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Abstract

Active Appearance Models (AAMs) are generative parametric models that have
been successfully used in the past to model faces. Anecdotal evidence, however, sug-
gests that the performance of an AAM built to model the variation in appearance of
a single person across pose, illumination, and expression (a Person Specific AAM) is
substantially better than the performance of an AAM built to model the variation in
appearance of many faces, including unseen subjects not in the training set (a Generic
AAM). In this paper we present an empirical evaluation that shows that Person Spe-
cific AAMs are, as expected, both easier to build and more robust to fit than Generic
AAMs. Moreover, we show that: (1) building a generic shape model is far easier than
building a generic appearance model, and (2) the shape component is the main cause
of the reduced fitting robustness of Generic AAMs. We then proceed to describe two
refinements to Generic AAMs to improve their performance: (1) a refitting procedure
to improve the quality of the ground-truth data used to build the AAM and (2) a new
fitting algorithm. For both refinements we demonstrate dramatically improved fitting
performance. Finally, we evaluate the effect of these improvements on a combined
model construction and fitting task.

1 Introduction

Active Appearance Models (AAMs) [4] are generative parametric models commonly used to
model faces. Depending on the task at hand AAMs can be constructed in different ways. For
example, we might build an AAM to model the variation in the appearance of a single person
across pose, illumination and expression. Such a Person Specific AAM might be useful for
interactive user interface applications that involve head pose estimation, gaze estimation, or
expression recognition. Alternatively, we might attempt to build an AAM to model any face,
including unseen subjects not in the training set. The most obvious use of such a Generic
AAM would be face recognition.



Anecdotal evidence suggests that Person Specific AAMs perform substantially better
than Generic AAMs. The performance of an AAM depends on two steps: (1) Modelling:
How well is the AAM able to model (or generate) images in the class under consideration
and (2) Fitting: How robustly can the AAM be fit to a novel input image? AAMs consist
of two components: (1) a shape component, and (2) an appearance component. Natural
questions then include: “is it harder to build a generic shape model that models the shape of
any face well, or is building a generic appearance model harder?” and “what makes fitting
harder, a large shape model, or a large appearance model?

We begin in Section 4 by studying the construction of AAMs. We present an empirical
evaluation that shows that Person Specific AAMs are indeed easier to build than Generic
AAMs. Moreover, building a generic shape model is relatively easy, whereas building a
generic appearance model is what makes building a Generic AAM hard.

We continue in Section 5 by studying the fitting of AAMs. We present an empirical
evaluation that shows that Person Specific AAMs are indeed easier to fit than Generic
AAMs. We also show that what makes fitting a Generic AAM hard is the increased size of
the shape model, more so than the increased size of the appearance model.

In Section 6 we proceed to describe two refinements to Generic AAMs to improve their
performance. We first propose a refitting procedure (closely related to our automatic AAM
construction algorithm [3]) to improve the quality of the ground-truth data used to build the
AAM (Section 6.1). We then introduce a new fitting algorithm, the Simultaneous Inverse
Compositional Algorithm [1] (Section 6.2). For both refinements we demonstrate dramati-
cally improved fitting performance on the same data used in Section 5.

The fitting experiments in Sections 5 and 6 were conducted on seen data (i.e. data in
the training set.) The experiments were conducted this way to remove the effect of model
construction from the model fitting experiments. If a fitting algorithm fails, it fails because
it fell into a local minima, not because the AAM cannot model the input image. In Section 7
we combine the experiments in Sections 4–6 and perform an evaluation of how much the two
improvements to Generic AAMs help the performance of AAM fitting on unseen data (i.e.
data not in the training set.)

2 Background: Active Appearance Models

We begin with a brief review of Active Appearance Models (AAMs) [4]. We briefly de-
fine them, explain how they are constructed from training data, and describe our efficient
“Project Out” fitting algorithm [10].

2.1 Definition and Model Construction

The 2D shape of an AAM is defined by a 2D triangulated mesh and in particular the
vertex locations of the mesh. Mathematically, we define the shape s of an AAM as the
2D coordinates of the n vertices that make up the mesh: s = (x1, y1, x2, y2, . . . , xn, yn)T.
AAMs allow linear shape variation. This means that the shape matrix s can be expressed



as a base shape s0 plus a linear combination of m shape matrices si:

s = s0 +
m∑

i=1

pi si (1)

where the coefficients pi are the shape parameters. AAMs are normally computed from
training data consisting of a set of images with the shape mesh (usually hand) marked on
them [4]. The training shapes are then geometrically aligned using the Procrustes algorithm
[6]. Principal Component Analysis (PCA) [8] is then applied to the aligned training meshes.
The base shape s0 is the mean shape and the matrices si are the (reshaped) eigenvectors
corresponding to the m largest eigenvalues.

The appearance of the AAM is defined within the base mesh s0. Let s0 also denote the
set of pixels u = (u, v)T that lie inside the base mesh s0, a convenient abuse of terminology.
The appearance of the AAM is then an image A(u) defined over the pixels u ∈ s0. AAMs
allow linear appearance variation. This means that the appearance A(u) can be expressed
as a base appearance A0(u) plus a linear combination of l appearance images Ai(u):

A(u) = A0(u) +
l∑

i=1

λi Ai(u) (2)

where the coefficients λi are the appearance parameters. The appearance images Ai are
usually computed by applying PCA to the shape normalized training images [4, 10].

2.2 Model Fitting

Fitting a AAM is usually formulated [10] as minimizing the sum of squares difference between
the model instance A(x) = A0(x)+

∑m
i=1 λiAi(x) and the input image warped back onto the

base mesh I(W(x;p)):

∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x)− I(W(x;p))

]2

(3)

where the sum is performed over all of the pixels x in the base mesh s0. In this equation,
the warp W is the piecewise affine warp from the base mesh s0 to the current AAM shape
s defined by the vertices. Hence, W is a function of the shape parameters p. For ease
of notation, in this paper we have omitted mention of the 2D similarity transformation
that is used to normalize the shape of an AAM. In [10] we showed how to include this
warp into W. The goal of AAM fitting is to minimize the expression in Equation (3)
simultaneously with respect to the shape p and appearance λ parameters. The “Project-
Out” Inverse Compositional Algorithm [2] and its extension to 2D AAMs was proposed in
[10]. See Figure 1 for a summary. The algorithm performs the non-linear optimization of
Equation (3) in two steps (similar to Hager and Belhumeur [7]). The shape parameters p
are found through non-linear optimization in a subspace in which the appearance variation
can be ignored. This is achieved by “projecting out” the appearance variation from the
steepest-descent images :

SDic(x) = ∇A0
∂W

∂p
(4)



The Project-Out Inverse Compositional Algorithm

Pre-Computation:

(P1) Evaluate the gradient of the base appearance ∇A0

(P2) Evaluate the Jacobian of the warp ∂W
∂p at (x;0)

(P3) Compute the steepest descent images SDic(x) (Eqn. (4))

(P4) Project out appearance from SDic(x) (Eqn. (5))

(P5) Compute the Hessian matrix Hpo (Eqn. (7))

Iterate:

(I1) Warp I with W(x;p) to compute I(W(x;p))

(I2) Compute the error image E(x) = I(W(x;p))−A0(x)

(I3) Compute
∑

x SDT
po(x)E(x)

(I4) Compute ∆p = −H−1
po

∑
x SDT

po(x)E(x)

(I5) Update the warp W(x;p)←W(x;p) ◦W(x;∆p)−1

Optional Post-Computation of Appearance Parameters:

(A1) Compute λi =
∑

x∈s0 Ai(x) · [I(W(x;p))−A0(x)]

Figure 1: The Project-Out Inverse Compositional Algorithm [10].

by computing:

SDpo(x) = SDic −
m∑

i=1

[∑
x∈s0

Ai(x)SDic(x)

]
Ai(x). (5)

Equation (5) requires the appearance images Ai to be orthonormal. In each iteration of
the algorithm, the input image is warped with the current estimate of the warp to estimate
I(W(x;p)), the base appearance subtracted to give the error image E(x) = I(W(x;p)) −
A0(x), and the incremental parameter updates computed:

∆p = −H−1
po

∑
x∈s0

SDpo(x)[I(W(x;p))− A0(x)] (6)

using the Project-Out Hessian:

Hpo =
∑
x∈s0

SDpo(x)TSDpo(x). (7)

The incremental warp W(x; ∆p) is then inverted and composed with the current estimate
to give the new estimate W(x;p) ◦W(x; ∆p)−1. In an optional post-computation step, the



appearance parameters λ can then be computed as:

λi =
∑
x∈s0

Ai(x) · [I(W(x;p))− A0(x)] . (8)

If there are n shape parameters, m appearance parameters, and N pixels in the base ap-
pearance A0, the pre-computation takes time O(n2 · N + m · N) where the slowest step is
the computation of the Hessian in Step P5 which alone takes time O(n2 · N). The online
cost per iteration is just O(n · N + n3) and the post-computation cost is O(m · N). In all
cases we iterate the algorithm until convergence or for a sufficient (fixed) number of times.
A implementation of this algorithm in “C” runs at 230 frames per second on a dual 3GHz
Pentium 4 Xeon for typical values of n, m and N [10].

3 Evaluation Datasets

We assembled three datasets which separately vary illumination, pose and identity. For the
illumination dataset we recorded a single subject in a static frontal pose and neutral expres-
sion while smoothly changing the position of a lamp illuminating the face. We randomly
selected 100 images from this sequence for the experiments. This data is used to construct
Person Specific AAMs. It contains a large amount of appearance variation, but little or no
shape variation. In the second dataset the same subject was recorded under constant illu-
mination and neutral expression while smoothly changing head pose. We randomly selected
100 images from the sequence for evaluation. Again, this data is used to build Person Specific
AAMs. Unlike the illumination dataset, the pose dataset contains a lot of shape variation.
Due to the non-uniform lighting and the presence of specularities, some appearance varia-
tion is visible as well. For the identity dataset, we chose 100 different subjects from the fa
subset of the FERET database [11]. This data is used to build Generic AAMs. This dataset
contains both shape and appearance variation due to the variation across face identities.
Even though the images were taken from the same subset of FERET, differences in facial
expression, face pose and illumination are also present. Figure 2 shows three example images
from each dataset. To ground-truth the data the 68 vertex locations of the shape mesh for
all 300 images were marked by hand.

4 Evaluating Model Construction

How many training images does it take to build a truly Generic AAM? Which requires more
training data, building the shape component or building the appearance component? In
order to quantify AAM construction performance we experimentally evaluate how well an
AAM can model unseen data based on a training set of the same type. In the experiments we
separately evaluate each dataset and the shape and appearance components of the AAMs.
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Figure 2: Datasets. Top Row: Illumination Dataset. The subject was recorded with constant
frontal pose and neutral expression while smoothly changing the position of a lamp illuminating
the face. Middle Row: Pose Dataset. The same subject was recorded under constant illumination
while smoothly changing head pose. Bottom Row: Identity set: We randomly selected 100 subjects
from the fa subset of the FERET database [11].

4.1 Experiment Description

We randomly select a varying number of training images from the dataset to build shape and
appearance models. For all models we retain enough variance to explain 95% of the training
data. (Retaining 95% of the variance is a standard procedure in the AAM literature. In
Section 5.2 we employ a better method to choose the dimensionality of the models used
in the fitting experiments. In the model construction experiments in this section, the best
way to compare the datasets is to take the same amount of variance for each dataset.) We
then evaluate the reconstruction error of a fixed number of images from an independent test
set (although extracted from the same dataset.) In order to calculate the reconstruction
error for a test shape s and appearance A, we compute the shape parameters p1, . . . , pm and
the appearance parameters λ1, . . . , λl by projecting s and A into the shape and appearance
eigenspaces. The reconstruction errors are then defined by:

RS =

∥∥∥∥∥s− (s0 +
m∑

i=1

pisi)

∥∥∥∥∥
2

RA =

∥∥∥∥∥A− (A0 +
l∑

i=1

λiAi)

∥∥∥∥∥
2

(9)



(a) Shape (b) Appearance

Figure 3: Shape and appearance reconstruction errors for the illumination, pose and identity
datasets. We compute the reconstruction error by projecting independent test data into the
eigenspace spanned by training sets of varying size, reconstructing the data using the eigenspace
representation and measuring the Euclidean distance between original and reconstructed data. See
Equation (9).

where ‖·‖2 is the Euclidean L2 Norm. RS is measured in pixels2 and RA in grey − levels2.

4.2 Experiment Results

Figure 3(a) plots the shape reconstruction errors for all three datasets against a varying
number of training images. The illumination dataset theoretically has zero shape variation.
Hence the reconstruction error for a single training image (0.5 pixels) can be attributed to
errors in ground-truthing. We use this threshold to determine how many training images are
needed for the pose and identity sets to model unseen data. The error over the pose set falls
below 0.5 after 5 training images, which is consistent with intuition and recent theoretical
results showing that at most 6 2D shape vectors are needed to model a single rigid 3D face
[12]. For the identity set 15 training images are needed to reach this level of modelling
accuracy. We can therefore conclude that (1) it is possible to build a generic shape model
and (2) as few as 15 training images are needed for a generic shape model. However, this
only applies to generic shape models for frontal faces. More training images will be necessary
to build a generic shape model for faces under varying poses.

Figure 3(b) plots the appearance reconstruction error. Again we can use the reconstruc-
tion error over the illumination set as guideline to determine when the models only explain
noise due to errors in (shape) ground-truthing and appearance model interpolation. This
holds since faces under fixed pose but varying illumination can be modelled using a low di-
mensional subspace [9]. The reconstruction error over the pose set is actually slightly higher
than over the illumination set, possibly due to the more difficult ground-truthing and the
non-uniform illumination. The reconstruction error over the identity set always stays well
above the level of either the illumination or the pose set. This observation holds even if we



Table 1: Appearance reconstruction error RA for the illumination, pose and identity datasets
for 90 and 190 training images. Even using 190 training images in the identity set, the
reconstruction error stays well above the error for the illumination and pose sets.

Illumination (90) Pose (90) Identity (90) Identity (190)
RA 5.06 6.99 10.67 9.14

expand the training set to 190 images. See Table 1 for numerical results. Overall we can
conclude that it is much more difficult to build a generic appearance model than a generic
shape model. 190 images are not enough, even for the frontal images in FERET which
contain little expression variation.

4.3 Experiment Conclusions

Our experimental results show that it is relatively easy to build a generic shape model
for frontal faces. With as few as 15 training images, the shape model is able to model
unseen faces with accuracy comparable to that for a Person Specific illumination model with
essentially no shape variation. Using the argument in [12], 15×6 images should be sufficient
to model the shape of all neutral faces across pose. A few more images may be needed to
model expression variation, but overall building a Generic shape model is probably possible
with a few hundred images. However, the same does not hold for a Generic appearance
model. 200 images are nowhere near enough to build a Generic model that approaches the
quality of a Person Specific appearance model. Although we cannot provide an upper bound
on how many images will be required, we predict that many thousands will be required.

5 Evaluating Model Fitting

In this section we quantify model fitting performance by empirically evaluating how well an
AAM can be fit to an image using the “Project-Out” algorithm described in Section 2.2.
Specifically we evaluate the fitting performance on seen data; i.e. images in the training set
used to build the AAM. Although this choice may seem strange, the fitting algorithm is
deliberately tested on the training image to separate the effects of model construction and
fitting. By conducting the experiments in this way, we know that the AAM is able to model
the input image it is being fit to. If it fails to fit, it is due to the difficulty of the fitting
process rather than the inability of the AAM to model the image. In Section 7 we present
results on unseen data; i.e. images not in the training set. The results in Section 7 investigate
the trade-off between the difficulty in modeling and fitting.

Our evaluation methodology is similar to the one used in [10]. For a given AAM and test
image we randomly perturb the (hand-marked) ground truth shape and similarity transform
parameters. We then use these perturbed parameter values as the initial parameter estimates
for the fitting algorithm. We then run the fitting algorithm on a large number of such trials



and record the average frequency of convergence by calculating how often the algorithm
converges after 20 iterations. In [10], we found that the “Project-Out” algorithm typically
converges well within 20 iterations, if it converges at all.

In [10] we generated trials for perturbations of varying magnitude and plot graphs of the
frequency of convergence against the magnitude of the perturbation. In this paper we perturb
the parameters by a large, fixed magnitude so that we can then vary the size of the model.
See Section 5.3. Specifically, we perturb the shape parameters by 0.8 and the similarity
parameters by 4.0. Before we provide the details of how we vary the size of the model, we
first describe how we choose the convergence criterion and the model dimensionalities.

5.1 Determining The Convergence Criterion

There are no obvious or established choices for the selection of the convergence criterion. In
previous work we simply chose a value and verified that it corresponds to “good” convergence.
Generally we chose a threshold of between 1.0 and 2.0 pixels on the RMS error between the
final mesh vertex locations and the ground-truth mesh vertex locations.

To choose the threshold in a more principled manner, we conducted the following ex-
periments. We constructed three small AAMs for the three datasets (Illumination, Pose,
and Identity.) In particular, we constructed AAMs from just 10 training images. We then
ran 1000 perturbation experiments (in total) fitting the AAMs to the 10 training images.
In Figure 4(a) we plot histograms of the final RMS error between the final mesh vertex
locations and the ground-truth mesh vertex locations. We also repeated this experiment but
with three larger models constructed from 100 images from each of the three datasets. We
also ran 1000 perturbation experiments (in total) fitting the larger AAMs to the 100 training
images. The corresponding histograms are shown in Figure 4(b).

The results in Figures 4(a) all show that most of the fitting trials for all three datasets end
up with a RMS error between 0.0 and 3.0 pixels. Since the AAM used in this case is small
and the initial perturbation not too large, it is reasonable to assume that most of these trials
converged. We verified this by visually inspecting a number of results with final RMS errors
in the 0.0 to 3.0 pixel range and confirmed that they look as though they have converged.
The results in Figures 4(b) for the large AAMs are similar for the Illumination and Pose
datasets, but not for the Identity dataset. For the Illumination and Pose AAMs, this is still
a relatively easy fitting experiment, and most of the trials converge. For the Identity AAM,
the fitting task is far harder. Most of the trials results in a final RMS value of over 3.0 pixels.
We visually inspected a number of these results and found that when the final RMS error
is somewhat larger than 3.0 pixels, the trials look as though they have diverged. Based on
the results in Figure 4 we chose the convergence criterion to be 3.0 pixels. Naturally, this is
still somewhat of an arbitrary decisions. But, note that whether we choose 2.0, 3.0, 4.0, or
5.0 pixels, the conclusion in Figure 4(b) is always the same. Most of the Illumination and
Pose dataset trials converge, whereas very few of the Identity trials converge.
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(a) 10 Images (b) 100 Images

Figure 4: Histograms of the final RMS fitting error between the final mesh vertex locations and the
ground-truth mesh vertex locations for (a) small AAMs constructed with 10 training images and
(b) larger AAMs constructed with 100 training images. We visual inspected many of the results
and concluded, that for the small AAMs in (a), most of the trials for all three datasets converge,
and that for the larger AAMs in (b), most of the trials for the Illumination and Pose datasets
converge, but most of the trials for the Identity dataset diverge. Based on these results we chose
the converge criterion to be 3.0 pixels. Note, however, than the main conclusion does not depend
very much on the exact choice of this threshold.



(a) Shape (b) Appearance

Figure 5: Energy distribution of AAM shape (a) and appearance (b) eigenvectors.

5.2 Choosing the Model Dimensionalities

Next we address how to choose the dimensionality of the models. In most papers on AAMs,
the dimensionality of the shape and appearance models is chosen by retaining a fixed per-
centage (typically 95%) of the variance in the eigenvalues. In our three datasets, the relative
proportion of shape and appearance variation is very different. The Illumination dataset con-
tains a lot of appearance variation, but not much shape variation. The Pose dataset is the
other way around. See Figure 5 for plots of the PCA eigenvalues of the shape and appearance
components of AAMs constructed from 100 images from each of the three datasets.

How, then, do we choose the dimensionalities of the models? We chose to base this
decision on fitting performance, rather than on measures of the eigenvalues themselves. We
chose the models to maximize the fitting robustness. In Figure 6 we include scatter plots
of the percentage of trials converged against the fraction of shape variance retained in the
model. Since the decision is 2D (we need to choose the dimensionality of both the shape and
appearance models at the same time), when varying the size of the shape model we include
results for a few different sizes of appearance models, and vice versa. In Figure 6(a) we
include results for the shape component of the three datasets and in Figure 6(b) we include
results for the appearance component.

First consider the shape component of the illumination model. Really there should be
little shape variation. This manifests itself with the performance monotonically decreasing
with the fraction of the shape variance retained. The more variance retained, the larger the
shape model, but the more noise retained. Based on these results we chose the size of the
shape component of the Illumination model to be 65%. On the other hand, the appearance
component of the Illumination model should be large. There is a large amount of appearance
variation in the dataset. This manifests itself with the performance generally increasing with
the amount of appearance variation retained. At some point this levels off when all we add
is noise. We therefore chose the size of the appearance model for the Illumination dataset to
be 95%. Using similar arguments, we chose the size of the Pose AAM to be 98% for shape
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(a) Shape (b) Appearance

Figure 6: Scatter plots of the percentages of trials converged against the fraction of variance
retained in the model for the three datasets for (a) the shape model and (b) the appearance model.
From these plots we chose the size of the Illumination AAM to be 65% for shape and 95% for
appearance, the size of the Pose AAM to be 98% for shape and 98% for appearance, and finally
the size of the Identity AAM to be 90% for shape and 97% for appearance.



and 98% for appearance, and the size of the Identity AAM to be 90% for shape and 97% for
appearance.

5.3 Experiment Description

To compare the three datasets, we wish to generate fitting results for varying sizes of models.
We also wish to separate the effects of shape and appearance. We do this by evaluating the
fitting algorithm using shape models of varying size, but with a constant appearance model
computed over the complete dataset. The shape models are computed by randomly choosing
a fixed number (n) of training shapes and varying n between 5 and 100. For each n we build
the shape component of the AAM using those n images (and retaining the same fraction
of variance as described in Section 5.2 above). We then combine this shape component
with the constant appearance model and evaluate the fitting performance of the resulting
AAM on the n training images. The influence of the appearance model is determined in a
similar fashion by combining varying size appearance models computed from n images with
a constant shape model computed from the entire dataset, and then evaluating the fitting
performance on the n training images. The main benefits of performing the experiments in
this manner are:

• We evaluate the effect of varying shape and appearance model size separately. When
varying shape, the appearance model is fixed, and vice versa.

• By fitting to the n training images, we know that the AAM we are using can model
the data it is being fit to. If it diverges, it is because it fell into a local minima, not
because it cannot explain the data.

5.4 Experiment Results

Figure 7 shows the results of these experiments. In Figure 7(a) we plot the frequency of con-
vergence against the size of the shape model n = 5, 10, . . . , 100 for a fixed appearance model
and in Figure 7(b) we plot the frequency of convergence against the size of the appearance
model n = 5, 10, . . . , 100 for a fixed shape model. It is immediately apparent that fitting
the Generic AAM is significantly harder than fitting either of the Person Specific AAMs.
Note that the relative performance is entirely due to the data. Fitting the Generic AAM is
inherently far harder than fitting the Person Specific AAM.

At this point, it is natural to ask what is the cause of this drastically different performance.
Note the following results: (1) A Generic AAM built with 5 shape training images and 100
appearance training images operates about as well as similar Person Specific AAMs. See
leftmost point in Figure 7(a). (2) A Generic AAM built with 100 shape training examples
and 100 appearance training examples operates far, far worse than similar Person Specific
AAMs. See leftmost point in Figure 7(b). (3) The performance of the Generic AAM drops
rapidly with increasing size of the shape model. See Figure 7(a). But, the performance
of all three datasets is much more independent of the size of the appearance model. See
Figure 7(b).



(a) Shape (b) Appearance

Figure 7: Experimental results showing the frequency of convergence against (a) the size of the
shape model n = 5, 10, . . . , 100 for a fixed appearance model and (b) the size of the appearance
model n = 5, 10, . . . , 100 for a fixed shape model. These results (which use the Project-Out algo-
rithm [10]) clearly show that fitting a Generic AAM is inherently harder than fitting the Person
Specific AAM. They also show that the main cause of difficulty is the size of the shape model. See
text for more explanation.

These results indicate that it is the shape component of the Generic AAM that is causing
the problem. As further evidence of this argument, consider Figure 5 in which we plot the
magnitudes of the eigenvectors for the shape and appearance models each computed with
all 100 training images. The appearance eigenvectors for the 3 databases are all very sim-
ilar. If anything, there is less appearance variation in the Generic AAM than the Person
Specific AAMs. On the other hand, the shape eigenvectors of the Generic AAM are sub-
stantially larger than those of the Person Specific AAMs (at least after the first 4). The
“effective” dimensionality of the shape component of the Generic AAM is far higher than
the dimensionality of the Person Specific shape models.

5.5 Experiment Conclusions

Our experimental results confirm that fitting a Generic AAM is far harder than fitting
a Person Specific AAM. The main reason for the extra difficulty appears to be that the
effective dimensionality of the generic shape model is far higher than that of the Person
Specific shape models. On the other hand, the performance is relatively independent of the
size of the appearance model.

6 Improvements to Generic AAMs

Perhaps the main reason for performing the evaluation in Section 5 was to suggest possible
methods of improving the performance of Generic AAMs. In the remainder of this section



(a) Shape (b) Appearance

Figure 8: Average rate of convergence for Generic AAMs computed using original and refitted
labels. Results are shown for (a) AAMs with varying shape model sizes and fixed appearance
model and (b) AAMs with varying appearance model sizes and fixed shape model.

we describe two such techniques: (1) refitting (Section 6.1) and (2) simultaneous fitting of
shape and appearance (Section 6.2). These are by no means the only possibilities. We plan
to cover several other possibilities in future papers.

6.1 Data Refitting

The vertex locations of the shape mesh used in the experiments above were all marked by
hand. Due to the large amount of data involved (in total 16,800 mesh vertices were used)
and the difficulty of the task, the quality of the labels is less than perfect. We used a “data
refitting” algorithm to improve the ground truth data. Although this procedure does not
improve consistently misplaced labels, it significantly improves model fitting performance.

First we construct a AAM with the original hand-marked labels. We then refit the AAM
to the original training images and use the vertex locations of the fitted shape mesh as new
landmark data. Cases where the fitting process diverges are detected automatically based
on the fitting error.

Note that this procedure is very closely related to our automatic AAM construction
algorithm [3]. In that algorithm, an AAM is automatically constructed by iterating model
construction and model fitting; i.e. it operates: (1) build AAM, (2) refit AAM to training
data, (3) rebuild AAM, (4) refit AAM to training data, etc. Although there are a few minor
differences (such as the refitting algorithm assuming that the initial labels contain the ideal
shape model plus noise whereas the automatic construction algorithm can extend the shape
model), the refitting algorithm described above can be regarded as performing one iteration
of the automatic construction algorithm, starting from the hand-marked labels. This fact
provides a theoretical basis for the refitting algorithm.

Once we have refit the AAM to the training data and re-built the AAM, we need to
decide how many shape and appearance dimensions to keep. We re-ran the experiments in



Simultaneous Inverse Compositional Algorithm

Pre-Computation:

(P1) Evaluate the gradients of ∇A0 and ∇Ai for i = 1, . . . ,m

(P2) Evaluate the Jacobian of the warp ∂W
∂p at (x;0)

Iterate:

(I1) Warp I with W(x;p) to compute I(W(x;p))

(I2) Compute the error image Eapp(x) (Eqn. (16))

(I3) Compute the steepest descent images SDsim(x) (Eqn. (12))

(I4) Compute the Hessian Hsim using Equation (15) and invert it

(I5) Compute
∑

x SDT
sim(x)Eapp(x)

(I6) Compute ∆q = −H−1
sim

∑
x SDT

sim(x)Eapp(x)

(I7) Update W(x;p)←W(x;p) ◦W(x;∆p)−1 and λ← λ + ∆λ

Figure 9: The Simultaneous Inverse Compositional Algorithm. Because the steepest descent images
depend on the appearance parameters, Steps (I3-I4) must be performed in every iteration unlike
the equivalent steps in the “Project Out” algorithm.

Section 5.2. The results (omitted) show that the performance peaks between 98% and 99%
for both shape and appearance and for all three datasets. We therefore chose to retain either
98% or 99% in all cases. The fact that the optimal fitting performance occurs when we retain
just less that 100% of the variance confirms that the refitting proceedure keeps most of the
signal, and just removes (some of) the noise in the hand-labeled data.

The refitting procedure is evaluated by comparing the average rate of convergence of the
Project-Out algorithm using Generic AAMs constructed from the original labels with the
results obtained by fitting models constructed from the refitted labels. We follow the same
evaluation methodology as used in Section 5. As shown in Figure 8 AAM fitting performance
for the refitted labels is substantially better than fitting performance for the original labels.
For AAMs with varying shape model sizes fitting performance improves on average from
48.7% of trials converged to 70.1% of trials converged (see Figure 8(a)). Similarly the fitting
performance for AAMs with varying appearance model sizes improves on average from 20.2%
of trials converged to 56.4% (see Figure 8(b)).

6.2 Simultaneous Fitting of Shape and Appearance

As described in Section 2.2, the goal of AAM fitting is usually formulated as minimizing
the sum of squares difference between the model instance and the input image warped back
onto the base mesh (see Equation (3)). Recently, we introduced the Simultaneous Inverse



Compositional Algorithm [1] which minimizes Equation (3) by performing a Gauss-Newton
gradient descent optimization simultaneously on the warp parameters p and the appearance
parameters λ. The algorithm operates by iteratively minimizing:

∑
x

[
A0(W(x; ∆p)) +

m∑
i=1

(λi + ∆λi)Ai(W(x; ∆p))− I(W(x;p))

]2

(10)

simultaneously with respect to ∆p and ∆λ = (∆λ1, . . . , ∆λm)T, and then updating the warp
W(x;p)←W(x;p) ◦W(x; ∆p)−1 and the appearance parameters λ← λ + ∆λ.

To simplify the notation, denote:

q =

(
p
λ

)
and similarly ∆q =

(
∆p
∆λ

)
; (11)

i.e. q is an n+m dimensional column vector containing the warp parameters p concatenated
with the appearance parameters λ. Denote the n + m dimensional steepest-descent images
as follows:

SDsim(x) =
(

∇A
∂W
∂p1

, . . . ,∇A
∂W
∂pn

, A1(x), . . . , Am(x)
)

(12)

where ∇A is defined as

∇A = ∇A0 +
m∑

i=1

λi∇Ai. (13)

We can then compute the parameter update ∆q as

∆q = −H−1
sim

∑
x

SDT
sim(x)Eapp(x) (14)

where:
H−1

sim =
∑
x

SDT
sim(x)SDsim(x) (15)

and Eapp is defined as

Eapp(x) = I(W(x;p))−
[
A0(x) +

m∑
i=1

λiAi(x)

]
(16)

Since the steepest descent images SDsim depend on the appearance parameters λ through
Equation (13) they have to be re-computed in every iteration. The Simultaneous algorithm
is therefore fairly (but not exceedingly) inefficient. Our implementation runs at about 1
frame per second in Matlab. The Simultaneous algorithm is summarized in Figure 9.

The Simultaneous Inverse Compositional Algorithm is defined for independent AAMs
[10], which separately parameterize shape and appearance. It is different from the original
AAM fitting algorithm defined for combined AAMs which jointly parameterize shape and
appearance [4]. In the fitting algorithm in [4], the equivalent of the steepest descent images
are assumed to be constant. On the other hand, the steepest descent images in the Simulta-
neous Inverse Compositional Algorithm are updated in each iteration of the algorithm. As
the estimate of the appearance is updated, the way that the shape parameters are solved for



(a) Shape (b) Appearance

Figure 10: Average rate of convergence for Generic AAMs using the Simultaneous Inverse Compo-
sitional (SIC) and Project-Out (PO) algorithms using the refit labels used in Figure 8. Results are
shown for (a) AAMs with varying shape model sizes and fixed appearance model and (b) AAMs
with varying appearance model sizes and fixed shape model.

changes. The main reason for the performance improvement of the Simultaneous algorithm
over the Project-Out algorithm is the fact that the steepest descent images are updated, not
the coupling of the shape and appearance. In [10] we presented experimental results with a
“coupled” version of the Project-Out algorithm and showed there is no performance increase
over the separate optimization over the two sets of parameters.

We compared the performance of the Simultaneous Inverse Compositional and Project-
Out algorithms by empirically evaluating the average rate of convergence for Generic AAMs
for varying shape and appearance model sizes. Here we use AAMs constructed using refitted
labels as described in Section 6.1. As shown in Figure 10, the Simultaneous Inverse Compo-
sitional Algorithm performs significantly better than the Project-Out algorithm. For AAMs
with varying shape model sizes the fitting performance improves on average from 70.1% of
trials converged to 99.5% (Figure 10(a)). For AAMs with varying appearance model sizes
the fitting performance improves on average from 56.4% to 96.3% (Figure 10(b)).

7 Evaluating Model Construction and Fitting Com-

bined

In order to separate the effects of model building and model construction we reported results
of fitting experiments on seen data in Section 5; i.e. data in the training set. In order to
evaluate the combined effects of model building and construction in this section we show
results of fitting experiments on unseen data; i.e. data not in the training set.



7.1 Experiment Description

As in Section 5.3 we wish to generate fitting results for varying sizes of models, separating
the effects of shape and appearance. Here however, we exclude a fixed set of 10 images from
model training in order to evaluate fitting performance on unseen data. As in Section 5.3
we build a constant appearance model using 90 training images and combine it with a shape
model computed by randomly choosing a fixed number (n) of training shapes and varying
n between 5 and 90 in order to evaluate the influence of the shape model. The influence of
the appearance model is determined in a similar fashion by combining appearance models
computed from n training images with a constant shape model computed over all 90 training
images. In either case fitting performance is evaluated on the 10 test images not in the
training set.

7.2 Experiment Results

Figure 11 shows the results of the fitting experiments. In Figure 11(a) we plot the frequency
of convergence against the size of the shape model n = 5, . . . , 90 for a fixed appearance model
and in Figure 11(b) we plot the frequency of convergence against the size of the appearance
model n = 5, . . . , 90 for a fixed shape model. We show results for all three datasets using
original labels and the Project-Out algorithm (Figure 11, first row), using refitted labels
and the Project-Out algorithm (Figure 11, second row), and using refitted labels and the
Simultaneous Inverse Compositional Algorithm (Figure 11, third row). Overall fitting per-
formance for Person Specific AAMs is excellent across all conditions. Small performance
improvements can be seen in going from 5 to 10 training images for pose data (for increasing
shape model size) and for illumination data (for increasing appearance models sizes). After
10 training images, the performance stays roughly constant as we add more images.

The largest difference however is in the performance using the Generic AAM. While only
a very small percentage of trials converge for original labels and the Project-Out algorithm,
the majority of trials converge for refitted labels and the Simultaneous algorithm. In the
experiments using refitted labels the performance of the Generic AAMs improves significantly
with increasing numbers of training images, for both the Simultaneous and Project-out
algorithms.

As Sections 4 and 5 have shown, there is an inherent trade-off between model construction
and fitting: the larger the model, the more likely it is to model previously unseen data (see
Figure 3), but also the more likely it is for the model to get stuck in local minima during
fitting (see Figure 7). This effect is visible to a small extent in the fitting performance of
the Project-Out algorithm using refitted labels on the illumination dataset (see Figure 11,
second row) and the performance of the Project-Out algorithm using the original labels on
the identity dataset (see Figure 11, top row). On the other hand, with the refit labels and the
Simultaneous algorithm, the performance of the Generic AAM consistently improves with
increasing numbers of training images. This indicates that for Generic AAMs, the difficulty
in modeling currently outweighs the difficulty in fitting.
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Figure 11: Average rate of convergence for both Person Specific and Generic AAMs on unseen
data. Shown are results for different labels (original and refitted) and different fitting algorithms
(Project-Out and Simultaneous).



7.3 Experiment Conclusions

The results in Figure 11 confirm the results of Section 6: fitting performance of Generic
AAMs increases significantly if models are built using refitted labels and if the simultaneous
fitting algorithm is used instead of the project-out algorithm. The fact that the performance
of Generic AAMs generally increases with the amount of training data (and hence the size
of the model) indicates that the difficulty in modeling currently outweighs the difficulty in
fitting.

8 Discussion

In this paper we empirically compared Generic and Person Specific Active Appearance Mod-
els (AAMs). In Section 4 we showed that building a generic shape model is comparatively
easy, whereas building a generic appearance model requires far more training data. We
then demonstrated in Section 5 that fitting a Generic AAM appears to be harder than fit-
ting a Person Specific AAM mainly due to the higher effective dimensionality of the shape
model. In Section 6 we discussed two refinements to Generic AAMs: (1) label refitting and
(2) the Simultaneous Inverse Compositional Algorithm. Finally, in Section 7 we evaluated
the trade-off between the difficulties of model construction and fitting. For the Project-Out
algorithm, there is an intermediate model size beyond which the reduction in fitting perfor-
mance outweighs the gains from the improved representational power of the model. For the
Simultaneous algorithm, however, the larger the model the better the overall performance
(for the datasets we tried); i.e. the gains from the improved representational power outweigh
the losses from the worse fitting performance. These results indicate that for Generic AAMs
on unseen data, the difficulty in modeling (appearance) currently outweighs the difficulty
in fitting (shape). The performance improvement due to the two refinements described in
Section 6 on both seen and unseen data is summarized in Figure 12.

In Section 5 we showed that fitting an AAM with a complicated shape model is difficult.
One possible refinement to help solve this problem is to incorporate shape priors into the
fitting algorithm as suggested in [2, 5].

While the Simultaneous Inverse Compositional Algorithm performs significantly better
than the Project-Out algorithm (see Figure 10), it is also fairly slow [1]. Our implementation
of the Simultaneous algorithm runs at about 1 frame per second in Matlab. Another possible
area for future work is to combine the two algorithms. For example, the Simultaneous
algorithm might be used on the first image of a sequence for a high quality fit. The mean
appearance image of the AAM is then updated with the extracted face appearance and the
remainder of the sequenced tracked with the Project-Out algorithm. This “mean-update”
algorithm is a special case of the “Template Update” algorithm for AAMs proposed in [10]

and may partially alleviate the difficulty in building an appearance model general enough to
model all faces.
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Figure 12: Average rate of convergence for Generic AAMs using the Simultaneous Inverse Com-
positional (SIC) Algorithm on refitted labels and the conventional Project-Out (PO) Algorithm on
the original hand-marked labels. Top Row: The seen data of Section 5. Bottom Row: The unseen
data of Section 7. These graphs illustrate the dramatic fitting performance improvement obtained
by combining the two techniques described in Section 6.
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