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Abstract—Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene

measurements or features on which to base the algorithm. In appearance-based object recognition, the features are chosen to be the

pixel intensity values in an image of the object. These pixel intensities correspond directly to the radiance of light emitted from the object

along certain rays in space. The set of all such radiance values over all possible rays is knownas the plenoptic function or light-field. In this

paper, we develop a theory of appearance-based object recognition from light-fields. This theory leads directly to an algorithm for face

recognition across pose that uses asmany images of the face as are available, from one upwards. All of the pixels, whichever image they

come from, are treated equally and used to estimate the (eigen) light-field of the object. The eigen light-field is then used as the set of

features onwhich to base recognition, analogously to how the pixel intensities are used in appearance-based face and object recognition.

Index Terms—Appearance-based object recognition, face recognition, light-fields, eigen light-fields, face recognition across pose.
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1 INTRODUCTION

ARGUABLY the most important decision to be made when
developing an object recognition algorithm is selecting

the scene measurements or features on which to base the
algorithm. One of the most successful and well-studied
approaches to object recognition is the appearance-based
approach. Although the expression “appearance-based”
was introduced by Murase and Nayar [19], the approach
itself dates back to Turk and Pentland’s Eigenfaces [28] and
perhaps before [27]. The defining characteristic of appear-
ance-based algorithms is that they directly use the pixel
intensity values in an image of the object as the features on
which to base the recognition decision.

The pixel intensities that are used as features in appear-
ance-based algorithms correspond directly to the radiance of
light emitted from the object along certain rays in space.
Although there may be various nonlinearities caused by the
optics (e.g., vignetting), the CCD sensor itself, or by gamma
correction in the camera, the pixel intensities can be thought
of as approximately equivalent to the radiance of light
emitted from the object in the direction of the pixel.

The plenoptic function [1] or light-field [13], [17] specifies the
radiance of light along all rays in the scene. Hence, the light-
field of an object is the set of all possible features that could be
used by an appearance-based object recognition algorithm. It
is natural, therefore, to investigate using light-fields (as an
intermediate representation) for appearance-based object
recognition. In the first part of this paper, we develop a
theory of appearance-based object recognition from light-
fields. In the second part, we propose an algorithm for face
recognition across pose based on an algorithm to estimate the
(eigen) light-field of a face from a set of images.

1.1 Theoretical Properties of Light-Fields for
Recognition

There are a number of important theoretical questions

pertaining to object recognition from light-fields. Some

examples are:

1. The fundamental question “what is the set of images
of an object under all possible illumination condi-
tions?” was recently posed and answered in [5].
Because an image simply consists of a subset of
measurements from the light-field, it is natural to
ask the same question about the set of all light-fields
of an object. Answering this second question may
also help understand the variation in appearance of
objects across both pose and illumination.

2. “When can two objects be distinguished from their
images?” is perhaps the most important theoretical
question in object recognition. Various attempts
have been made to answer it in one form or another.
For example, it was shown in [4] that, given a pair of
images, there is always an object that could have
generated those two images (under different illumi-
nations.) Similarly, one might ask “when can two
objects be distinguished from their light-fields?”

In the first part of this paper, we derive a number of

fundamental properties of object light-fields. In particular,

we first investigate the set of all possible light-fields of an

object under varying illumination. Among other things, we

show that the set of all light-fields is a convex cone,

analogously to the results in [5] for single images. After-

ward, we investigate the degree to which objects are

distinguishable from their light-fields. We show that, under

arbitrary illumination conditions, if two objects have the

same shape they cannot be distinguished, even given their

light-field. The situation for objects with different shapes is

different however. We show that two objects can almost

always be distinguished from their light-fields if they have

different shapes.
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1.2 Face Recognition Using Light-Fields

One implication of this theory is that “appearance-based”
object recognition from light-fields is theoretically more
powerful than object recognition from single images.
Capturing an entire light-field is normally not appropriate
for object recognition however; it requires either a large
number of cameras, a great deal of time, or both. This does not
mean that it is impossible to use light-fields in practical object
recognition algorithms. In the second part of the paper, we
develop an algorithm for face recognition across pose that is
based on an algorithm to estimate the (eigen) light-field of an
object from an arbitrary collection of images [14]. (This
algorithm is closely related to an algorithm for dealing with
occlusions in the eigen-space approach [7], [16].) The eigen
light-field, once it has been estimated, is then used as an
enlarged set of features on which to base the face recognition
decision. Some of the advantageous properties of this
algorithm are as follows:

1. Any number of images can be used, from one
upwards, in both the training (gallery) and the test
(probe) sets. Moreover, none of the training images
need to have been captured from the same pose as
any of the test images. For example, there might be
two test images for each person, a full frontal view
and a full profile, and only one training image, a half
profile. In this way, our algorithm can perform “face
recognition across pose.”

2. If only one test or training image is available, our
algorithm behaves “reasonably” when estimating the
light-field. In particular, we prove that the light-field
estimatedbyouralgorithmcorrectly rerenders images
across pose (under suitable assumptions about the
objects.)Wealsovalidate this rerenderingempirically.

3. If more than one test or training image is available,
the extra information (including the implicit shape
information) is incorporated into a better estimate of
the light-field. The final face recognition algorithm
therefore performs better with more input images.

4. It is straightforward to extend our algorithm to
perform “face recognition across both pose and
illumination,” as we showed in [15].

1.3 Paper Overview

We begin in Section 2 by introducing object light-fields and
deriving some of their fundamental properties. We continue
in Section 3 by describing eigen light-fields and their use in
our algorithm for face recognition across pose. In extensive
evaluations, we compare the performance of eigen light-
fields to standard face recognition algorithms on both the
FERET [22] and CMU PIE [26] databases. We conclude in
Section 4 with a summary and a discussion.

2 OBJECT LIGHT-FIELDS AND THEIR PROPERTIES

FOR RECOGNITION

2.1 Object Light-Fields

The plenoptic function [1] or light-field [17] is a function which
specifies the radiance of light in free space. It is usually
assumed to be a 5D function of position (3D) and orientation
(2D). In addition, it is also sometimesmodeledas a functionof
time, wavelength, and polarization, depending on the
application in mind. Assuming that there is no absorption
or scattering of light through the air [20], the light-field is
actually only a 4D function, a 2D function of position defined
over a 2D surface, and a 2D function of direction [13], [17]. In
2D, the light-field of a 2D object is only 2D. See Fig. 1 for an
illustration of the 2D light-field of a 2D object.

2.2 The Set of All Light-Fields of an Object under
Varying Illumination

The fundamental question “what is the set of images of an
object under all possible illumination conditions?” was
recently posed and answered by Belhumeur and Kriegman
[5]. We begin our analysis by asking the analogous question
for light-fields. Since an image just consists of a subset of the
rays in the light-field, it is not surprising that the same
result also holds for light-fields:

Theorem 1. The set of n-pixel light-fields of any object, seen
under all possible lighting conditions, is a convex cone in Rn.

This result holds for any object, even if the object is
nonconvex and non-Lambertian. As pointed out in [5], the
proof is essentially a trivial combination of the additive
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Fig. 1. An illustration of the 2D light-field [17] of a 2D object. The object is conceptually placed within a circle. The angle to the viewpoint v around the
circle is measured by the angle � and the direction that the viewing ray makes with the radius of the circle by �. For each pair of angles � and �, the
radiance of light reaching the viewpoint is denoted Lð�; �Þ, the light-field [17]. Although the light-field of a 3D object is actually 4D, we will continue to
use the 2D notation of this figure for ease of explanation.



property of light and the fact that the set of all illumination
conditions is itself a convex cone. For this reason, the same
result holds for any subset of illumination conditions that is
a convex cone. One example is an arbitrary number of point
light sources at infinity. It is straightforward to show that
this subset of illumination conditions is a convex cone and
therefore that the following theorem also holds:

Theorem 2. The set of n-pixel light-fields of any object,
illuminated by an arbitrary number of point light sources at
infinity, is a convex cone in Rn.

These results are analogous to those in [5]. Moreover, since
Theorems 1 and 2 clearly also hold for any subset of rays in
the light-field, the analogous results in [5] are special cases
of these theorems.

When we investigate the nature of the illumination cones
in more detail, however, we find several differences
between images and light-fields. Some of the differences
are summarized in Table 1. If we consider arbitrary
illumination conditions and any convex object, the image
illumination cone always exactly equals the set of all images
because every point on the object can be illuminated
independently and set to radiate any intensity. This result
holds for any reflectance function. The only minor require-
ment is that no point on the object has zero reflectance.

The situation is different for light-fields. It is possible to
choose reflectance functions for which the light-field illumi-
nation cone is equal to the set of all light-fields. One simple
example is to use a “mirrored” object. However, for most
reflectance functions the light-field illumination cone is not
equal to the set of all light-fields. One example is Lambertian
reflectance. In this case, the light-field cone never equals the set
of all light-fields because any two pixels in the light-field that
image the same point on the object will always have the same
intensity. For Lambertian objects, the image illumination
cone across arbitrary illumination conditions still exactly
equals the set of all images because the pixels can still all be set
independently by choosing the illumination appropriately.

For point light sources at infinity (rather than for arbitrary
illumination conditions), the results are similar. The image
illumination cone can sometimes be full-dimensional. For
convex Lambertian objects the dimensionality equals the
number of distinct surface normals. (See [5] Proposition 5.) If
each surface normal is different, the image illumination cone
is full-dimensional. For light-fields, however, the light-field
illumination cone of a convex Lambertian object with point
light sources at infinity is never full-dimensional because any

two pixels in the light-field that image the same point on the
surface will always have the same intensity.

The trend in Table 1 is clear. Object recognition in the
presence of illumination changes is “theoretically” easier
using light-fields than with images. Using either model
(arbitrary illumination or point light sources at infinity), the
light-field illumination cone is a “smaller” subset of the set
of all light-fields than the image illumination cone is a
subset of the set of all images.

2.3 Distinguishability of Objects from Their Images
and Light-Fields

As mentioned in [5], the convex cone property is potentially
very important for object recognition because it implies that,
if the illumination cones of two objects are disjoint, they can
be separated by a linear discriminant function. This
property makes classification much easier because applying
a linear classifier is, in general, far easier than determining
which illumination cone an image or light-field lies closest
to. However, to take advantage of this property, the two
illumination cones must be disjoint. If they are not the two
objects will not always be distinguishable anyway. These
arguments, of course, apply equally to both image and
light-field illumination cones. In this section, we study the
distinguishability (intersection) of illumination cones and
show that the task is theoretically easier for light-fields than
for images. We begin with image illumination cones.

2.3.1 Distinguishability of Objects from Their Images

Animmediate corollaryof the fact that the image illumination
cones of convex objects under arbitrary lighting are exactly
equal to the set of all images (seeTable 1) is that no two convex
objects (Lambertian or not) can ever be distinguishedwithout
some assumptions about the illumination:

Corollary 1. The image illumination cones of any two convex
objects seen under all possible lighting conditions are exactly
equal. It is therefore never possible to say which convex object an
image came from. It is not even possible to eliminate any convex
objects as possibilities.

Perhapsoneof themost important resultsof [5] is to showthat,
if the illumination consists of point sources at infinity the
situation is more favorable; empirically the volume of the
image illumination cone is much less than the space of all
images. It is alsopossible to showthat there arepairsofobjects
that are distinguishable under this smaller set of lighting
conditions:
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TABLE 1
A Comparison of Image Illumination Cones and Light-Field Illumination Cones

The main point to note is that in three of the four cases, the light-field illumination cone is a “smaller” subset of the set of all light-fields than the
corresponding image illumination cone is a subset of the set of all images.



Theorem 3. There exist pairs of objects for which the intersection
of their illumination cones (over the set of illumination
conditions consisting of arbitrary numbers of point light
sources at infinity) only consists of the black (all zero) image,
i.e., there are pairs of objects that are always distinguishable
(over the set of illumination conditions which consist of point
light sources at infinity).

Proof. (Sketch) One example is to consider two Lambertian
spheres, one with an albedo function that has multiple
step discontinuities (which appear in every image), one
that varies smoothly everywhere. All of the images of the
object with the step discontinuity in the albedo map will
also have a step discontinuity in the image, whereas
none of the images of the other object will. tu
Althoughwe have shown that there are pairs of objects for

which the image illumination cones (for point light sources at
infinity) only intersect at the all black image, there are pairs of
objects for which their image illumination cones do intersect.

Theorem 4. There exist pairs of objects for which the intersection
of their illumination cones (over the set of point light sources at
infinity) consists of more than just the black (all zero) image,
i.e., there are pairs of objects that are sometime indistinguish-
able (over point light sources at infinity).

Proof. Consider two convex Lambertian objects in different
illuminations. If each object has albedo variation propor-
tional to the foreshortened incoming illumination of the
other object, the two objects will generate the same image.
(The constants of proportionality must be the same.) tu

2.3.2 Distinguishability of Same-Shape Objects from

Their Light-Fields

In the previous section, we showed that distinguishing
objects from their images under varying illumination is
often very difficult and, in many cases, “theoretically”
impossible. If the objects are the same shape, convex, and
Lambertian, intuitively the light-field should not contain
any additional information. It is no surprise, then, that it is
fairly straight-forward to prove an analogy of Corollary 1
for (convex Lambertian) objects of the same shape:

Theorem 5. The light-field illumination cones over all possible
lighting conditions of any two convex, Lambertian objects of
the same shape are exactly equal.

Proof. Given arbitrary lighting, it is possible to generate any
incoming radiance distribution over the surface of the
(convex) object using lasers. It is therefore possible to
generate any light-field for any convex object (subject to
the necessary and sufficient constraint that rays imaging
the same point on the surface of the object have the same
intensity). tu
Distinguishing (convex Lambertian) objects of the same

shape from their light-fields is therefore impossible without
any assumptions on the illumination. If assumptions are
made about the illumination, the situation is different. As in
Theorems 3 and 4 above, if the illumination consists of point
light sources at infinity two objects of the same shape may
or may not be distinguishable.

Theorem 6. There exist pairs of same-shape convex, Lambertian
objects for which the intersection of their light-field illumina-
tion cones (over the set of point light sources at infinity) only
consists of the black (all zero) light-field, i.e., there are pairs of

same-shape objects that are always distinguishable (over the set
of point light sources at infinity).

Proof. Essentially, the same as the proof of Theorem 3. tu
Theorem 7. There exist pairs of convex, Lambertian objects with

the same shape for which the intersection of their light-field
illumination cones (over the set of point light sources at
infinity) consists of more than just the black (all zero) image;
i.e., there are pairs of same-shape objects that are sometime
indistinguishable even given their light-fields.

Proof. Essentially, the same as the proof of Theorem 4. tu

2.3.3 Distinguishability of Differently-Shaped Objects

from Their Light-Fields

Intuitively, the situation for differently shaped objects is
different. The light-field contains considerable information
about the shape of the objects. In fact, we recently showed
in [2] that, so long as the light-field does not contain any
extended constant intensity regions, it uniquely defines the
shape of a Lambertian object. This means that the
intersection of the light-field cones of two differently
shaped objects must only contain light-fields that have
constant intensity regions.

Theorem 8. The intersection of the light-field illumination cones
over all possible lighting conditions of any two Lambertian
objects that have different shapes only consists of light-fields
that have constant intensity regions.

This theorem implies that two differently shaped Lamber-
tian objects can always be distinguished from any light-field
that does not contain constant intensity regions.

2.3.4 Summary

We have described various conditions under which pairs of
objects are distinguishable from their images or light-fields.
See Table 2 for a summary. When nothing is assumed about
the incoming illumination, it is impossible to distinguish
between any pair of objects from their images. If the
illumination consists of a collection of point light sources at
infinity, the situation is a little better. Somepairs of objects can
always be distinguished, but other pairs are sometimes
indistinguishable.

If the objects have the same shape the situation is the
same with light-fields. Light-fields don’t add to the
discriminatory power of a single image. If the objects have
different shapes the light-field adds a lot of discriminatory
power. So long as the light-field has no constant intensity
regions, any pair of differently shaped objects can be
distinguished under any illumination conditions.

2.4 Implications

The implication of these theoretical results is as follows: The
light-field provides considerable information about the
shape of objects that can help distinguish between them
in unknown, arbitrary illumination conditions under which
they would be indistinguishable from single images.
Although it is practically impossible to capture the entire
light-field for most object recognition tasks, sometimes it
may be possible to capture 2-3 images. Ideally, we would
like an object recognition algorithm that can use any subset
of the light-field; a single image, a pair of images, multiple
images, or even the entire light-field. Such an algorithm
should be able to take advantage of the implicit shape
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information in the light-field. In the remainder of this paper,
we describe exactly such an algorithm, the first step of
which is to estimate the light-field from the input image(s).

3 EIGEN LIGHT-FIELDS FOR FACE RECOGNITION

ACROSS POSE

Inmany face recognition application scenarios, the pose of the
probe and gallery images are different. The gallery image
might be a frontal “mug-shot” and the probe might be a
3/4viewcaptured froma surveillance camera in the corner of
the room. The number of gallery and probe images may also
vary. The gallery may consist of a pair of images of each
subject, perhaps a frontal mug-shot and full profile view, like
the images typically captured by police departments. The
probe may be a similar pair of images, a single 3/4 view, or
even a collection of views from random poses.

Until recently, face recognition across pose (i.e., when the
gallery and probe have different poses) has received very
little attention in the literature with a few exceptions [6].
Algorithms have been proposed which can recognize faces
[21] or more general objects [19] at a variety of poses. In a
recent generalization of eigenfaces, multilinear algebra is
used to compute a representation that separates the different
modes underlying the formation of face images such as pose,
illumination and expression [29]. In limited experiments, an
algorithm based on this representation performs better than
eigenfaces.Most of these algorithms require gallery images at
every pose, however. Algorithms have been proposedwhich
dogeneralize acrosspose, for example [12], but this algorithm
computes 3D head models using a gallery containing a large
number of images per subject captured with controlled
illumination variation. It cannot be used with arbitrary
galleries and probes. Note, however, that concurrent with
this paper there has been a growing interest in face
recognition across pose. For example, Blanz et al. [9] and
Romdhani et al. [24] have developed an algorithm based on
fitting a 3D morphable model.

On a technical level (although not on an application
level), the work most closely related to ours is by Vetter and
Poggio [30]. In their paper, Vetter and Poggio introduced an
algorithm for the rerendering of faces across pose. Our
algorithm (described in Section 3.2) is a strict generalization
of this algorithm. Our algorithm is formulated in terms of
light-fields and, so, works with any collection of input
images, or even input rays. When we reduce our algorithm

to only two views, it is (essentially) the same as the
algorithm in [30]. Another major difference between this
paper and [30] is that the algorithm in [30] is never actually
used to perform face recognition.

In this section, we propose an algorithm for face
recognition across pose using light-fields. Our algorithm
can use any number of gallery images captured at arbitrary
poses, and any number of probe images also captured with
arbitrary poses. A minimum of 1 gallery and 1 probe image
are needed, but if more images are available the perfor-
mance of our algorithm generally gets better.

Our algorithm operates by estimating (a representation
of) the light-field of the subject’s head. First, generic training
data is used to compute an eigen-space of head light-fields,
similar to the construction of eigen-faces [28]. Light-fields
are simply used rather than images. Given a collection of
gallery or probe images, the projection into the eigen-space
is performed by setting up a least-squares problem and
solving for the projection coefficients similarly to ap-
proaches used to deal with occlusions in the eigenspace
approach [7], [16]. This simple linear algorithm can be
applied to any number of images, captured from any poses.
Finally, matching is performed by comparing the probe and
gallery light-fields using a nearest neighbor algorithm.

The remainder of this section is organized as follows: We
begin in Section 3.1 by introducing the concept of eigen light-
fields before presenting the algorithm to estimate them from a
collection of images in Section 3.2. After describing some of
the properties of this algorithm in Section 3.3, we then
describe how the algorithm can be used to perform face
recognition across pose in Section 3.4. Finally, we present our
experimental results in Section 3.5.

3.1 Eigen Light-Fields

Suppose we are given a collection of light-fields Lið�; �Þ,
where i ¼ 1; . . . ; N . See Fig. 1 for the definition of this
notation. If we (vectorize the light-fields and then) perform
an eigen-decomposition of the vectors using Principal
Components Analysis (PCA), we obtain d � N eigen light-
fields Eið�; �Þ, where i ¼ 1; . . . ; d. Assuming the eigen-space
of light-fields is a good representation of the set of light-fields
under consideration, we can approximate any light-field:

Lð�; �Þ �
Xd

i¼1

aiEið�; �Þ; ð1Þ
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TABLE 2
The Distinguishability of Objects from Their Images and Light-Fields

The main point to note is that if two objects have the same shape, the light-field adds nothing to the ease with which they can be distinguished,
compared to just a single image. On the other hand, if the two objects have different shapes, it is theoretically far easier to distinguish them from their
light-fields than it is from single images.



where ai ¼ hLð�; �Þ; Eið�; �Þi is the inner (or dot) product
between Lð�; �Þ and Eið�; �Þ. This decomposition is analo-
gous to that used in face and object recognition [19], [28], it
is just performed on the entire light-field rather than on
single images. (The mean light-field can be included as a
constant additive term in (1) and subtracted from the light-
field in the definition of ai if so preferred. There is very little
difference in doing this however.)

3.2 Estimating Light-Fields from Images

Capturing the complete light-field of an object is a difficult
task, primarily because it requires a huge number of images
[13], [17]. In most object recognition scenarios, it is unreason-
able to expect more than a few images of the object; often just
one. As shown in Fig. 2, however, any image of the object
corresponds to a curve (for 3D objects, a surface) in the light-
field. One way to look at this curve is as a highly occluded
light-field; only a very small part of the light-field is visible.

Can the coefficients ai be estimated from this highly
occluded view? Although this may seem hopeless, note that
light-fields are highly redundant, especially for objects with
simple reflectance properties such as Lambertian. An algo-
rithm is presented in [16] to solve for the unknown ai for
eigen-images. A similar algorithmwasused in [7]. Rather than
using the innerproductai ¼ hLð�; �Þ; Eið�; �Þi, Leonardis and
Bischof [16] solve for ai as the least squares solution of:

Lð�; �Þ �
Xd

i¼1

aiEið�; �Þ ¼ 0; ð2Þ

where there is one such equation for each pair of � and � that
are un-occluded in Lð�; �Þ. Assuming that Lð�; �Þ lies
completely within the eigen-space and that enough pixels are
unoccluded, then it is well-known that the solution of (2) will
be exactly the same as that obtained using the inner product:

Theorem 9. Assuming that Lð�; �Þ is in the linear span of
fEið�; �Þ j i ¼ 1; . . . dg, then ai ¼ hLð�; �Þ; Eið�; �Þi is al-
ways an exact minimum solution of (2).

Since there are d unknowns (a1 . . . ad) in (2), at least d
unoccluded light-field pixels are needed to overconstrain
the problem, but more may be required due to linear

dependencies between the equations. In practice, 2-3 times
as many equations as unknowns are typically required to
get a reasonable solution [16]. Given an image Iðm;nÞ, the
following is then an algorithm for estimating the eigen
light-field coefficients ai:

Eigen Light-Field Estimation Algorithm

1. For each pixel ðm;nÞ in Iðm;nÞ compute the corre-
sponding light-field angles �m;n and �m;n. (This step
assumes that the camera intrinsics are known, as well
as the relative orientation between the camera and
object. In Section 3.4.1, we will describe how to avoid
this step and instead use a simple “normalization” to
convert the input images into light-field vectors.)

2. Find the least-squares solution (for a1 . . . ad) to the
set of equations:

Iðm;nÞ �
Xd

i¼1

aiEið�m;n; �m;nÞ ¼ 0; ð3Þ

where m and n range over their allowed values. (In
general, the eigen light-fields Ei need to be inter-
polated to estimate Eið�m;n; �m;nÞ. Also, all of the
equations for which the pixel Iðm;nÞ does not image
the object should be excluded from the computation.)

Althoughwehavedescribed this algorithm for a single image
Iðm;nÞ, any number of images can obviously be used. The
extra pixels from the other images are simply added in as
additional constraints on the unknown coefficients ai in (3).

3.3 Properties of the Eigen Light-Field Estimation
Algorithm

The Eigen Light-Field Estimation Algorithm can be used to
estimate a light-field from a collection of images. Once the
light-field has been estimated, it can then, theoretically at
least, be used to render new images of the same object
under different poses. See [30] for a related algorithm. In
this section, we show that if the objects used to create the
eigen-space of light-fields all have the same shape as the
object imaged to create the input to the algorithm, then this
rerendering process is in some sense “correct,” assuming
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Fig. 2. The 1D image of a 2D object corresponds to a curve (surface for a 2D image of a 3D object) in the light-field. Each pixel corresponds to a ray
in space through the camera pinhole and the location of the pixel in the image. In general, this ray intersects the light-field circle at a different point for
each pixel. As the pixel considered “moves” in the image, the point on the light-field circle traces out a curve in �-� space. This curve is a straight
vertical line iff the “effective pinhole” lies on the circle used to define the light-field.



that all the objects are Lambertian. As a first step, we show
that the eigen light-fields Eið�; �Þ capture the shape of the
objects in the following sense:

Theorem 10. If fLið�; �Þ j i ¼ 1; . . . ; Ng is a collection of light-
fields of Lambertian objects with the same shape, then all of the
eigen light-fields Eið�; �Þ have the property that if ð�1; �1Þ and
ð�2; �2Þ define two rays which image the same point on the
surface of any of the objects then:

Eið�1; �1Þ ¼ Eið�2; �2Þ 8i ¼ 1 . . . d: ð4Þ

Proof. The property in (4) holds for all of the light-fields
fLið�; �Þji ¼ 1; . . . ; Ng used in the PCA because they are
Lambertian. Hence, it also holds for any linear combina-
tion of the Li. Therefore, it holds for the eigen-vectors
because they are linear combinations of the Li. tu
The property in (4) also holds for all linear combinations

of the eigen light-fields. It therefore holds for the light-field
recovered in (3) in the Light-Field Estimation algorithm,
assuming that the light-field from which the input image is
derived lies in the eigen-space so that Theorem 9 applies.
This means that the Light-Field Estimation algorithm
estimates the light-field in a way that is consistent with
the object being Lambertian and of the appropriate shape:

Corollary 2. Suppose fEið�; �Þ j i ¼ 1; . . . ; dg are the eigen
light-fields of a set of Lambertian objects with the same shape
and Iðm;nÞ is an image of another Lambertian object with the
same shape. If the light-field from which Iðm;nÞ is derived lies
in the light-field eigen-space, then the light-field recovered by
the Light-Field Estimation algorithm has the property that if
�m;n; �m;n is any pair of angles which image the same point in
the scene as the pixel ðm;nÞ then:

Iðm;nÞ ¼ Eð�m;n; �m;nÞ; ð5Þ

where Eð�m;n; �m;nÞ is the light-field estimated by the Light-
Field Estimation algorithm; i.e., the algorithm correctly
rerenders the object under the Lambertian reflectance model.

Theorem 2 implies that the algorithm is acting reasonably in
estimating the light-field, a task which is impossible from a
single imagewithout a priormodel on the shape of the object.
Unlike in [30], here the shapemodel is implicitly contained in
theeigen light-fields. Theorem2assumes that all of theobjects
are approximately the same shape, but that is a common
assumption for faces [23]. Even if there is some shape
variation in faces, it is reasonable to assume that the eigen
light-fields will capture this information. Theorem 2 also
assumes that faces are Lambertian and that the light-field
eigenspace accurately approximates any face light-field. The
extent to which these assumptions are valid is illustrated in
Fig. 3 where we present results of using our algorithm to
rerender faces across pose. In each case, the algorithm
received the left-most (frontal) image as input and created
the rotated view in the middle. For comparison, the original
rotated view is included as the right-most image. The
rerendered image for the first subject is very similar to the
original. While the image created for the second subject still
shows a face in the correct pose, the identity of the subject is
not as accurately recreated. We conclude that overall our
algorithm works fairly well, but that more training data is
needed so that the eigen light-field of faces can more
accurately represent any given face light-field.

3.4 Application to Face Recognition Across Pose

The Eigen Light-Field Estimation algorithm described
above is somewhat abstract. In order to be able to use it
for face recognition across pose, we need to do the
following things:

Vectorization: The input to a face recognition algorithm
consists of a collection of images (possibly just one)
captured from a variety of poses. The Eigen Light-Field
Estimation algorithm operates on light-field vectors
(light-fields represented as vectors). Vectorization con-
sists of converting the input images into a light-field
vector (with missing elements, as appropriate).

Classification: Given the eigen coefficients a1 . . . ad for a
collection of gallery (training) faces and for a probe (test)
face, we need to classify which gallery face is the most
likely match.

Selecting Training and Testing Sets: To evaluate our
algorithm, we have to divide the database(s) used into
(disjoint) subsets for training and testing.

We now describe each of these tasks in turn.

3.4.1 Vectorization by Normalization

Vectorization is the process of converting a collection of
images of a face into a light-field vector. Beforewe cando this,
we first have to decide how to discretize the light-field into
pixels. Perhaps themost naturalway todo this is to uniformly
sample the light-field angles, � and � in the 2D case of Fig. 2.
This is not the only way to discretize the light-field. Any
sampling, uniform, or nonuniform, could be used. All that is
needed is a way of specifyingwhat is the allowed set of light-
field pixels. For each such pixel, there is a corresponding
index in the light-field vector; i.e., if the light-field is sampled
atK pixels, the light-field vectors areK dimensional vectors.

We specify the set of light-field pixels in the following
manner: We assume that there are only a finite set of poses
1; 2; . . . ; P inwhich the face can occur. Each face image is first
classified into the nearest pose. (Although this assumption is
clearly an approximation, its validity is demonstrated by the
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Fig. 3. An illustration of using our eigen light-field estimation algorithm
for rerendering a face across pose. The algorithm is given the left-most
(frontal) image as input from which it estimates the eigen light-field and
then creates the rotated view shown in the middle. For comparison, the
original rotated view is shown in the right-most column. In the figure, we
show one of the better results (top) and one of the worst (bottom).
Although, in both cases, the output looks like a face, the identity is
corrupted in the second case.



empirical results in Section 3.5.3. In both the FERET [22] and
PIE [26] databases, there is considerable variation in the pose
of the faces.Although the subjects are asked toplace their face
in a fixed pose, they rarely do this perfectly. Both databases
therefore contain considerable variation away from the finite
set of poses. Since our algorithm performs well on both
databases, the approximation of classifying faces into a finite
set of poses is validated.)

Each pose i ¼ 1; . . . ; P is then allocated a fixed number of
pixelsKi. The total number of pixels in a light-field vector is
thereforeK ¼

PP
i¼1 Ki. If we have images from pose 3 and 7,

for example, we know K3 þK7 of the K pixels in the light-
field vector. The remaining K �K3 �K7 are unknown,
missingdata. This vectorizationprocess is illustrated inFig. 4.

We still need to specify how to sample the Ki pixels of a
face in pose i. This process is analogous to that needed in
appearance-based object recognition and is usually per-
formed by “normalization.” In eigenfaces [28], the standard
approach is to find the positions of several canonical points,
typically, the eyes and the nose, and to warp the input
image onto a coordinate frame where these points are in

fixed locations. The resulting image is then masked. To
generalize eigenface normalization to eigen light-fields, we
just need to define such a normalization for each pose.

In this paper, we experimented with two different
normalizations. The first one, illustrated in Fig. 5a for three
poses, is a simple one based on the location of the eyes and the
nose. Just as in eigenfaces, we assume that the eye and nose
locations are known, warp the face into a coordinate frame in
which these canonical points are in a fixed locationand finally
crop the image with a (pose dependent) mask to yield the
Ki pixels. For this simple 3-point normalization, the resulting
masked images vary in size between 7,200 and 12,600 pixels.

The second normalization is more complex and is
motivated by the success of Active Appearance models [10].
This normalization is based on the location of a large number
(39-54 depending on the pose) of points on the face. These
canonical points are triangulated and the imagewarpedwith
a piecewise affine warp onto a coordinate frame in which the
canonical points are in fixed locations. See Fig. 5b for an
illustration of this multipoint normalization. The resulting
masked images for thismultipoint normalization vary in size
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Fig. 4. Vectorization by normalization. Vectorization is the process of converting a set of images of a face into a light-field vector. Vectorization is
performed by first classifying each input image into one of a finite number of poses. For each pose, a normalization is then applied to convert the
image into a subvector of the light-field vector. If poses are missing, the corresponding part of the light-field vector is missing.

Fig. 5. (a) Three-point normalization. The first, simpler normalization for three poses in the set in Fig. 4, one frontal, one a 3/4 view, the final a full
profile. Just as in eigenfaces, we assume that the eye and nose locations are known, warp the face into a coordinate frame in which these canonical
points are in a fixed location and finally crop the image with a (pose dependent) mask. (b) Multipoint normalization. The second, more complex
normalization. In this case, a large number (39-54 depending on the pose) of points on the face are used to perform the normalization.



between 20,800 and 36,000 pixels. Although, currently, the
multipoint normalization is performed using hand-marked
points, it could be performedby fitting anActiveAppearance
model [10] and then using the implied canonical point
locations. Further discussion of this way of automating our
algorithm is contained in Section 4.2.

3.4.2 Classification Using Nearest Neighbor

The Eigen Light-Field Estimation algorithm outputs a vector
of eigen coefficients ða1; . . . ; adÞ. Given a set of gallery
(training) faces, we obtain a corresponding set of vectors
ðaid1 ; . . . ; aidd Þ, where id is an index over the set of gallery faces.
Similarly, given a probe (or test) face, we obtain a vector
ða1; . . . ; adÞ of eigen coefficients for that face. To complete the
face recognition algorithm, we need an algorithm which
classifies ða1; . . . ; adÞ with the index id which is the most
likely match. Many different classification algorithms could
be used for this task. For simplicity, we use the nearest
neighbor algorithm which classifies the vector ða1; . . . ; adÞ
with the index:

argmin
id

dist ða1; . . . ; adÞ; ðaid1 ; . . . ; aidd Þ
� �

¼ argmin
id

Xd

i¼1

ai � aidi
� �2

:
ð6Þ

All of the results reported in this paper use the Euclidean
distance in (6). Alternative distance functions, such as the
Mahalanobis distance, could be used instead if so desired.

3.4.3 Selecting the Gallery, Probe, and Generic

Training Data

In each of our experiments, we divided the database(s) into
three disjoint subsets:

Generic Training Data: Many face recognition algorithms
such as eigenfaces, and including our algorithm, require
“generic training data” to build a generic face model. In
eigenfaces, for example, generic training data is needed
to compute the eigenspace. Similarly, in our algorithm
generic data is needed to construct the eigen light-field.

Gallery: The gallery is the set of “training” images of the
people to be recognized; i.e., the images given to the
algorithmasexamplesof eachperson thatmightneed tobe
recognized.

Probe: The probe set contains the “test” images; i.e., the
examples of images to be presented to the system that
should be classified with the identity of the person in the
image.

The division into these three subsets is performed as follows:
First, we randomly select half of the subjects as the generic
training data. The images of the remaining subjects are used
for the gallery and probe. There is therefore never any
overlap between the generic training data and the gallery
and probe. (Note that it is often a good idea for the gallery
and generic training data to be the same. There is nothing in
our algorithm that precludes this. We just require the gallery
and generic training data to be disjoint for fairness and to
avoid any bias in our results. In order to include gallery
subjects during training, an algorithm performing PCAwith
missing data would have to be used to compute the eigen
light-fields [11], [25].)

After the generic training data has been removed, the
remainder of the database(s) are divided into probe and
gallery sets based on the pose of the images. For example, we
might set the gallery to be the frontal images and theprobe set
to be the left profiles. In this case, we evaluate how well our
algorithm is able to recognizepeople from their profiles given
that the algorithm has only seen them from the front. In the
experiments described below, we choose the gallery and
probe poses in various different ways. The gallery and probe
are always completely disjoint however.

3.5 Experimental Results

3.5.1 Databases

We used two databases in our face recognition across pose
experiments, the CMU Pose, Illumination, and Expression
(PIE)database [26] and theFERETdatabase [22]. Eachof these
databases contains substantial pose variation. In the pose
subset of theCMUPIEdatabase (see Fig. 6), the 68 subjects are
imaged simultaneously under 13 different poses totaling
884 images. In the FERET database, the subjects are imaged
nonsimultaneously in nine different poses. See Fig. 7 for an
example. We used 200 subjects from the FERET pose subset
giving1,800 images in total. (In both cases,weusedgray-scale
images even if the database actually contains color images.) If
not stated otherwise,weusedhalf of the available subjects for
training of the generic eigenspace (34 subjects for PIE,
100subjects forFERET)and the remaining subjects for testing.
In all experiments (if not stated otherwise), we retain a
number of eigenvectors sufficient to explain 95 percent of the
variance in the input data.

3.5.2 Example Eigen Light-Field

Fig. 8 illustrates an example eigen light-field for the PIE
database. To best illustrate the appearance variation, we
actually display the mean vector plus a multiple of each
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Fig. 6. An illustration of the pose variation in the CMU PIE database [26]. The pose varies from full right profile (c22) to full frontal (c27) and on to full
left profile (c34). The four other cameras include one above (c09) and one below (c07) the central camera, and two in the corners of the room (c25
and c31), typical locations for surveillance cameras.



eigenvector. That way, the eigenvectors actually look like
real faces that are typical of the appearance variation
modeled by the eigenspace. As can be seen, the eigenvectors
mostly encode identity information.

3.5.3 Experiment 1: Comparison with Other Algorithms

We first conducted an experiment to compare our algorithm
with two others. In particular, we compared our algorithm
with eigenfaces [28] and FaceIt, the commercial face
recognition system from Identix (formerly Visionics).
Eigenfaces is the defacto baseline standard by which face
recognition algorithms are compared. FaceIt finished top
overall in the Face Recognition Vendor Test 2000 [8].

We first performed a comparison using the PIE database
[26]. After randomly selecting the generic training data, we
selected the gallery pose as one of the 13 PIE poses and the
probe pose as any other of the remaining 12 PIE poses. For
each disjoint pair of gallery and probe poses, we compute
the average recognition rate over all subjects in the probe
and gallery sets. The details of the results are included in
Figs. 9 and 10 and a summary is included in Table 3.

In Fig. 9, we plot color-coded 13� 13 “confusion
matrices” of the results. The row denotes the pose of the
gallery, the column the pose of the probe, and the displayed
intensity the average recognition rate. A lighter color
denotes a higher recognition rate. (On the diagonals the
gallery and probe images are the same and so all three
algorithms obtain a 100 percent recognition rate.) Eigen
light-fields performs far better than the other algorithms, as
is witnessed by the lighter color of Figs. 9a and 9b)
compared to Figs. 9c and 9d). Note how eigen light-fields

is far better able to generalize across wide variations in pose
and, in particular, to and from near profile views.

Several “cross-sections” through the confusion matrices
in Fig. 9 are shown in Fig. 10. In each cross-section, we fix
the pose of the gallery images and vary the pose of the
probe image. In each graph we plot four curves, one for
eigenfaces, one for FaceIt, one for eigen light-fields with the
3-point normalization, and one for eigen light-fields with
the multi-point normalization. As can be seen, eigen light-
fields outperforms the other two algorithms. In particular, it
is better able to recognize the face when the gallery and
probe poses are very different. This is witnessed by the
eigen light-field curves in Fig. 10 being higher at the
extremities of the probe pose range.

The results in Figs. 9 and 10 are summarized in Table 3. In
this table, we include the average recognition rate computed
over all disjoint gallery-probe poses. As can be seen, eigen
light-fields outperforms both the standard eigenfaces algo-
rithm and the commercial FaceIt system. (In [24], better
recognition results across pose on the PIE database are
reported. See Section 4.3 for a detailed comparison of our
algorithm with the model-based one in [24].)

We next performed a similar comparison using the FERET
database [22]. Just as with the PIE database, we selected the
gallery pose as one of the nine FERET poses and the probe
pose as any other of the remaining eight FERET poses. For
each disjoint pair of gallery and probe poses, we compute the
average recognition rate over all subjects in the probe and
gallery sets, and then average the results. The results are very
similar to those for the PIE database and are summarized in
Table 4.Again, eigen light-fields performs significantly better
than both FaceIt and eigenfaces.
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Fig. 7. An illustration of the pose variation in theFERETdatabase [22]. Theposesof the nine images vary fromþ60� (bb) to full frontal (ba) andon to�60�

(bi). Overall, the variation in pose is somewhat less than in theCMUPIE database. SeeFig. 6 for an illustration of the pose variation in thePIE database.

Fig. 8. The mean vector and the first three eigen light-field vectors for six poses of the PIE database. To best illustrate the eigenvectors, we display
the mean vector plus a multiple of each eigenvector. That way, the eigenvectors actually look like real faces and are typical of the appearance
variation in the eigenspace.



Overall, the performance improvement of eigen light-
fields over the other two algorithms is more significant on
the PIE database than on the FERET database. This is
because the PIE database contains more variation in pose
than the FERET database. See Figs. 6 and 7.

3.5.4 Experiment 2: Improvement with the Number of

Input Images

So far, we have assumed that just a single gallery and probe
image are available to the algorithm. What happens if more
gallery and/or probe images are available? In Experiment 2,
we investigate the performance of eigen light-fields with
different numbers of images using the PIE database. To
compute the recognition ratewith n gallery images, we select
every possible set ofn gallery poses and 1probepose. In total,

this amounts to 13� 12� . . . ð13� nÞ=n! different combina-
tions of poses.We then compute the average recognition rate
for each such combination and average the results. We plot
the overall average recognition rate against the number of
gallery images in Fig. 11a. As can be seen, eigen light-fields is
able to estimate amore accurate light-fieldusingmore gallery
images and thereby obtain a higher recognition rate.

Eigen light-fields can also take advantage of more than

one probe image. We therefore repeated Experiment 2 but
reversed the roles of the gallery and probe. The results are

shown in Fig. 11b. Again, the performance increases with
the number of probe images, however, the benefit of using

multiple probe images is not as much as the benefit of using
multiple gallery images. With multiple gallery images, the

accuracy of the light-field of every subject in the gallery is

improved. With more probe images, the accuracy of the
light-field of just the single probe subject is improved.

3.5.5 Experiment 3: Matching Subimages

We just illustrated how the performance of eigen light-fields
improves if more gallery and/or probe images are available.

Eigen light-fields can use any subset of the light-field. In

particular, it does not even need a complete image. To
validate this property, we ran the following experiment. We

repeated Experiment 1, but for each pair of gallery and probe
poses,we randomly selected a certainpercentageof thepixels

in the masked image. We then compute the average
recognition rate just using this subset of the pixels. This

process is repeated for 100 random samples of pixels and the
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Fig. 9. (a) Eigen Light-Fields—3-Point Normalization. (b) Eigen Light-Fields—Multipoint Normalization. (c) FaceIt. (d) Eigenfaces. A comparison with
FaceIt and eigenfaces for face recognition across pose on the PIE database. For each pair of gallery and probe poses, we plot the color-coded
average recognition rate. The fact that the images in (a) and (b) are lighter in color than those in (c) and (d) implies that our algorithm performs better.



results averaged. The results are shown in Fig. 12 for a variety

of pixel percentages ranging from 1 percent to 100 percent

(the complete image). These results were obtained using the

3-point normalization and so the performance with 100 per-

cent is 52.5 percent, as per Table 3. The figure demonstrates

graceful degradation of the recognition performance when

subsets of the images are used. The algorithm achieves

remarkable recognition rates with just 1 percent of the image

information. In this case the light-field contains an average of

206 pixels (3-point normalization) and 548 pixels (multipoint

normalization), respectively.

3.5.6 Experiment 4: Division of the Input Images

between Gallery and Probe

InExperiment 2,we examined thebenefits of usingmore than
one gallery or probe image. Suppose that n gallery and probe
images are available in total. Is it better to use n� 1 gallery
and 1 probe images or n=2 gallery and n=2 probe images? In
order to answer this question, we conducted Experiment 4.
Given n images, we generated every possible combination of
n� 1 gallery images and 1 probe image (as in Experiment 2)
and every possible combination of n=2 gallery images and
n=2probe images.We thencomputed the average recognition
rate for each case. Similarly, we switched the roles of gallery
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Fig. 10. (a) Gallery Pose c27. (b) Gallery Pose c22. (c) Gallery Pose c37. (d) Gallery Pose c31. Several “cross-sections” through the confusion
matrices in Fig. 9. In each figure, we fix the pose of the gallery and only vary the pose of the probe. We plot four curves, one each for eigen light-fields
with the 3-point normalization, eigen light-fields with the multipoint normalization, eigenfaces, and FaceIt. The performance of eigen light-fields is
superior to that for the other two algorithms, particularly when the pose of the gallery and probe are radically different. Eigen light-fields recognizes
faces better across pose.

TABLE 3
A Comparison of Eigen Light-Fields with FaceIt and Eigenfaces for Face Recognition Across Pose on the PIE Database

The table contains the average recognition rate computed across all disjoint pairs of gallery and probe poses, i.e., this table summarizes the average
performance in Fig. 9.



and probe. The results are shown in Fig. 13. The conclusion is
clear. It is better to divide the images equally between gallery
and probe rather than asymmetrically.

One possible conclusion from this result is that adding
more that one image to each of the probe and gallery allows a
better estimate of the light-field. Having two more accurate
estimates results in better performance than having one very
accurate estimate and one not so accurate estimate.

3.5.7 Experiment 5: Influence of Eigenspace

Parameters

The computation of eigen light-fields is influenced primarily
by the number of subjects used during training and the
number of eigenvectors retained from Principal Compo-
nents Analysis. In order to quantify the effect that these
parameters have on recognition performance, we repeated
Experiment 1 on the FERET database and systematically
changed their values. The recognition accuracies for FaceIt
stay constant across the different parameter settings sincewe
did not (and could not) retrain the system. Fig. 14a shows
recognition accuracies of eigen light-fields, eigenfaces and
FaceIt for varying numbers of training subjects in the
training set. For each experiment, the same set of 100 gal-
lery/probe subjects was used. It can be seen that eigen light-
fields outperform FaceIt when more than 40 subjects are
used in the training set. In a similar fashion, Fig. 14b shows
recognition accuracies for the three algorithms for changing
percentages of variance retained from Principal Component
Analysis using 100 subjects in the training set. Here, eigen

light-fields surpass the FaceIt performance when more than

80 percent of the variance (corresponding to eight eigenvec-
tors) is retained. Again, the performance of eigen light-fields
degrades gracefully.

3.5.8 Experiment 6: Recognition Across Databases

For all experiments shown so far, the training and gallery/
probe subjects were taken from the same database. In Fig. 15,
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TABLE 4
A Comparison of Eigen Light-Fields with FaceIt and Eigenfaces for Face Recognition Across Pose on the FERET Database

The table contains the average recognition rate computed across all disjoint pairs of gallery and probe poses. Again, eigen light-fields outperforms
both eigenfaces and FaceIt.

Fig. 11. (a) Varying the number of gallery images. The improvement in the performance of our algorithm with increasing numbers of gallery images.
Using the additional images, eigen light-fields is able to estimate the light-fields more accurately and thereby obtains a higher recognition rate.
(b)Varying the number of probe images. The performance of eigen light-fields also improves with the number of probe images. The performance
increase is greater with increased numbers of gallery images because the accuracy of the light-field of every gallery subject is improved. On the
other hand, with more probe images, the accuracy of just the one probe subject is improved.

Fig. 12. The performance of eigen light-fields with a subset of the
images using the 3-point normalization and the PIE database. The
average recognition rate is plotted against the percentage of pixels in the
probe and gallery images. A subset of the images can be used without
any significant reduction in the recognition rate.



we show recognition accuracies for round-robin tests with
seven poses of the PIE database. Training for both eigen light-
fields and eigenfaces was done using all 200 subjects of the
FERET database. Correspondence between FERET and
PIE poses was determined manually. Note that there is a
considerable mismatch between the FERET and PIE poses
(seeFigs. 6 and7).While lowoverall, theperformanceof eigen
light-fields compares reasonablywith theFaceIt performance
on the same task.

3.5.9 Experiment 7: Computational Complexity

Since the computation of the eigen light-fields and the

eigenspace coefficient for the gallery images can be done

offline, the online complexity is dominated by the cost of

solving the overdetermined linear systems for the probe

coefficients. Fig. 16 shows the processing times for this step

per probe subject on a 2.8 GHz Pentium 4 processor for

different amounts of variance retained from Principal

Component Analysis, corresponding to between 1 (for

60 percent variance) and 99 eigenvectors (for 100 percent

variance). The experiment was conducted using the

FERET database with 100 training subjects. The results are

averages for round-robin tests where each pose is used, in

turn, as the gallery pose with all other poses as probe poses.

As shown in Fig. 14b, typically 95 percent of the variance

should be retained for maximum performance.

4 CONCLUSION

4.1 Summary

Appearance-based object recognition uses pixels ormeasure-

ments of light in the scene as its features. In the ultimate limit,

the set of all such measurements is the plenoptic function or
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Fig. 13. (a) The performance of using n� 1 gallery images and 1 probe image versus using n=2 of each. The empirical evidence suggests to split up
the images evenly into gallery and probe. (b) The performance of using 1 gallery image and n� 1 probe images versus using n=2 of each. Again,
splitting up the images evenly achieves higher recognition rates. Having two more accurate estimates of the light-fields results in better performance
than having one very accurate estimate and one not so accurate estimate.

Fig. 14. Comparative performance of the three algorithms on the FERET database: (a) varying number of subjects in the generic training data and
(b) varying the percentage of variance retained in the eigenspace (using 100 subjects). The recognition accuracies are averages of round-robin
experiments using each pose, in turn, as gallery pose and all other poses as probe poses. The performance of the eigen light-fields surpasses
FaceIt performance at comparatively low values of the parameter settings. The recognition accuracies for FaceIt stay constant across the different
parameter settings since we did not (and could not) retrain the system.



light-field. In this paper,wehave explored appearance-based

object recognition from light-fields. We first analyzed the

theoretical distinguishability of objects from their images and

light-fields. We presented a number of results which show

that theoretically objects can be distinguishable from their

light-fields in cases that they are ambiguous from just a single

image. This theoretical analysis motivates trying to build

appearance-based object recognition algorithms that use as

much of the light-field as is available, be it a single image, a

pair of images, or multiple images.

In the second half of this paper, we proposed an

appearance-based algorithm for face recognition across pose

based on an algorithm to estimate the eigen light-field from a

collection of images. This algorithm can use any number of

gallery images captured from arbitrary poses and any

number of probe images also captured from arbitrary poses.

The gallery and probe poses do not need to overlap. We

showed that our algorithm can reliably recognize faces across

pose and also take advantage of the additional information

contained in widely separated views to improve recognition

performance if more than one gallery or probe image is

available. Note that the Eigen Light-Fields Algorithm can be

extended to recognize faces across pose and illumination

simultaneously by generalizing eigen light-fields [14] to

Fisher light-fields [15], analogously to how eigen faces [28]

can be generalized to Fisherfaces [3]. (Note, however, that

care must be taken because (3) assumes that the basis vectors

(Ei) are able to reconstruct the image Iðm;nÞwell. This is not

the case for Fisher light-fields and, so, a two-step algorithm is

required that first reconstructs the eigen light-field and then

constructs a Fisher light-field from that.)

4.2 Light-Fields, Vectorization, and
Appearance-Based Face Recognition

One common reaction to the algorithm described in this

paper is to question what it has to do with Light-Fields. On

one level this is valid. The algorithm could be described

without mention of the term. It could be described as face

recognition across pose, the technical meat consisting simply

of using a eigenspace computed on pairs (or n-tuples) of

viewsand the (standard) approach todealingwith occlusions

in the eigenspace approach [16]. Such a paper could have

been published right after [21] as a simple extension to the

view-based approach described there to avoid the need for

gallery images of each subject from each pose.
There is another reason we used the term. Appearance-

based face recognition uses pixels in images as features. The

reason for using the term light-field was to highlight the

relationship between these two quantities and the implica-

tions for appearance-based object recognition. In our “ap-

pearance-based” algorithm,we include a step (vectorization)

to convert the light-field into a vector of pixels that is used as

the input to our appearance-based algorithm (PCA followed

by nearest neighbor.) Vectorization converts measurements

of light into features for a pattern recognition algorithm.

When described for light-fields this step seems somewhat ad

hoc, and it is questionable whether it could ever be reliably

performed in a fully automatic face recognition system.There

is an equivalent step in eigenfaces or any other appearance-

based algorithm, but because this step is essentially a “null

step” it is often overlooked. Any face recognition algorithm

must, either explicitly or implicitly, convertmeasurements of

light (the light field, or pixels in images) into measurements

of the face that can then be passed to a classification

algorithm. In frontal appearance-based face recognition, this

conversion reduces to a null step. Fortunately (or perhaps

unfortunately), good results are often obtained evenwith this

choice. By presenting an appearance-based algorithm in

terms of a light-field, we hope to illustrate the importance of

this step, rather than glossing over it as appearance-based

approaches have encouraged people to do.

4.3 Comparison with Model-Based Algorithms

How should the conversion from measurements of light to

measurements of the object (face) be performed? Perhaps the
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Fig. 15. Recognition accuracies of eigen light-fields, eigenfaces and
FaceIt for round-robin tests over seven PIE poses. Eigen light-fields and
eigenfaces were trained using only FERET subjects and tested using
only PIE subjects. The poses vary from þ60� (bb) to full frontal (ba) and
on to �60� (bi). See Fig. 7 for example images.

Fig. 16. The processing time (on a 2.8 GHz Pentium 4) to solve the
linear system to compute the eigenspace coefficients for a single probe
image (using 100 gallery subjects of the FERET database.) The results
are averages for round-robin tests where each pose is used in turn as
gallery pose with all other poses as probe poses. Typically, 95 percent of
the variance should be retained for maximum performance.



most promising approach at this time is the model-based

approach, best exemplified by Active Appearance Models

[10] and 3DMorphable Models [9], [24]. Fitting a face model

can be regarded as converting measurements of light into

measurements of the face (i.e., the model parameters).

Empirically, there is considerable evidence to back up this

approach. One example is the superior performance we

obtained using the multipoint (Active Appearance Model

like) normalization over the simple 3-point (appearance-

based like) normalization. Another example is the excellent

results obtained by Blanz et al. [9] and Romdhani et al. [24].

Concurrent with the research in this paper, we provided the

PIE database to Blanz et al. [9] and Romdhani et al. [24] to

provide a comparison between the appearance-based ap-

proach (this paper) and the model based approach ([9], [24]).

The results presented in [9], [24] are considerably better than

those in this paper, in our opinion clearly demonstrating that

the model-based approach is preferable to the appearance-

based approach. It might be argued that this conclusion is

only valid for the (largely 3D) task of face recognition across

pose. We believe otherwise. Although the task of fitting the

face model (a task we have been actively working on [18])

currently makes the model-based approach less robust, we

believe the approach is inherently superior for both (2D)

frontal face recognition as well as face recognition across

pose. The reason is that the model-based approach explicitly

addresses the question of how to convert measurements of

light (the light-field) into measurements of the face (a vector

of parameters).
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