe a new approach

based on a fast mathematical morphology transform called

the sieve. We form statistics of scale measurements in one

and two dimensions and these are used as a feature vector

for standard Hidden Markov Models (HMMs).

1. Introduction

Although the visual cues of speech alone are unable to

discriminate between all phonemes ([b] and [p] for exam-

ple) the incorporation of visual with acoustic information

leads to a more robust recogniser. Degradation of one chan-

nel via, for example, interfering noise or cross-talk for au-

dio, or occlusion for video, may be compensated, to some

extent, by information from the other. In some cases infor-

mation in each channel is complementary. For example, the

phonemes [m] and [n] are acoustically similar but visually

dissimilar.

Two problems have emerged in audio-visual speech

recognition: audio-visual integration and visual feature

extraction. The first problem has been addressed else-

where [1, 20, 23]. Here, ways to extract visual features

are examined. The aim is to reduce the dimensionality of

the image to a small representative set of features. The

usual approach is to assume a model for the lips that is

described by as few parameters as possible and to fit the

model parameters to the image sequence data [8, 10]. Un-

fortunately whether one uses active shape models [19], de-

formable templates [14] or dynamic contours [15], tracking

the lips is a hard problem and furthermore such models re-

move the possibility of learning any other visual cues that

may be significant.

Figure 1 shows an example of a parametric model (train-

ing data from a point distribution model (PDM) [17] trained

over three talkers saying the letters: A, P, M, E, U and shows

the variations corresponding to the largest three eigenval-

ues in a principal component decomposition of the shapes.

The inner contour outlines the dark void bounded by lips

and/or teeth. The outer contour corresponds to the outside

margin of the lips. The first two modes of this sixteen-point

model, which contain 70% and 17% of the variation, appear

to show changes in the area and aspect ratio of the mouth.

The third mode accounts for 2% of the total variation and

appears, like the remaining modes, to be more related to

variability in annotation of the training images.
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Figure 1. First three modes of variation at ±2

standard deviations about the mean.

This observation leads to two questions. Firstly, were

it possible to derive mouth area and aspect-ratio measure-

ments directly from the grey-levels, how well would the

system perform? Secondly, how much of the detail is lost

due to this particular choice of model?

A desirable alternative is to discard the parametric model

and attempt to extract features from the grey-level data di-

rectly [9]. This is the approach discussed in this paper

but we seek to overcome the obvious problems of high-

dimensionality and lack of robustness by adopting a scale-

space approach. We examine the use of one- and two-

dimensional scale-space primary vision systems to simplify

the image and provide features that may be used to train a

Hidden Markov Model. Section 2 describes the scale-space

primary vision systems and in Section 3 a number of meth-

ods for extracting visual features are examined. Section 5

shows how these features might be combined with audio

features to form an improved recogniser.
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2. Scale-space primary vision systems

The properties of a scale-space decomposition are well

known [16, 28] and have been closely connected with the

properties of a diffusion system [18, 26]. However the

scale-space properties are not unique to diffusion and there

are several types of mathematical morphology systems that

have some, if not all, of the desirable scale-space prop-

erties [4]. The systems used here are the one- and two-

dimensional variants of types of sieve [3–7].

The sieve may be defined in any number of dimensions

by defining the image as a set of connected pixels with their

connectivity represented as a graph [13],G = (V,E) where

the set of vertices, V , are pixel labels and E, the set of

edges, represent the adjacencies. Defining Cr(G) as the set

of connected subsets of G with r elements allows the defi-

nition of Cr(G, x) as those elements of Cr(G) that contain

x.

Cr(G, x) = {ξ ∈ Cr(G)|x ∈ ξ} (1)

Morphological openings and closings, over a graph, may be

defined as

ψrf(x) = max
ξ∈Cr(G,x)

min
u∈ξ

f(u) (2)

γrf(x) = min
ξ∈Cr(G,x)

max
u∈ξ

f(u) (3)

The effect of an opening1 of size one, ψ1, is to remove all

maxima of area one (γ1 would remove minima of size one).

Applyingψ2 to ψ1f(x) will now remove all maxima of area

two and so on. The M and N operators are defined as

Mr = γrψr and N r = ψrγr. Sieves, and filters in their

class such as alternating sequential filters with flat structur-

ing elements, depend on repeated application of such op-

erators at increasing scale. This cascade behaviour is key,

since each stage removes maxima or minima of a particular

scale. The output at scale r is denoted by fr(x) with

f1 = Q1f = f and fr+1 = Qr+1fr (4)

where Q is one of the γ, ψ, M or N operators. An illustra-

tion of the sieve is provided elsewhere [4]. The differences

between successive stages of a sieve, called granule func-

tions, dr = fr+1 − fr, contain non-zero regions, called

granules, of only that scale.

In one-dimension the graph, (1), becomes an interval

Cr(x) = {[x, x+ r − 1] |x ∈ Z} (5)

where Z is the set of integers and Cr is the set of intervals

in Z with r elements and the sieves so formed give decom-

positions by length.

1Openings and closings are duals so inverting the colour map swaps

their operation – a common cause of confusion.
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Figure 2. Two­dimensional decomposition of

the image shown in the top left panel.

The sieves described here differ in the way they pro-

cess extrema. Opening-sieves remove maxima and closing-

sieves remove minima. The M - and N -sieves remove min-

ima then maxima or maxima then minima. The algorithm

operates by parsing the signal to build lists of extrema. Re-

moval of extrema then amounts to merging lower length ex-

trema sub-lists into higher ones. A further refinement is

to process the maxima and minima as they occur. In one-

dimension such removal is equivalent to recursive median

filtering and the sieve so formed is called an m-sieve. The

two-dimensionalm-sieve uses the same algorithm but does

not give a recursive median operation. Both inherit the abil-

ity to robustly reject noise in the manner of medians and

do so more effectively than diffusion based schemes [12].

Moreover, the sieve-based algorithms have low order com-

plexity and use integer-only arithmetic and so are highly

appropriate for a real-time implementation described later.

For these reasons, here, we discuss only results from the

sieve.

For a p by q image there are potentially p × q granule

functions so it is convenient to sum them into channels. This

is shown in Figure 2. The top right panel shows extrema

characterised by having an area between 50 and 100 pixels.

Likewise, increasing areas, 100 to 200 and 200 to 2000,

are shown in the lower panels. Greylevel 128 represents

zero in the granularity domain and dark regions are negative

granules. The mouth is particularly prominent in the lower

right panel.

Figure 3 shows an example of the operation of a one-

dimensional m-sieve. On the top is a plot of the intensity

along a vertical scan line taken through the nose of the per-

son shown in the top left panel of Figure 2. Beneath is a plot

of the granule functions versus scale. The small-scale fea-

tures appear as granules at lower scales. The absolute gran-
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g=sieve1d(dem_data_1d,50,’g’); dsspectrumc(g,dem_data_1d,1:50);
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Figure 3. One­dimensional recursive median
sieve decomposition for a vertical scanline

(top trace) taken through the image of Fig­
ure 2.

ule amplitude is represented by greyscale density. Sharp-

edged objects have a compact support in the scale-space.

3. Visual feature extraction

The granules are a mapping of the original image and

contain all the information in the original [2, 4]. If pattern

analysis is to be achieved in this domain it is helpful to re-

duce the overall dimensionality. The shape analysis in Fig-

ure 1 shows that the area of the centre part of the mouth

accounts for most of the variance. This suggests the 2D

sieve may be a useful tool for feature extraction.

Feature extraction method 1. Figure 2 indicates that

the mouth may be isolated by a combination of approximate

position within the face, and scale. The dark blob represent-

ing the mouth is particularly pronounced and therefore easy

to track. In fact all the methods reported here work on sub-

images of the type shown on the top of Figure 4, in which

the mouth is the major feature. This is common practice in

lip reading since full systems often include a separate head

tracker [15]. The area is used as a single feature; it is an,

easily calculated, alternative to fitting the second mode of

the active shape model shown in Figure 1.

Feature extraction method 2. A possible alternative to

the first two modes of the active shape model analysis might

be estimates of the height and width of the mouth located in

the previous method (lower right of Figure 2).

Feature extraction method 3. More information asso-

ciated with the areas (but not shapes) of objects can be ob-

tained from an area-histogram, see Figure 4 middle. This

is a plot of the number of granules (ordinate) as a func-

tion of scale (abscissa). It is insensitive to both horizontal

and vertical displacement of image features but, as shown

in Figure 4, has variation as the lips move apart.

Figure 5 shows an utterance sequence “D-G-M”. The top

panel shows typical frames from the image sequence: a neu-

tral frame and the centre frame from each utterance. The

bottom panel shows the audio channel. The lower centre

panel is the time varying area-histogram. The number of

granules is plotted as an intensity, white represents a large

number of granules and scale increases down the ordinate.

The number of granules at a scale alters whenever the mouth

opens and remains fairly stationary at other times. As the

utterances are isolated letters the visual cues begin before,

and end after, the acoustic signal.

Feature extraction method 4. The sieves defined in

Section 2 may also be used to analyse a two-dimensional

image by scanning in a given direction. In this case the

vertical direction contains most of the lip motion that oc-

curs during speech. The number of granules at a particular

scale, a length histogram, indicates how many features of

that length that the image contains and varies with the shape

of the image features.

The top of Figure 4 shows images of a mouth and, at

the bottom, their length histograms. These are formed by

counting the number of granules in all vertical scan lines.

This ignores their amplitude and gives improved insensitiv-

ity to lighting variation. The histogram of the granule count

has a dimensionality equal to the number of analysis scales

(sixty in this case). Its operation is best seen by viewing a

motion sequence and Figure 5, upper centre panel, shows

the time-varying scale histogram.

4. Data

A variety of sieve-based features were used on an audio-

visual database consisting of ten talkers, five male (two

with moustaches) and five female (none with moustaches)

with each talker repeating each of the letters A to Z three

times – a total of 780 utterances. Recording took place in

a television studio under normal studio lighting conditions.

Three cameras simultaneously recorded different views of

the talker: full face, mouth only and a side view. All the

recording was to tape. The full face images used here were

recorded to SVHS quality. The output of a high quality

tie-clip microphone was adjusted for each talker through

a sound mixing desk and fed to all video recorders. Each

talker was asked to return their mouth to the neutral posi-

tion after each utterance and allowed to watch an autocue

for the letters. No attempt at restraining was made but talk-

ers were asked not to move their mouth out of the frame of

the mouth-only camera.

All 780 full face sequences were digitised at quarter

frame PAL (376×288) resolution and full frame rate (25Hz)

using the standard frame grabber hardware of a Macin-
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Figure 4. Open and shut mouths and their 2D

(centre) and 1D (bottom) histograms.

tosh Quadra 660AV (ITU-R BT.601 8-bit grayscale). Au-

dio was simultaneously digitised using 16-bit resolution

at 22.05kHz to ensure audio-visual time alignment. The

database is available on four CD-ROMS.

Each utterance sequence was manually segmented using

the video channel so that each image sequence began and

ended with the talkers mouth in the neutral position. The

audio data within this window was then hand labeled as

silence–letter–silence.

5. Results

All recognition experiments were performed using the

first two utterances from each of the ten talkers as a train-

ing set (20 training examples per utterance) and the third

utterance from each talker as a test set (10 test examples

per utterance). Classification was done using left to right

HMMs [22], each state associated with a single Gaussian

density with a diagonal covariance matrix. All HMMs were

implemented using the HMM Toolkit HTK V1.4.

The results for feature extraction methods 1 to 3 were

obtained using visual features at 40 ms frame intervals.

Method 4 used an interpolated interval of 20 ms. Meth-

ods 1 and 2 used a five state HMM. Methods 3 and 4 used a

ten state HMM.

Utterance sequence ’D−G−M’
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Figure 5. Utterance sequence “D­G­M”. Top

shows example image frames, upper centre
the scale histogram, lower centre the area­

histogram and bottom the waveform.

Method Best talker Worst talker All talkers

1 27 4 7

2 42 4 9

3 50 12 17

4 62 23 34

Table 1. Percentage of correct classifications.

The feature vectors used for the recognition experiments

for each method were:

1. The area tracker, a scalar feature.

2. The two element feature vector formed from the height

and width of the mouth estimate located in method 1.

3. A reduced area-histogram. The area-histogram shown

in Figure 5 has fifty channels linearly spaced from area

1 to area 4800. This 50 element feature vector was

reduced to 20 elements by computing the eigenvectors

of the covariance matrix of the histogram channels and

selecting the 20 principal components.

4. The one-dimensional recursive m-sieve scale his-

togram with 60 channels that were also reduced to 20

via principal component analysis.
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Table 1 summarises the recognition performance of the

four methods. The ‘Best talker’ column indicates the recog-

nition results after training on two, and testing on one, ut-

terance per letter from the single best talker for that method.

All of the results in this column are considerably better than

chance (4%) which, given the small training set, is encour-

aging. When a classifier is trained and tested on all talkers

the performances drop (column four of Table 1). This indi-

cates that some features work well with some talkers but not

with others. Column three, the worst talker results, confirms

this.

It is clear from Table 1 that as the number of features

increases so does recognition accuracy. The best, method 4,

may be combined with audio information to form an audio-

visual speech recogniser.
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Figure 6. Unimodal results for each talker.

Figure 6 shows the results for method 4 (20 PCA coeffi-

cients calculated from a 1D scale histogram), the best visual

case, on a per-talker basis with audio-only results for com-

parison. The audio features consisted of 12 Mel frequency

cepstral coefficients (MFCCs) plus an energy term and delta

coefficients, that is 26 coefficients, calculated at a frame rate

of 20ms. The same HMM topology and training/test data

was used for audio only as visual only tasks.

The variation in visual only performance (20–65% cor-

rect) is clearly much greater than that for audio only (77–

92% correct). There is little correlation between poor audio

and poor visual performance, further evidence that visual

cues could improve audio recognition. However, combin-

ing the audio and visual information successfully is tricky

and we describe this elsewhere [21].

6. Discussions

These results indicate that the scale histogram visual

speech feature vector can be used successfully in lip read-

ing. A recogniser using only visual information attained an

average performance of 34% across ten talkers in a multi-

talker, isolated letter recognition task (compared to 86% for

audio only) and 62% when trained and tested for a single

talker (compared to roughly 92% using audio only data).

An informal test using a panel of three untrained humans

on this talker using the same training and test data scored

an average 57% correct.

A significant omission from this system is a method for

normalising the scale. In Figure 4 the talker is at a constant

distance from the camera. We are addressing this in a num-

ber of ways. Firstly, a head tracker allows normalisation by

head size. Secondly we have found that horizontal granular-

ity histograms contain little useful information apart from

scale and thirdly by performing scale normalisation when

the mouth is closed (minimum area in the histograms) with

the advantage that it might control against variations in rel-

ative mouth size and shape.

The database used in these experiments is particularly

challenging as it contains multiple talkers repeating 26 ut-

terances under normal conditions. There has been no at-

tempt to restrain the head motion of the talkers, the talkers

did not wear lipstick and the sequences were collected at

domestic frame rates and in greyscale. However it is diffi-

cult to know how well our method compares to others be-

cause all the research groups are using different data sets.

We are tackling this problem in three ways. Firstly, by im-

plementing alternative methods such as active shape mod-

els [11,19]. Secondly, we are making our database publicly

available and thirdly we are collecting more single-talker

data so that we can assess our methods over this simpler

task and compare them with others.

Figure 7. Screen from a prototype real­time
lip reader

Current work is concentrating on how the area-

histogram, scale histogram and active shape models may be
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combined to generate more robust features that will gener-

alise better across talkers. This requires a larger database to

permit reliable training of the HMMs or a real-time imple-

mentation. Figure 7 shows a frame from a real-time system

implemented on a Silicon Graphics O2 workstation. The

box delineates the region (60 by 80 pixels) that is sieved

every full frame, 30 frames per second.

Future work will focus on finding effective ways of in-

tegrating the audio and visual information with the aim of

ensuring that the combined performance is always at least as

good as the performance using either modality [1,23,24,27].
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