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Abstract
In many face recognition tasks the pose of the probe and
gallery images are different. In other cases multiple gallery
or probe images may be available, each captured from a dif-
ferent pose. We propose a face recognition algorithm which
can use any number of gallery images per subject captured
at arbitrary poses, and any number of probe images, again
captured at arbitrary poses. The algorithm operates by es-
timating theeigen light-fieldof the subject’s head from the
input gallery or probe images. Matching between the probe
and gallery is then performed using the eigen light-fields.
We present results on the CMU PIE and the FERET face
databases.

Keywords: Face recognition across pose, eigen light-fields,
appearance-based object recognition, image re-rendering.

1. Introduction

In many face recognition scenarios the pose of the probe
and gallery images are different. For example, the gallery
image might be a frontal “mug-shot” and the probe image
might be a 3/4 view captured from a camera in the corner
of the room. The number of gallery and probe images can
also vary. For example, the gallery may consist of a pair of
images for each subject, a frontal mug-shot and full profile
view (like the images typically captured by police depart-
ments). The probe may be a similar pair of images, a single
3/4 view, or even a collection of views from random poses.

Face recognition across pose (i.e. face recognition where
the gallery and probe images do not have the same poses)
has received very little attention. Algorithms have been pro-
posed which can recognize faces [12] (or more general ob-
jects [10]) at a variety of poses. Most of these algorithms
require gallery images at every pose, however. Algorithms
have been proposed which do generalize across pose, for
example [6], but this algorithm computes 3D head models
using a gallery containing a large number of images per sub-
ject captured with substantial controlled illumination varia-
tion. It cannot be used with arbitrary gallery and probe sets.

We propose an algorithm for face recognition across
pose. Our algorithm can use any number of gallery images

captured at arbitrary poses, and any number of probe images
also captured with arbitrary poses. A minimum of 1 gallery
and 1 probe image are needed, but if more images are avail-
able the performance of our algorithm generally gets better.

Our algorithm operates by estimating (a representation
of) the light-field [9] of the subject’s head. First, generic
training data is used to compute an eigen-space of head
light-fields, similar to the construction of eigen-faces [16].
Light-fields are simply used rather than images. Given a
collection of gallery or probe images, the projection into the
eigen-space is performed by setting up a least-squares prob-
lem and solving for the projection coefficients similarly to
approaches used to deal with occlusions in the eigenspace
approach [4,8]. This simple linear algorithm can be applied
to any number of images, captured from any poses. Finally,
matching is performed by comparing the probe and gallery
eigen light-fields.

We evaluate our algorithm on the pose subset of the
CMU PIE database [15] and a subset of the FERET
database [13]. We demonstrate that our algorithm is able
to reliably recognize people across pose and that our algo-
rithm performs better if more gallery or probe images are
used. We also investigate the variation in performance of
our algorithm with the poses of the gallery and probe im-
ages. Finally, we investigate whether it is better to have a
large gallery and a singe probe image or equal sized gallery
and probe sets.

The remainder of this paper is organized as follows. We
proceed in Section 2 to introduce light-fields, eigen light-
fields, our algorithm for estimating an eigen light-field from
any number of images, and derive some of the properties of
the algorithm. In Section 3 we describe how the theoretical
eigen light-field estimation algorithm can be used for face
recognition across pose. After presenting our experimental
results in Section 4 we conclude in Section 5.

2. Theory

2.1. Object Light-Fields

Theplenoptic function[1] or light-field [9] is a function
which specifies the radiance of light in free space. It is a
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Figure 1. An illustration of the 2D light-field of a 2D
object [9]. The object is conceptually placed within a circle.
The angle to the viewpointv around the circle is measured
by the angle�, and the direction that the viewing ray makes
with the radius of the circle is denoted�. For each pair of
angles� and�, the radiance of light reaching the viewpoint
from the object is then denoted byL(�; �), the light-field.
Although the light-field of a 3D object is actually 4D, we
will continue to use the 2D notation of this figure in this
paper for ease of explanation.

5D function of position (3D) and orientation (2D). In ad-
dition, it is also sometimes modeled as a function of time,
wavelength, and polarization, depending on the application
in mind. Assuming that there is no absorption or scattering
of light through the air [11], the light-field is actually only
a 4D function, a 2D function of position defined over a 2D
surface, and a 2D function of direction [7, 9]. In 2D, the
light-field of a 2D object is actually 2D rather, than the 3D
that might be expected. See Figure 1 for an illustration.

2.2. Eigen Light-Fields

Suppose we are given a collection of light-fieldsLi(�; �)
wherei = 1; : : : ; N . See Figure 1 for the definition of
this notation. If we perform an eigen-decomposition of
these vectors using Principal Components Analysis (PCA),
we obtaind � N eigen light-fieldsEi(�; �) where i =
1; : : : ; d. Then, assuming that the eigen-space of light-fields
is a good representation of the set of light-fields under con-
sideration, we can approximate any light-fieldL(�; �) as:

L(�; �) �

dX

i=1

�iEi(�; �) (1)

where�i = hL(�; �); Ei(�; �)i is the inner (or dot) product
betweenL(�; �) andEi(�; �). This decomposition is anal-
ogous to that used in face and object recognition [10, 16];
it is just performed on the entire light-field rather than on
images.

2.3. Estimating Light-Fields from Images

Capturing the complete light-field of an object is a dif-
ficult task, primarily because it requires a huge number of
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Figure 2. The 1D image of a 2D object corresponds to a
curve (surface for a 2D image of a 3D object) in the light-
field. Each pixel in the image corresponds to a ray in space
through the camera pinhole and the location of the pixel on
the image plane. In general this ray intersects the light-field
circle at a different point for each pixel. As the pixel consid-
ered “moves” in the image plane, the point on the light-field
circle therefore traces out a curve in�-� space. This curve
is a straight vertical line iff the “effective pinhole” of the
camera lies on the circle used to define the light-field.

images [7, 9]. In most object recognition scenarios it is un-
reasonable to expect more than a few images of the object;
often just one. As shown in Figure 2, however, any image
of the object corresponds to a curve (for 3D objects, a sur-
face) in the light-field. One way to look at this curve is as
a highly occluded light-field; only a very small part of the
light-field is visible.

Can the eigen coefficients�i be estimated from this
highly occluded view? Although this may seem hope-
less, consider that light-fields are highly redundant, espe-
cially for objects with simple reflectance properties such
as Lambertian. An algorithm is presented in [8] to solve
for the unknown�i for eigen-images. A similar algorithm
was proposed in [4]. Rather than using the inner product
�i = hL(�; �); Ei(�; �)i, Leonardis and Bischof [8] solve
for �i as the least squares solution of:

L(�; �)�

dX

i=1

�iEi(�; �) = 0 (2)

where there is one such equation for each pair of� and�
that are un-occluded inL(�; �). Assuming thatL(�; �) lies
completely within the eigen-spaceand that enough pixels
are un-occluded, then the solution of Equation (2) will be
exactly the same as that obtained using the inner product:

Theorem 1 Assuming thatL(�; �) is in the linear span of
fEi(�; �) j i = 1; : : : dg, then�i = hL(�; �); Ei(�; �)i is
always an exact solution of Equation (2).

Since there ared unknowns (�1 : : : �d) in Equation (2), at
leastd un-occluded light-field pixels are needed to over-
constrain the problem, but more may be required due to lin-
ear dependencies between the equations. In practice,2� 3
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times as many equations as unknowns are typically required
to get a reasonable solution [8]. Given an imageI(m;n),
the following is then an algorithm for estimating the eigen
light-field coefficients�i:

Algorithm 1: Eigen Light-Field Estimation

1. For each pixel(m;n) in I(m;n) compute the corre-
sponding light-field angles�m;n and�m;n. (This step
assumes that the camera intrinsics are known, as well
as the relative orientation of the camera to the object.)

2. Find the least-squares solution (for�1 : : : �d) to the set
of equations:

I(m;n)�

dX

i=1

�iEi(�m;n; �m;n) = 0 (3)

wherem andn range over their allowed values. (In
general, the eigen light-fieldsEi need to be interpo-
lated to estimateEi(�m;n; �m;n). Also, all of the equa-
tions for which the pixelI(m;n) does not image the
object should be excluded from the computation.)

Although we have described this algorithm for a single im-
ageI(m;n), any number of images can obviously be used
(so long as the camera intrinsics and relative orientation
to the object are known for each image.) The extra pix-
els from the other images are simply added in as additional
constraints on the unknown coefficients�i in Equation (3).

2.4. Properties of the Algorithm

Algorithm 1 can be used to estimate a light-field from
a collection of images. Once the light-field has been es-
timated, it can then be used to render new images of the
same object under different poses. (See [17] for a related
algorithm.) In this section we show that, if the objects used
to create the eigen-space of light-fields all have the same
shape as the object imaged to create the input to the algo-
rithm, then this re-rendering process is in some sense “cor-
rect,” assuming that all the object are Lambertian. As a first
step, we show that the eigen light-fieldsEi(�; �) capture the
shape of the objects in the following sense:

Lemma 1 If fLi(�; �) j i = 1; : : : ; Ng is a collection of
light-fields of Lambertian objects with the same shape, then
all of the eigen light-fieldsEi(�; �) have the property that if
(�1; �1) and(�2; �2) define two rays which image the same
point on the surface of any of the objects then:

Ei(�1; �1) = Ei(�2; �2) 8i = 1 : : : d: (4)

Proof: The property in Equation (4) holds for all of the
light-fields fLi(�; �)ji = 1; : : : ; Ng used in the PCA be-
cause they are Lambertian. Hence, it also holds for any lin-
ear combination of theLi. Therefore it holds for the eigen-
vectors because they are linear combinations of theLi. 2

The property in Equation (4) clearly also holds for all
linear combinations of the eigen light-fields. It therefore
also holds for the light-field recovered in Equation (3) in
Algorithm 1, assuming that the light-field from which the
input image is derived lies completely in the eigen-space
and so Theorem 1 applies. This fact means that Algorithm
1 estimates the light-field in a way that is consistent with
the object being Lambertian and of the appropriate shape:

Theorem 2 SupposefEi(�; �) j i = 1; : : : ; dg are the
eigen light-fields of a set of Lambertian objects with the
same shape andI(m;n) is an image of another Lamber-
tian object with the same shape. If the light-field from which
I(m;n) is derived lies in the light-field eigen-space, then
the light-field recovered by Algorithm 1 has the property
that if �m;n; �m;n is any pair of angles which image the
same point in the scene as the pixel(m;n) then:

I(m;n) = E(�m;n; �m;n): (5)

whereE(�m;n; �m;n) is the light-field estimated by Algo-
rithm 1; i.e. Algorithm 1 correctly re-renders the object un-
der the Lambertian reflectance model.

Theorem 2 implies that Algorithm 1 is acting reason-
ably in estimating the light-field, a task which is in gen-
eral impossible without a prior model on the shape of the
object. (The shape model here is contained in the eigen-
space.) Theorem 2 assumes that faces are approximately
the same shape, but that is a common assumption [14].
Theorem 2 also assumes that faces are Lambertian and that
the light-field eigenspace accurately approximates any face
light-field. The extent to which these assumptions are valid
is demonstrated by the empirical results obtained by our al-
gorithm. See Section 4.

3. Face Recognition Across Pose

We propose to use Algorithm 1 to perform face recog-
nition across pose. Although the derivation in Section 2 is
in terms of the entire light-field, the results also clearly hold
for any subset of rays(�; �) in the light-field. We will evalu-
ate our algorithm on a subset of the CMU PIE database [15]
and a subset of the FERET database [13]. In the CMU PIE
database 68 subjects are imaged under 13 different poses
totalling 884 images (figure 3). We furthermore report re-
sults on 75 subjects from the FERET database which are
recorded in 9 different poses (figure 5). The remainder of
this section describes how we map the abstract algorithms
in Section 2 onto the data in Figure 3.

3.1. Gallery, Probe, & Generic Training Data

There are 68 subjects in the PIE database. We randomly
selectN = 34 of these subjects and use the images of them
as generic training data to construct the eigen light-fields.
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Figure 3. The pose variation in the PIE database [15]. The pose varies from full left profile (c34) to full frontal (c27) and on to
full right profile (c22). The 9 cameras in the horizontal sweep are each separated by about22:5Æ. The 4 other cameras include 1
above (c09) and 1 below (c07) the central camera, and 2 in the corners of the room (c25 and c31), typical locations for surveillance
cameras.
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Figure 4. Face normalization. The original images from
camera views c27 and c37 are shown together with the nor-
malized and crop face region.

Of the remaining 34 subjects, the images are divided into
completely disjointgallery and probe sets based on the cam-
era they are captured from. For example, if we consider
the scenario described in the introduction where the gallery
consists of a pair of images for each subject, a frontal mug-
shot and full profile view, we might use the images from
cameras c22 and c27 for the gallery (see figure 3). If the
probe images are 3/4 views, we would use the images from
camera c37 (or c11.)

3.2. Extracting the Face Region

We hand-labeled the x-y positions of both eyes (pupils)
and the tip of the nose in all 884 images of the PIE database
and the 675 images of the FERET database. Within each
pose separately the face images are normalized for rota-
tion, translation, and scale. The face region is then tightly
cropped using the normalized feature point distances. Fig-
ure 4 shows the result of face region extraction for two cam-
eras (c27 and c37) of the PIE database.

3.3. Constructing the Light-Field Eigenspace

Face region extraction is performed on every image from
every camera; generic training data, gallery images, and
probe images. Suppose that the results are the images:

cropped face id c (6)

whereid 2 f1; 2; : : : ; 68g is the identity of the subject and
c 2 f02; 05; 07; 09; 11; 14; 22; 25; 27; 29; 31; 34; 37g is the
camera number. SupposeTraining � f1; 2; : : : ; 68g is the
set of generic training subjects,Gallery is the set of gallery
cameras, andProbe is the set of probe cameras. We then
form the light-field eigenspace as follows. For eachid 2
Training, the images:

fcropped face id c j c 2 Gallery [ Probeg (7)

are raster-scanned and concatenated. PCA is performed on
theseN = 34 vectors to form the eigen-vectorsEi.

3.4. Processing the Gallery Images

For eachEi (i = 1; � � � ; d, the dimension of the light-
field eigenspace) we extract the elements corresponding to
the gallery images and form a shorter vectorEG. For each
non-training subjectid 62 Training we raster-scan the im-
ages:

fcropped face i c j c 2 Galleryg (8)

to form a vector of the same length. We solve Equation (3)
for these shortened vectors. Suppose the result is�id

i
.

3.5. Processing the Probe Images

We process the probe images similarly. For each eigen-
vector Ei we extract the elements corresponding to the
probe images and form a shorter vectorEP. For each non-
training subjectid 62 Training we raster-scan the images:

fcropped face i c j c 2 Probeg (9)
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Figure 5. The pose variation in the FERET database [13]. The pose varies from +60 (bb) to full frontal (ba) and on to -60 (bi).

to form a vector of the same length. We solve Equation (3)
for these shortened vectors. Suppose the result is�id

i
; i.e.

we use� as the equivalent of� for the probe images.

3.6. The Classification Algorithm

We use a nearest neighbor classification algorithm for
simplicity. For each probe subjectid we find the closest
matching gallery eigen light-field as:

argmin
id�

dX

i=1

�
�id
i
� �id�

i

�2
: (10)

If the nearest neighbor eigen light-fieldid� = id the algo-
rithm has correctly recognized the subject. Ifid� 6= id the
algorithm has recognized the subject incorrectly.

4. Experimental Results

4.1. Comparison with Other Algorithms

We first compared our algorithm with eigenfaces [16], as
implemented by Beveridgeet. al [3], and FaceIt, the com-
mercial face recognition system from Visionics. FaceIt fin-
ished as the top performer in the Face Recognition Vendor
Test 2000 [5]. In Figure 6 we compare the recognition rate
of the three algorithms for the galleryEG = f05; 27; 29g.
We plot the recognition rate for each of the 10 cameras not
in the gallery and the overall average. As would be expected
for a simple appearance based algorithm, eigenfaces per-
forms poorly in all cases (except for c07, one of the cam-
eras closest to the gallery). FaceIt performs comparably to
our algorithm on the 4 cameras closest to the gallery im-
ages c07, c09, c11, and c37. For the profile views c02, c22,
c25, c31, and c34, our algorithm outperforms both of the
other algorithms by a huge margin. On average our algo-
rithm achieves a recognition accuracy of69% vs. 42% for
FaceIt (version 2) and18% for eigenfaces. In terms of rel-
ative performance the eigen light-fields improve the FaceIt
result by60:7% (the error rate improves from58% to 31%,
an improvement of(58� 31)=((58 + 31)=2) = 60:7).

We observe similar results on the FERET database.
When trained on frontal and near frontal images our algo-
rithm outperforms FaceIt by far on the poses closest to the
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Figure 6. A comparison of our algorithm with eigen-
faces [3, 16] and two FaceIt versions on the galleryEG =
f05; 27; 29g. FaceIt version 1 was available before Vision-
ics had access to the PIE database. FaceIt version 2 came
out after Visionics had a copy of PIE for approximately
one year. The recognition rate of our algorithm and FaceIt
is similar for the 4 camerasf07; 09; 11; 37g closest to the
gallery. For the profile viewsf02; 22; 25; 31; 34g our al-
gorithm outperforms FaceIt by far. In all cases, eigenfaces
performs poorly.

profile views (92% vs. 83%). See Figure 7. Here our algo-
rithm improves the FaceIt result by72% in the same sense
as above. The similarity in the improvements across two
databases suggests that our results are general in nature and
not specific to one database.

4.2. Improvement with the Number of Images

In Figure 8(a) we plot an example of the improvement of
the performance of our algorithm with the number of gallery
images. We plot the recognition rate, computed on average
over all of the other images in the database, for 5 differ-
ent galleriesf25g; f25; 27g; f25; 27; 34g; f11; 25; 27; 34g;
andf05; 11; 25; 27; 34g: For each of these cases, only one
probe is used at a time. On the same graph we also plot the
results using a single gallery image, but varying the num-
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Figure 7. A comparison of our algorithm with FaceIt on
the galleryEG = fba; bf; beg of the FERET database. Our
algorithm outperforms FaceIt by far on the poses closest to
the profile viewsfbb; big.

ber of probe images. We find that the performance of our
algorithm increases rapidly with the number of gallery im-
ages and also that the role of the gallery and probe sets are
approximately interchangeable.

4.3. Variation with the Pose of the Gallery

In Figure 8(b) we compare using a gallery contain-
ing only frontal images inf05; 07; 09; 11; 27; 29; 37g
and one containing only profile views in
f02; 11; 14; 22; 25; 31; 34; 37g. We compute the recogni-
tion rate for different gallery sizes. For each gallery size,
we randomly generate a large number of frontal galleries
of that size and profile galleries of that size. We then
compute the average recognition rate over all single probe
images not in the gallery. We then repeat this process for 99
other randomly chose gallery pairs and average the results.
The graphs in Figure 8(b) show that the performance of
the frontal galleries is far superior to that of the profile
galleries.

4.4. Division between the Gallery and Probe

A natural question which occurs at this point is whether
it is better to have a large gallery and a single probe image,
or a gallery and a probe half the size of the large gallery.
We randomly generated pairs of galleries and probes. In the
first case we choose a large gallery and a single probe. In the
second case we choose an equal size gallery and probe. We
then compute the average recognition rate. In Figure 8(c)
we plot two curves against the total size of the gallery and
probe sets combined. The results clearly show that it is
better to divide the images equally between the gallery and
probe sets than to have a large gallery and a single probe.

5. Discussion

5.1. Summary

We have proposed an algorithm for face recognition
across pose based on an algorithm to estimate an eigen
light-field from a collection of images. The algorithm can
use any number of gallery images captured form arbitrary
poses and any number of probe images also captured from
arbitrary poses. The gallery and probe poses do not need to
overlap, and any number of gallery and probe images can
be used. We have shown that our algorithm can reliably
recognize faces across pose. We have also shown that our
algorithm can take advantage of the additional information
contained in widely separated views to improve recognition
performance if more than 1 gallery or probe image is avail-
able.

5.2. Current Limitations of the Algorithm

In this first paper describing our face recognition algo-
rithm we have concentrated on showing that our algorithm
can: (1) recognize people across pose and (2) take advan-
tage of widely spaced views to yield improved face recogni-
tion performance. To get preliminary results, we have sim-
plified the task in several ways: (1) the poses of the cam-
eras are known and fixed, (2) the locations of the eyes and
the nose used to extract the face region are marked by hand,
and (3) the generic training data is captured with the same
cameras that are used to capture the gallery and probe im-
ages. All of these factors make face recognition easier and
are limitations on the current algorithm. We are continuing
to develop our algorithm to remove these limitations, while
retaining the desirable properties of the algorithm.

We recently conducted preliminary experiements using
PIE images as generic training data and FERET images as
gallery and probe images. Our algorithm achieves a recog-
nition accuracy of81:3%, which compares very well to the
performance of FaceIt over the same dataset (84:4%).

5.3. Future Work: Illumination

The question “what is the set of images of an object
under all possible illumination conditions?” was recently
posed and answered in [2]. Is there an analogous result for
light-fields? Since images consist of subsets of rays from
the light-field, it is not surprising that the analogous result
does hold for light-fields:

Theorem 3 The set ofn-pixel light-fields of any object, un-
der all possible lighting conditions, is a convex cone inRn.

An illumination invariant face recognition algorithm was
proposed in [2] based on the equivalent of this “convex
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Figure 8. (a) The variation in the performance of our algorithm with the number of gallery and probe images. The camera sets
A = f27g, B = f25; 27g, C = f25; 27; 34g, D = f11; 25; 27; 34g, and E= f05; 11; 25; 27; 34g. Our algorithm takes advantage
of more gallery and probe images. (b) The variation in performance between frontal and profile galleries. Our algorithm operates
better when the gallery images are frontal rather than profile. (c) A comparison of 2 ways of dividing the images between the gallery
and probe set. Our algorithm operates better if the images are divided equally between gallery and probe sets rather than having a
large gallery and a single probe.

cone” property for images. We are currently working on ex-
tending our algorithm to be able to recognize faces across
both pose and illumination.
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