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Abstract. In many face recognition tasks the pose and illumination

conditions of the probe and gallery images are di�erent. In other cases

multiple gallery or probe images may be available, each captured from

a di�erent pose and under a di�erent illumination. We propose a face

recognition algorithm which can use any number of gallery images per

subject captured at arbitrary poses and under arbitrary illumination,

and any number of probe images, again captured at arbitrary poses and

under arbitrary illumination. The algorithm operates by estimating the

Fisher light-�eld of the subject's head from the input gallery or probe

images. Matching between the probe and gallery is then performed using

the Fisher light-�elds.

1 Introduction

In many face recognition scenarios the pose of the probe and gallery images are
di�erent. The gallery contains the images used during training of the algorithm.
The algorithms are tested with the images in the probe sets. For example, the
gallery image might be a frontal \mug-shot" and the probe image might be a 3/4
view captured from a camera in the corner of the room. The number of gallery
and probe images can also vary. For example, the gallery may consist of a pair of
images for each subject, a frontal mug-shot and full pro�le view (like the images
typically captured by police departments). The probe may be a similar pair of
images, a single 3/4 view, or even a collection of views from random poses.

Face recognition across pose, i.e. face recognition where the gallery and probe
images do not have the same poses, has received very little attention. Algorithms
have been proposed which can recognize faces [1] (or more general objects [2])
at a variety of poses. However, most of these algorithms require gallery images
at every pose. Algorithms have been proposed which do generalize across pose,
for example [3], but this algorithm computes 3D head models using a gallery
containing a large number of images per subject captured using controlled illu-
mination variation. It cannot be used with arbitrary gallery and probe sets.

After pose variation, the next most signi�cant factor a�ecting the appear-
ance of faces is illumination. A number of algorithms have been developed for
face recognition across illumination, but they typically only deal with frontal
faces [4,5]. Only a few approaches have been proposed to handle both pose and
illumination variation at the same time. For example, [3] computes a 3D head



model requiring a large number of gallery images, and [6] �ts a previously con-
structed morphable 3D model to single images. This last algorithm works well
across pose and illumination, however, the computational cost is very high.

We propose an algorithm for face recognition across pose and illumination.
Our algorithm can use any number of gallery images captured at arbitrary poses
and under arbitrary illuminations, and any number of probe images also cap-
tured with arbitrary poses and illuminations. A minimum of 1 gallery and 1
probe image are needed, but if more images are available the performance of our
algorithm generally gets better.

Our algorithm operates by estimating a representation of the light-�eld [7]
of the subject's head. First, generic training data is used to compute a lin-
ear subspace of head light-�elds, similar to the construction of Fisher-faces [4].
Light-�elds are simply used rather than images. Given a collection of gallery
or probe images, the projection into the subspace is performed by setting up
a least-squares problem and solving for the projection coeÆcients similarly to
approaches used to deal with occlusions in the eigenspace approach [8, 9]. This
simple linear algorithm can be applied to any number of images, captured from
any poses under any illumination. Finally, matching is performed by comparing
the probe and gallery Fisher light-�elds using a nearest-neighbor algorithm.

2 Light-Fields Theory

The plenoptic function [10] or light-�eld [7] is a function which speci�es the
radiance of light in free space. It is a 5D function of position (3D) and orientation
(2D). In addition, it is also sometimes modeled as a function of time, wavelength,
and polarization, depending on the application in mind. In 2D, the light-�eld
of a 2D object is actually 2D rather, than the 3D that might be expected. See
Figure 1 for an illustration.
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Fig. 1. The object is conceptually placed within a circle. The angle to the viewpoint v

around the circle is measured by the angle �, and the direction that the viewing ray makes

with the radius of the circle is denoted �. For each pair of angles � and �, the radiance

of light reaching the viewpoint from the object is then denoted by L(�; �), the light-�eld.

Although the light-�eld of a 3D object is actually 4D, we will continue to use the 2D

notation of this �gure in this paper for ease of explanation.



2.1 Eigen Light-Fields

Suppose we are given a collection of light-�elds Li(�; �) of objects Oi (here faces
of di�erent subjects) where i = 1; : : : ; N . See Figure 1 for the de�nition of this
notation. If we perform an eigen-decomposition of these vectors using Principal
Component Analysis (PCA), we obtain d � N eigen light-�elds Ei(�; �) where
i = 1; : : : ; d. Then, assuming that the eigen-space of light-�elds is a good repre-
sentation of the set of light-�elds under consideration, we can approximate any
light-�eld L(�; �) as:

L(�; �) �

dX

i=1

�iEi(�; �) (1)

where �i = hL(�; �); Ei(�; �)i is the inner (or dot) product between L(�; �)
and Ei(�; �). This decomposition is analogous to that used in face and object
recognition [2, 11]; The mean light-�eld could also be estimated and subtracted
from all of the light-�elds.

Capturing the complete light-�eld of an object is a diÆcult task, primarily
because it requires a huge number of images [7, 12]. In most object recognition
scenarios it is unreasonable to expect more than a few images of the object;
often just one. However, any image of the object corresponds to a curve (for
3D objects, a surface) in the light-�eld. One way to look at this curve is as a
highly occluded light-�eld; only a very small part of the light-�eld is visible.
Can the eigen coeÆcients �i be estimated from this highly occluded view? Al-
though this may seem hopeless, consider that light-�elds are highly redundant,
especially for objects with simple re
ectance properties such as Lambertian. An
algorithm is presented in [8] to solve for the unknown �i for eigen-images. A
similar algorithm was implicitly used in [9]. Rather than using the inner product
�i = hL(�; �); Ei(�; �)i, Leonardis and Bischof [8] solve for �i as the least squares
solution of:

L(�; �)�

dX

i=1

�iEi(�; �) = 0 (2)

where there is one such equation for each pair of � and � that are un-occluded
in L(�; �). Assuming that L(�; �) lies completely within the eigen-space and that
enough pixels are un-occluded, then the solution of Equation (2) will be exactly
the same as that obtained using the inner product [13]. Since there are d un-
knowns (�1 : : : �d) in Equation (2), at least d un-occluded light-�eld pixels are
needed to over-constrain the problem, but more may be required due to linear
dependencies between the equations. In practice, 2� 3 times as many equations
as unknowns are typically required to get a reasonable solution [8]. Given an im-
age I(m;n), the following is then an algorithm for estimating the eigen light-�eld
coeÆcients �i:

1. For each pixel (m;n) in I(m;n) compute the corresponding light-�eld angles
�m;n and �m;n. (This step assumes that the camera intrinsics are known, as
well as the relative orientation of the camera to the object.)



2. Find the least-squares solution (for �1 : : : �d) to the set of equations:

I(m;n)�

dX

i=1

�iEi(�m;n; �m;n) = 0 (3)

where m and n range over their allowed values. (In general, the eigen light-
�elds Ei need to be interpolated to estimate Ei(�m;n; �m;n). Also, all of the
equations for which the pixel I(m;n) does not image the object should be
excluded from the computation.)

Although we have described this algorithm for a single image I(m;n), any num-
ber of images can obviously be used (so long as the camera intrinsics and relative
orientation to the object are known for each image). The extra pixels from the
other images are simply added in as additional constraints on the unknown co-
eÆcients �i in Equation (3). The algorithm can be used to estimate a light-�eld
from a collection of images. Once the light-�eld has been estimated, it can then
be used to render new images of the same object under di�erent poses. (See [14]
for a related algorithm.) In [13] we show that the algorithm correctly re-renders
a given object assuming a Lambertian re
ectance model.

2.2 Fisher Light-Fields

Suppose now we are given a set of light-�elds Li;j(�; �), i = 1; : : : ; N; j =
1; : : : ;M where each of N objects Oi is imaged under M di�erent illumination
conditions. We could proceed as described above and perform Principal Compo-
nent Analysis on the whole set of N �M light-�elds. An alternative approach
is Fisher's Linear Discriminant (FLD) [15], also known as Linear Discriminant
Analysis (LDA) [16], which uses the available class information to compute a
projection better suited for discrimination tasks. Analogous to the algorithm
above, we now �nd the least squares solution to the set of equations:

L(�; �) �
mX

i=1

�iWi(�; �) = 0 (4)

where Wi; i = 1; : : : ;m are the generalized eigenvectors computed by the LDA.
The extension of eigen light-�elds to Fisher light-�elds mirrors the step from
eigenfaces to Fisher-faces in face recognition as proposed in [4].

3 Face Recognition Across Pose and Illumination

We will evaluate our algorithm on a subset of the CMU PIE database [17]. In
the PIE database 68 subjects are imaged under 13 di�erent poses and 21 di�er-
ent illumination conditions (see Figure 2). Many of the illumination directions
introduce fairly subtle variations in appearance so we selected 12 of the 21 il-
lumination conditions which span the set of variation widely. In total we use
10,608 images in the experiments.
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Fig. 2. The pose and illumination variation in the PIE database [17].(a) The pose varies

from full right pro�le (c22) to full left pro�le (c34). (b) The illumination part shows 5 of

the 12 illumination conditions used in the experiments here.

3.1 Gallery, Probe, & Generic Training Data

There are 68 subjects in the PIE database. We randomly select N = 34 of these
subjects and use the images spanning all pose and illumination conditions as
generic training data to construct the Fisher light-�elds. Of the remaining 34
subjects, the images are divided into completely disjoint gallery and probe sets
based on the pose and illumination condition they are captured in.

We determined the x-y positions of both eyes (pupils) and the tip of the nose
in all 10,608 images we use in the experiments. Within each pose separately the
face images are normalized for rotation, translation, and scale. The face region
is then tightly cropped using the normalized feature point distances. See [13] for
more details of this step.

3.2 Constructing the Light-Field Subspace

Suppose Training � f1; 2; : : : ; 68g denotes the set of generic training sub-
jects, GalleryP and ProbeP are the gallery and probe poses and GalleryI and
ProbeI are the gallery and probe illumination conditions. Note that GalleryP \
ProbeP = � and GalleryI \ ProbeI = � holds. We then assemble the set of
images ITrain =

fIms;p;i j s 2 Training; p 2 GalleryP [ ProbeP ; i 2 GalleryI [ ProbeIg

The images are raster-scanned and concatenated. Between 7,000 and 14,000
pixels are extracted from each image depending on the pose. PCA and LDA is
performed on these 408 vectors (34 subjects under 12 illumination conditions)
to form the vectors Wi.

3.3 Processing the Gallery and Probe Images

Although the derivation in Section 2 is in terms of the entire light-�eld, the
results also clearly hold for any subset of rays (�; �) in the light-�eld.We therefore
do not need to densly sample the entire light-�eld to be able to use the algorithm.
For each Wi (i = 1; : : : ;m, the dimension of the light-�eld subspace) we extract
the elements corresponding to the gallery and probe images and form shorter
vectorsWG

i andWP
i . For each non-training subject id 62 Training we raster-scan

the set of images:

fImid;p;i j p 2 GalleryP ; i 2 GalleryIg; fImid;p;i j p 2 ProbeP ; i 2 ProbeIg



to form a set of vectors of the same length. We solve Equation (4) for these
shortened vectors resulting in �idi for the gallery images and �idi for the probe
images.

3.4 The Classi�cation Algorithm

In order to determine the closest gallery vector for each probe vector we perform
nearest neighbor classi�cation using the L2 and Mahalanobis distance metrics
on the PCA and the FLD subspaces. For each probe subject id we determine
idmin as

idmin = argmin
id�

d(�id; �id�); d 2 fdL2
; dMahalg (5)

If idmin = id the algorithm has correctly recognized the subject.

4 Experimental Results

We previously showed [13] that our algorithm outperforms eigenfaces [11] and
FaceIt, the commercial face recognition system from Visionics. In Figure 3(a) we
compare the recognition rate of the three algorithms for the gallery EG = f27g
(frontal view). On average our algorithm achieves a recognition accuracy of 73%
vs. 59% for FaceIt and 29% for eigenfaces. All images involved in the test were
recorded with the same constant illumination. We also showed in [13] that the
performance of our algorithm improves with the number of gallery images and
that the role of the gallery and probe sets are approximately interchangeable.
The average recognition accuracies are summarized in Table 1.

Table 1. Comparison of FaceIt, eigenfaces, eigen light-�elds and Fisher light-�elds over

all three conditions. Due to the time constraints given for the preparation of this paper,

complete FaceIt results are not presented. They will be made available at [18].

Condition FaceIt Eigenface Eigen LF Fisher LF

Varying pose, same illumination - 0.24 0.73 -

Varying pose, varying illumination 0.16 0.08 0.22 0.36

Same pose, varying illumination - 0.60 0.60 0.81

In Figure 3(b) we show a comparison between two light-�eld variants, FaceIt
and eigenfaces for the gallery EG = f27g with frontal illumination. Here the
recognition accuracies for the probe camera poses are obtained by averaging the
results of testing the gallery illumination condition against a set of probe illumi-
nation conditions. Overall the Fisher light-�eld performs better (47% accuracy)
than the eigen light-�eld (41% accuracy). The average accuracy for FaceIt is
38%. Eigenfaces perform poorly across most probe poses with an average accu-
racy of 6%. Figure 4 visualizes the di�erences in performance for eigenfaces and
two light-�eld variants across all possible gallery and probe illumination condi-
tions for the gallery EG = f27g (frontal view) and probe EP = f37g (3/4 view).
The eigen light-�eld performs well close to the diagonal of the confusion matrix,
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Fig. 3. (a) A comparison of our algorithm with eigenfaces [11] and FaceIt on the gallery

EG = f27g. The recognition rate of the eigen light-�elds and FaceIt is similar for the

cameras f05; 07; 09g closest to the gallery. For the pro�le views f02; 22; 25; 31; 34g our

algorithm outperforms FaceIt by far. (b) A comparison of two light-�eld variants with

FaceIt and eigenfaces across pose and illumination with gallery EG = f27g and frontal

gallery illumination. For each probe pose the accuracy is averaged over a set of probe

illumination conditions.

whereas the Fisher light-�eld performs well across a broader range of conditions.
Eigenfaces perform poorly in all tests. The average recognition accuracies are
summarized in Table 1.
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Fig. 4. Comparison of eigenfaces with two light-�eld variants across all illumination condi-

tions with gallery pose EG = f27g (frontal view) and probe pose EP = f37g (3/4 view).

The gallery illumination conditions are shown along the x-axis, the probe illumination con-

ditions along the y-axis.

In the case of identical gallery and probe poses, Fisher light-�elds are identi-
cal to Fisherfaces [4]. As a baseline experiment we compare the recognition ac-
curacies for identical gallery and probe poses across all illumination conditions.
The results in Table 1 show that Fisher light-�elds/Fisherfaces outperform eigen
light-�elds and eigenfaces by a large margin.

5 Discussion

In this paper we proposed an algorithm to recognize faces across pose and il-
lumination. We have simpli�ed this task in several ways: (1) the poses of the
cameras are known and �xed, (2) the locations of the eyes and the nose used to
extract the face region are marked by hand, and (3) the generic training data is
captured with the same cameras that are used to capture the gallery and probe
images. All of these factors make face recognition easier and are limitations on



the current algorithm. We are continuing to develop our algorithm to remove
these limitations, while retaining the desirable properties of the algorithm.

To address part (3) we recently conducted preliminary experiments using
PIE images as generic training data and FERET images as gallery and probe
images. Our algorithm achieves a recognition accuracy of 81:3%, which compares
very well to the performance of FaceIt over the same dataset (84:4%).
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