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Abstract—In team sports like soccer, utilising tracking data for analysis is challenging due to the dynamic and multi-agent nature of the
data. The biggest issue surrounds the changing of positions or “roles” between players on a frame-to-frame basis, which causes
misalignment of the data and makes it difficult to perform team analysis. In this paper, we present an unsupervised method to learn a
formation template which allows us to “align” the tracking data at the frame level. Not only does this approach give important contextual
information to facilitate large-scale analysis (e.g. we know when a player is in the left-wing position compared to left-back), it also yields
the team structure or “formation” which serves as a strong descriptor for identifying a team’s style. The utility of the approach is
demonstrated on a full season of player and ball tracking data from a professional soccer league consisting of over 21.5 million frames
of player tracking data.

Index Terms—Formation, team analysis, multi-agent, sports analytics, soccer, role, alignment, group behaviour, spatio-temporal data.
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1 INTRODUCTION

IN many professional team sports such as soccer, tracking
systems are providing large amounts of player and ball

tracking data for post-match analysis and reporting of statis-
tics. Despite this, large-scale mining of such data has been
limited due to the difficulty in representing dynamic multi-
agent trajectories. One of the main issues centres around
the lack of spatial alignment in the tracking data and this
is apparent when observing the long-term player distribu-
tions. In Fig. 1(a) the distribution of each player’s position
across half a match (45 mins) is shown, demonstrating how
the continuous interchanging of player positions results in
significant overlap in the distributions. Although the team
structure and role of each player is usually decided before a
match by the coach, the formation or structure executed can
differ a lot from the initial plan. Even after accounting for
translation variation as in Fig. 1(b), there is still overlap in
their spatial distributions, highlighting variations in players’
relative positions on a frame-to-frame basis. This misalign-
ment of the tracking data must be overcome to discover the
true structure of a team and to perform large-scale spatio-
temporal team analysis.

In this paper, we present a role-alignment method to
learn a team’s formation within a match directly from
player tracking data, based on the minimum entropy data
partitioning method [1], [2]. This disentangles players into
distinct roles (such as in Fig. 1(c)), providing a representa-
tion of the actual formation a team played over a match,
and brings spatial structure to tracking data to enable in-
dividual and team analysis to be performed. Compared to
existing analysis methods which simply plot locations of a
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Fig. 1. Player position swaps throughout a match cause misalignment
and high overlap in tracking data which needs to be overcome to perform
large scale-analysis. In (a), the mean and covariance of each player’s
position across half a match is shown. After normalising for translation
variation as in (b), there is still high overlap in the player distributions.
Using our role-assignment procedure, these overlapping distributions
can be disambiguated and the underlying structure or formation of the
team can be extracted and visualised as in (c). This formation provides
context for in-game analysis, giving the relative position or “role” of each
player at each frame of the match. Compared to the mean ball-touch
location which is often used in match analysis, our method provides
context as in (d), where Player H’s role during each ball touch has been
coloured relative to the discovered roles in (c), highlighting the distinct
roles of right-wing (green) and left-wing (cyan) which are missed when
simply taking the mean.

particular player for an event or their mean position over
time, our role-alignment method adds important contextual
information to player analysis with regards to their team-
mates. For example in soccer (see Fig. 1(d)), given we have
a player who starts on the right-wing but then switches
to the left wing, we get two distinct types of behaviours
(i.e. left and right wing play). Current analysis conducts
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the analysis based on his original position or “role” (right-
wing). Our approach provides a contextual label noting the
player’s role at that specific moment. The role-alignment
also enables visualisation of team structure and clustering
which can be used to find teams which play similarly, or
to find the different structures a team adopts in different
circumstances (e.g. a team may play one style at home and
another away, or one style against a top-team and another
against a bottom team). The utility of our approach is
demonstrated using a full season of player and ball tracking
data from a professional soccer league (> 400,000,000 data
points).

2 RELATED WORK

With the recent deployment of player tracking systems in
professional sports, a recent influx of research has been
conducted on how to use such data sources (See [3] for a
review of recent methods of spatio-temporal data analysis in
sports). Although all team sports are instantiations of multi-
agent trajectories, most current work using spatiotemporal
data has focussed on individual behaviours thus avoiding
the issue of alignment. Examples of this include work
done in basketball where individual shooting, rebounding
and decision-making characteristics are analysed [4], [5],
[6]. Miller et al. [7] used non-negative matrix factorisation
to characterise different types of shooters in basketball
by modelling shot attempts as a point-process. In soccer,
Lucey et al. [8], [9], detected a team’s style of play using
an occupancy map of team’s ball movement. Gudmunds-
son and Wolle [10] clustered the passes and movement of
individual players. Pena and Touchette [11] used network
theory to characterise team patterns by fixing players in
their nominal position and quantifying importance based
on the number of passes between players. In tennis, Wei
et al. [12], [13] used Hawk-Eye data to predict the type
and location of the next shot based on the behaviour of the
opponent.

In multi-agent domains, the common thread of aligning
trajectories has centred on using a predefined quantised
representation or codebook of the environment. The seminal
work of Intille and Bobick [14] used pre-aligned trajectories
to recognise a single American football play. Zhu et al. [15]
combined the movements of the players and the ball in
soccer into a single “aggregate trajectory” to classify goal
scoring events into categories. Jiang et al. [16] detect the
game state (attacking/defending) in soccer from broadcast
video using a finite state machine based on scene analysis.
Perse et al. [17] recognised activities in basketball by con-
verting player trajectories into a string of symbols based on
key player positions and actions using a quantised court.
Bricola [18] recognised activities in basketball from player
trajectories by segmented the trajectories into tracklets and
matching them to codewords using dynamic time warping.
Stracuzzi et al. [19] recognised group activities in Amer-
ican Football using a labelled dataset of actions and the
trajectories were labelled by matching them to the closest
in the labelled dataset. Dynamic time warping was used to
compare the signals and the features of each aligned point.
Atmosukarto et al. [20] used visual features consisting of the
spatial distribution of gradient intensity for the offensive

TABLE 1
Inventory of the soccer dataset used for this work.

Statistic Frequency

Teams 20
Matches 374
Frames 21.5M

Data Points 480M
Ball Events 981K

TABLE 2
List of events annotated throughout each match.

Pass Foul - Cross Catch
Direct FK Drop Save

Pass Foul - Cross Catch
Assist Indirect FK Assist Save

Corners Foul - Reception Punch
Penalty

Shot on Foul - Reception Punch
Target Throw-in Assist Save

Shot off Offside Reception Diving
Target Save
Goal Yellow Catch Diving

Card Save
Own Red Catch Drop of
Goal Card Drop Ball

Neutral Running Chance Substitution
Clear Save with Ball

Block Drop Pass Hold of
Kick Save Ball

Clearance Neutral Player Clearance
Uncontrolled Clearance Out

side of the line of scrimmage to classify offensive forma-
tions. Kim et al. [21] used motion fields to predict the future
location of the ball in soccer. Carr et al. [22] estimated the
centroid of team motion using real-time player detection
data to predict the future location of play for automatic
broadcasting purposes.

The initial idea of aligning player trajectories based on
role was proposed by Lucey et al., [23] who used a codebook
of manually labelled roles. This type of approach was used
to discover how teams achieved open three-point shots in
basketball [24]. Bialkowski et al. [25] also used a similar
approach to investigate the home advantage in soccer, and
Wei et al. [26] used it to cluster different methods of how
teams scored a goal. Although these works all align the
multi-agent data is some form, our work differs as we learn
this alignment directly from the data.

3 DATA: PLAYER TRACKING IN SOCCER

For this work, an entire season of soccer player tracking
data from Prozone [27] was utilised. The data consists of 20
teams who played home and away, totalling 38 matches for
each team or 380 matches overall. Six of these matches were
omitted due to missing data. The 20 teams are referred to
using arbitrary labels {A, B, . . . , T}. Each match consists
of two halves, with each half containing the (x, y) position of
every player at 10 frames-per-second. This results in over 1
million data-points per match, in addition to the 43 possible
annotated match events (e.g. passes, shots, crosses, tackles
etc.). Each of these events contains the time-stamp as well as
location and players involved. An inventory of the tracking
data is given in Table 1, and a list of events annotated in
each match is given in Table 2.
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4 DISCOVERING FORMATIONS FROM DATA

In team sports like soccer, there is an inherent global struc-
ture that a team adheres to termed a formation. This is
effectively a strategic concept which defines how a team
distributes its players across the field in an aim to maximise
their chances of winning. A formation is usually labelled
in terms of defensive, midfield and attacking lines (e.g. a
4-4-2 formation has four defenders, four midfielders and
two strikers) and even though the formation is usually
decided before a match by the team coach, players can
actively change roles during a match and how the formation
is played can differ a lot from the initial plan. Detecting
the played formation gives useful insight into the strategy
adopted by the team and provides a template to align player
tracking data, enabling clustering and role-based player
analysis.

Given all the player tracking data across a season, our
aim is to automatically find the formation that characterises
how each team played in each match-half. Mathematically,
a formation, F , can be defined as an arbitrarily ordered set
of N roles, {R1, R2, . . . , RN}, which describes the spatial
arrangement of N players. In this work, a “heat-map”
approach in which each role is represented by a probability
density function of expected location is used.

Estimating the underlying formation the team played
over a match-half from player tracking data D, is equivalent
to finding the most probable set F∗ of 2D probability
density functions,

F∗ = argmax
F

P (F|D). (1)

To begin, the 2D probability density function P (X = x)
which models the tracking data D is considered. In other
words, P (x) represents the heat-map for an entire team.
The heat-map of the entire team can be modelled as a linear
combination of the heat maps for each role,

P (x) =

N∑

n=1

P (x|n)P (n) (2)

=
1

N

N∑

n=1

Pn(x).

Strategically, a team needs to spread out its players so
that the entire field is adequately covered. As a result, the
probability density functions of each role should exhibit
minimal overlap with one another. Equivalently, each role
probability density function should exhibit minimal overlap
with the team’s probability density function. Following
the ideas of minimum entropy data partitioning [1], [2],
Kullback-Lieber divergence can be employed to measure the
overlap between two probability functions P (x) and Q(x),

KL(P (x)‖Q(x)) =

∫
P (x) log

(P (x)

Q(x)

)
dx. (3)

Since divergence is a strictly positive quantity (and
completely overlapping probability density functions have
zero divergence), a penalty Vn is employed based on the
negative divergence value between the heat map Pn(x) of
an individual role and that of the team P (x),

Vn = −KL
(
Pn(x)‖P (x)

)
. (4)

Computing the optimal formation F∗ is equivalent to
determining the optimal set F∗ = {P1(x), . . . , PN (x)}∗ of
per-role probability density functions Pn(x) that minimise
the total overlap,

F∗ = argmin
F

V. (5)

Substituting the expressions for KL divergence into the
total overlap cost illustrates the dependence on each role-
specific 2D probability density function

V =

N∑

n=1

P (n)
(
−KL

(
Pn(x)‖P (x)

))
(6)

= −
N∑

n=1

P (n)

∫
Pn(x) log

(Pn(x)

P (x)

)
dx (7)

= −
N∑

n=1

P (n)

∫
P (x|n) logP (x|n)dx

+

N∑

n=1

P (n)

∫
P (x|n) logP (x)dx. (8)

The expression for V is drastically simplified when put
in terms of entropy

H(x) = −
∫ +∞

−∞
P (x) log(P (x))dx. (9)

The total overlap cost, in terms of entropy, becomes

V = −H(x) +

N∑

n=1

P (n)H(x|n) (10)

= −H(x) +
1

N

N∑

n=1

H(x|n). (11)

Substituting Equation 11 into Equation 5 and ignoring
the constant term H(x), the optimal formation is the set of
role-specific probability density functions that minimise the
total entropy

F∗ = argmin
F

N∑

n=1

H(x|n). (12)

4.1 Procedure
As there is no way to solve this problem efficiently, an
approximate solution can be achieved using the expectation
maximisation (EM) algorithm [28]. The proposed procedure
is similar to k-means clustering except with the constraint
that at each frame, each player must be assigned to a
unique role. Instead of assigning each data point to its
closest cluster, the linear assignment cost of assigning roles
to players is minimised per frame, to ensure a one-to-one
assignment of roles to players.

The procedure is visually presented in Fig. 2. Firstly,
the data is normalised so that teams are attacking from
left to right and the effects of translation are negated by
normalising the tracking data to have zero mean in each
frame. This results in a formation being represented as
the spatial distribution of each role relative to the team’s
centroid. The scale is not normalised as this can provide
important information about the strategy of a team. The
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(a) Initial Roles (b) Iteration 1 (c) Iteration 2 ... (d) Final Roles

Fig. 2. Example of the role discovery procedure, displaying the role distributions (Pn(x)) at each iteration, drawn relative to the team centroid in the
centre of each bounding box. Each colour/number combination represents a role distribution, and these are drawn as heat-maps in the top row and
as 2D Gaussians (showing mean and covariance in position) in the bottom row. The initial role distributions (a), are calculated by assuming each
player is assigned a single role over all frames and taking their distribution over the half. Taking (a) as the template, each frame is assigned to these
roles and the updated distributions are shown in (b). This is then used as the template for the next iteration and the procedure is repeated until
convergence, resulting in well separated role distributions as in (d), which appears to be a 4-4-2 formation (four defenders, four midfielders and two
attackers). The data is drawn with the team attacking left to right.

initial formation is set by arbitrarily assigning each player
a unique role label at the start of the match and main-
taining these roles throughout the entire duration of the
tracking data. Even though there is overlap between the
distributions of some players, this provides a reasonable
estimate of the formation as players tend to play one role
for the majority of the time. An example of the initial
occupancy maps for each role are shown in Fig. 2 (a). Role
labels are then assigned to the players at each frame of the
tracking data by formulating a cost matrix based on the log
probability of each position being assigned a particular role
label. The Hungarian algorithm [29] is used to compute the
optimal assignment of role labels at each frame based on
the current formation template. Once role labels have been
assigned to all frames of the tracking data, the probability
density functions of each role are recomputed, giving an
updated formation template. The process is repeated until
convergence, resulting in well separated probability density
functions as in Fig. 2 (d). In this way, each player is assigned
to a role at each frame of the tracking data and the role
probability distributions (Pn(x)) are discovered, providing
the formation that the team played over the match-half.

5 VISUALISING AND CLUSTERING TEAM FORMA-
TIONS

The proposed formation discovery procedure was per-
formed for each team and match-half of the dataset in
Table 1 excluding formations where players were sent off,
resulting in the detection of 1411 formations. Each formation
consists of a set of ten distinct role probability distributions,
representing the structural arrangement of the team over a
match-half.

The formations for each of the 20 teams (A-T) for every
match-half are shown in Fig. 3 (a). As can be seen in this
figure, most of the teams tend to play the same formation
across the season with only a slight variation occurring in

some of the positions. For example, only teams B and T seem
to have some variation across the course of a season, while
others like teams A, F, P and R only have a minor change in
the midfield (i.e. one holding midfielder vs two, or playing
with one striker vs two). Other than that, most teams tend
to be rather staunch in what they play. The most dominant
formation appears to be a 4-4-2, with some teams varying
the midfield as described above. Only one team appeared to
play with three defenders (team T).

The aligned data also enables the visualisation of for-
mations in different game states such as attacking and
defending as in Fig. 3 (b). It can be seen that teams tend to
keep similar structures in attacking and defending, but there
is an evident spreading of the team in attacking compared
to defending across all teams. We do not normalise for scale
so that we are able to see such tactical variations.

5.1 Short-Term Formations
In addition to representing the long-term behaviour of
the team in terms of formation or team structure, the
role-aligned player tracking data can be visualised over
shorter durations, to dynamically represent how a team
plays throughout a match. Compared to existing statistics
which only contain sparse team information (e.g. # corners,
# shots, % possession), the proposed approach can represent
the spatio-temporal characteristics of the match in terms of
formations and position. One of the statistics which broad-
casters present during a live-broadcast is the possession
duration of both teams over the past 5 minutes which gives
an indication of which team is dominating. While this is
insightful, it does not give any information about where this
is happening. Using a sliding window of 5 minutes on the
role assigned player positions, the play progression can be
visualised in terms of team formations using 2D Gaussians
to represent the role distributions over the time window. A
film-strip of this approach is shown in Fig. 4.
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(a) Formations computed from the whole match-half (b) Formations computed during attacking and defending

Fig. 3. The formations for every match-half within the season, organised by team (labelled A to T). Figure (a) represents formations computed
over the whole match-half with colours representing different roles and (b) was computed for when the team was attacking (green) and defending
(purple) based on ball possession. The formations are drawn so that teams are attacking from left to right. For clarity of visualisation, only the mean
for each role for each match is shown instead of displaying the full distribution.
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Fig. 4. Film strip representing a 45 min match-half in terms of formation
(with the home team in red attacking from left to right, and circles on
the timeline indicating goals). Using a sliding window of 5 mins, the
progression of the match in terms of team structure and location on
the field can be seen. (a) During a neutral portion of the game, it can be
seen that both teams are playing a 4-2-3-1 formation. (b) Next, the red
team can be seen to make an attack by spreading out and advancing its
players forward. (c) Before the blue team scores, the centre midfielder
(role 9) moves forward to aid in the attack. (d) In the final example, the
red team scores, with the whole team positioned close to the goal.

5.2 Within-Match Formation Variations

The proposed procedure finds the formation that best de-
scribes the whole match-half’s tracking data. This provides
a single formation template to provide a consistent spatial
ordering of the player tracking data across the match-half.
Given the fluid nature of team sports, the position of play-
ers and their formation will vary continuously throughout
a match. Detecting specific formations is challenging due
to the unsupervised nature of our approach (there aren’t
pre-computed templates for different types of formations).
We propose two approaches to detect formation variations
within a match: 1) clustering the role-aligned player po-
sitions and 2) calculating the distance of each frame to a
template.

We define the mean formation, F∗, as the mean (x, y)
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Fig. 5. Detecting variation in formation within a match. (a) The team’s
x-centroid (positive values indicate closer proximity to the opponent’s
goal), (b) The distance between the player tracking data at each frame
relative to the mean formation indicating deviations from the team’s
mean formation, (c) The assigned role clusters at each frame relative
to (d), the within-match-half formation clusters.

location of each role distribution in the formation template,

F∗ =
[
P1(x), P2(x), . . . , PN (x)

]T
,

= [(x1, y1), (x2, y2), . . . , (x10, yN )]T .
(13)

Since the tracking data is aligned to the formation, sim-
ilarities between different frames of the tracking data (xt)
can be gauged using standard distance functions such as
the mean Euclidean distance between corresponding roles,

d(xt1 ,xt2) =
1

N

N∑

n=1

‖xt1(n)− xt2(n)‖2 . (14)

An example of detecting formation variations within
a match using the two approaches is shown in Fig. 5.
We used k-means clustering on the role-ordered tracking
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data to detect four formation clusters within the match.
Note that because formations are continuously changing
and differences in formation are subjective, 4 clusters were
chosen arbitrarily with k-means clustering as a proof-of-
concept. We also show the deviation of each frame relative
to the mean formation. Interestingly, deviations in formation
coincide with close proximity to either team’s goals, and
especially when rapidly moving from one side of the field to
the other. It can be seen that when the team moves forward
to attack, the formation often changes to a more attacking
formation with players moving from the defensive to the
attacking line in what appears to be a 2-4-4 formation.

5.3 Clustering Team Formations

To get an indication of the types of formations used by
teams across the league, agglomerative clustering was em-
ployed on the formations. In agglomerative clustering, each
observation starts in its own cluster and pairs of clusters
are merged based on distance, forming a cluster hierarchy.
The Earth Mover’s Distance (EMD) [30] was used to com-
pute the distance between corresponding role probability
densities, and the distance between formations was calcu-
lated as the sum of the distances between corresponding
roles. Agglomerative clustering was chosen as it provides a
flexible and non-parametric approach to discover the types
of formations used across the dataset. Different clustering
thresholds of the hierarchy can be observed, and a cut-
off of six clusters is shown in Fig. 6, with the mean role
positions of each formation assigned to the cluster overlaid
over one another. Six clusters were chosen as this allows the
coarse categories of formations to be visualised. Segregating
further resulted in clusters that look very similar, while a
smaller number had too much variation within the clusters.
It can be seen that clustering resulted in the discovery of
distinct formation classes - e.g. Cluster 2 and 3 have only
one striker in the front, Cluster 1 and 5 have two strikers,
while Cluster 4 and 6 appear to have three. Cluster 4 is
the only cluster with three defenders at the back with the
remainder all having four.

By observing the clustering assignment frequency (top
right of each cluster in Fig. 6), we can see which formations
are more commonly adopted by teams. Cluster 1, which
appears to be a 4-4-2, is the most common formation with
approximately 54.11% of formations being assigned to this
cluster, followed by Cluster 2 (22.30%), which appears to be
a 4-2-3-1. This gives insight into the strategies adopted by
teams (e.g. having 2 strikers instead of 1 may be considered
a more attacking strategy).

To evaluate the clustering results, the cluster groups
were quantitatively comparing against ground truth forma-
tion labels. The ground truth labels were annotated by a
soccer expert who annotated the most frequently observed
formation for each match-half and each team according
to the arrangement of players in defensive, midfield and
attacking lines (4-4-2, 4-2-3-1, 4-3-3, 3-4-3, 4-1-4-1, or ‘other’
where the team either did not display a dominant formation
or was not one of the given labels). To evaluate the results,
the label of each cluster was estimated as the most frequent
ground truth label within the cluster and the results are
presented as a confusion matrix in Fig. 7.

54.11%

5.80% 3.38% 0.97%

13.45%22.30%Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6

Fig. 6. Clustering results across the league of data, showing the group-
ing of the mean formations from every match-half into six clusters. Each
of the ≈1400 formations is drawn in its corresponding cluster and the
median of each cluster is overlaid in black. Each dot point represents
the mean role position of a formation, with each role assigned a different
colour. The percentages refer to the proportion of examples assigned to
each cluster, giving an indication of which formation types are favoured
by teams across the league. A preference for what appears to be a 4-4-2
formation is apparent with 54% of the data belonging to this cluster. All
formations are normalised so that the team is attacking from left to right.
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Fig. 7. Formation clustering results presented as a confusion matrix,
showing the proportion of each cluster belonging to each ground truth
formation label.

It can be seen from Fig. 7 that the discovered formation
clusters match the ground truth annotations well, with
high within-cluster label agreement and an overall correct
classification rate of 75.33%. The most confusion is in Cluster
5 often being classified as a 4-4-2 and 4-3-3. On visual inspec-
tion of the misclassified examples, sometimes the formation
appears in between two clusters, e.g. there is some confusion
between the 4-4-2 and 4-2-3-1 formations when the second
striker is positioned slightly behind the other.

5.4 Individual Player Analysis

Compared to existing analysis which often only looks at the
mean behaviours of each player, the role assignment method
dynamically assigns players to roles throughout a match
and therefore allows the different characteristic behaviours
of each player to be analysed and visualised (either across
time as in Fig. 8 or by ball event as in Fig. 9).

An example of the roles of each player over a match-half
relative to the discovered formation are shown in Fig. 8.
This example highlights how frequently players alternate
positions throughout a match and how versatile they are
within the formation. In plot (b) it can be seen that role
swaps on a frame-to-frame basis are very frequent. Plot (c)
represents a 1 min smoothed version of the role assignments
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LB

CB

RB

RW

LCM

RCM

LW

RF

LF

CM

(a) (b) (c)

Fig. 8. The behaviour of a team over half a match is shown, demonstrating: (a) Their overall formation found using the proposed formation discovery
procedure (with roles represented as 2D Gaussians). (b) A timeline showing the role assigned to each player at each frame, coloured by role.
(c) A 1 min smoothed version of the role assignments (ignores temporary role swaps).The roles are labelled as {left-back(LB), centre-back(CB),
right-back(RB), left-centre-midfield(LCM), right-centre-midfield(RCM), centre-midfield(CM), left wing(LW), right-wing(RW), left-forward(LF), right-
forward(RF)}

(to ignore temporary role swaps) and shows the dominant
roles taken by each player. From this, it can be seen that
there are longer-term formation swaps especially between
the two forwards (player 8 and 9) who alternate positions
throughout the match, and there is also a large change in
roles around the 32nd minute, perhaps indicating a last
minute strategic variation.

Roles can also be used to provide context in analysing
player events throughout a match. That is, we can know
what position a player was relative to their team mates for
every action they performed. In Fig. 9, all the ball events
within a match-half are displayed, segmented by player
identity and coloured by their role at the time of each
event. On the left are the events for the team attacking
left to right, and their opposition is shown on the right of
the figure. The capital letter indicates the mean ball touch
location for that player. For Team X (on the left), interesting
behaviour can be observed for the players playing left wing
and right wing who swap roles for part of the match and
the role representation is able to detect these characteristic
behaviours (coloured in green and cyan). If the mean of each
player’s actions were simply taken, this important tactical
variation would be missed. The variability in roles can also
be observed for each player (e.g. Team Y has much more
variability in the roles that each player adopts compared to
Team X).

6 PREDICTING TEAM IDENTITY

To determine how to best represent the playing style and
characteristics of a team, a series of team identity exper-
iments were conducted on the full season of soccer data
described in Section 3. The challenge was, given only player
tracking data and ball events, how can the identity of each team
best be predicted? To do this, three types of match descriptors
which describe team behaviour were generated: 1) match
statistics, 2) ball occupancy, and 3) team formation, as shown
in Fig. 10

6.1 Match Descriptors

Match Statistics: During a match, various statistics that
capture team and individual behaviour are annotated. Ta-
ble 2 lists the statistics annotated in our dataset. While the
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(c) Events for each player, Team X (→) (d) Events for each player, Team Y (←)

Fig. 9. Role-context player analysis for two opposing teams, Team X
(attacking→) and Team Y (attacking←). After discovering the formation
for team X and Y, shown in (a) and (b) respectively, the ball events for
each player across the match can be analysed using role context. In the
bottom row, each field represents a player and the position of all their
ball touches throughout the match. The colour of the dots indicates their
role at the time of the event relative to the team’s formation shown in the
top of the figure. Rather than just knowing where a player touched the
ball, we know where the player was relative to their teammates which
provides important contextual information.

number of these match statistics is quite large, the majority
are quite sparse with only a couple of these events labelled
per match. A few of the most important match statistics is
what is traditionally reported in summarisation of matches
(i.e. goals, shots on target, shots off target, passes, corners,
yellow and red-cards). In the match statistics descriptor for
this analysis, we compute the frequency counts of each
match statistic to represent team behaviour as a vector.

Ball Occupancy: Associated with the match statis-
tics/events are the time and location for each occurrence.
To form a representation of this information, the approach
used in [8], [9] was adopted which consists of estimating
the continuous ball trajectory at each time-stamp by linearly
interpolated between events, as well as which team had
possession (ignoring stoppages). The field is then split into a
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Team ID

A B C D E F G H I J K L M N O P Q R S T

{Statistics
Shots (on goal) 12(4)

Fouls 11

Corner kicks 8

Offsides 4

Time of possession 62%

Yellow cards 1

Red cards 0

Saves 3

Formation
Game716, T1, GT Label = 4−1−4−1

1
2

3
4

5
6

7

8

9

10

Ball occupancy
M185 T1 − Occupancy map

Fig. 10. Based solely on match statistics, ball movement patterns, and
the formation descriptor, the identity of a soccer team can be predicted
with high accuracy.

10× 8 spatial grid and ball occupancy of each of these grids
for each team were calculated (i.e. a vector of how often
the team was in possession of the ball in each location over
the match). A visualisation of a ball occupancy example is
shown in Fig. 10 (centre).

Formation Descriptor: For each match-half, the forma-
tion descriptor F∗ was found from the player tracking data
using the method described in Section 4.1. This gives an
M × N matrix where M refers to the number of cells in
the field and N is the number of roles (set to 10, as the
goal-keeper was omitted, as well as games which had a
player sent off). A depiction of the formation descriptors for
each team for all match-halves was presented in Fig. 3. As
teams are rather rigid in the way they play across a season,
it suggests that this is a useful feature in discriminating
between different teams. Another interesting point is, as
teams vary little in terms of playing style throughout the
season, this could be used as a powerful prior for preparing
against an opposition in upcoming matches.

6.2 Team Identity Experiments
The team identity experiments were performed using a
“leave-one-match-out” cross-validation strategy where one
match was left out to test against, and the remaining
matches were used as the train set. The block-diagram in
Fig. 11 summarises the procedure. Firstly, the three de-
scriptors described above were generated and the features
were linearly scaled to be in the range [0, 1]. To obtain a
compact but discriminative representation, linear discrim-
inant analysis (LDA) was used. LDA was selected as it
explicitly models the difference between classes and helps
to determine the distinguishing features of a team. The
transformation matrix W was learnt from the training set
using the team identity as the class labels (i.e. C = 20).
Then at testing time, the features were multiplied by WT

to yield a lower dimensionality discriminant feature vector
of dimensionality C − 1. To predict the identity label of
the teams in the test match, a k-nearest-neighbour classifier
was used with the Euclidean norm as the distance metric.
A neighbourhood of k = 10 was chosen as this provided
the best results for most descriptors, however, the order
in performance of the different descriptors was consistent
across various k.

The results for each descriptor is shown in Fig. 12. In the
first experiment (Fig. 12(a)), it can be seen that using only

Get Match Descriptor Scale Data LDA Predict Team 
Identity

Learn LDA Transform

W = arg max
W

Tr

✓
W⌃bW

W⌃wW

◆

WT
LDAXscaleXscaleX

Train

Fig. 11. Block diagram for learning the discriminative feature vector and
predicting team identity. Given a match descriptor, the data is first scaled
then multiplied by WT , found using LDA, to yield a discriminative feature
vector. The LDA matrix is learnt using the team identity labels and their
match descriptors in the training set. Team identity is then predicted
using k-NN.

match statistics is a poor indication of team identity with an
overall accuracy of 17% (chance is 5%). This is expected as
match statistics only contain coarse event information with-
out any spatial or temporal information about the ball or the
players. Using ball occupancy gives marginally improved
performance over match statistics with an accuracy of 19%
(Fig. 12(b)). This is well below the 33% obtained in previous
works [8], [9]. A possible explanation of the performance
difference could be due to the coarse estimation of the
possession strings and the ball occupancy maps from the
event data.

The most impressive performance by far is the formation
descriptor which obtains over 67% accuracy, showing that
teams have an underlying signal which can be encapsulated
in the formation descriptor (Fig. 12(c)). While it may be
obvious that using spatio-temporal data to quantify a team
should be much better than using match statistics or ball
occupancy information, this is not possible without align-
ment of the data, and no existing representations exist for
summarising team’s formations over matches other than
simply mean player positions which doesn’t reflect the true
structure. Our role-alignment enables the spatio-temporal
data to be utilised in this way. Combined the descriptors by
concatenating all the scaled features further improves the
performance to over 70% which shows there is complimen-
tary information within the other descriptors.

6.3 Team Behaviour Across the Season

The high classification rate of 70% indicates that teams do
have a characteristic “style” or match behaviour, and the
given match features provide useful information for com-
paring and characterising teams. Here, we explore how we
can use this information to observe the similarities between
different teams and the variation of each team across the
season.

Given a set of team behaviour descriptors, a discrete
set of styles (match behaviours) can be observed using
k-means clustering. We cluster the lower dimensionality
feature vectors of each match (computed used LDA as in
the team identity experiments) and the variation in style for
each team using k = 5 clusters is shown in Fig. 13. Team T
stands out, being in a style cluster of its own, which could
be explained by the distinctly different formation from all
other teams, with 3 defenders at the back (as was observed
in Fig. 3). Most teams play a single style, while teams E
and R vary their playing styles more frequently than other



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2016 9

Confusion matrix 20−NN, using LDA (CCR = 17.13%)
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Fig. 12. Team identity results for the various descriptors: (a) match statistics, (b) ball occupancy, (c) formation descriptor and (d) fused all descriptors.
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Fig. 13. Shows the variation in style each team has across a season
when 5 style clusters are used. Each coloured block represents the for-
mation style the team played for a match half and they are concatenated
chronologically, excluding match halves that were missing data or had a
player sent off (i.e. < 10 field players).

teams. Knowing what behaviour a team adopts in different
situations can be useful in preparing for upcoming matches.

7 SUMMARY

In this paper, a formation descriptor was proposed to align
multi-agent data and discover team structures automatically
from data. This was done by minimising the entropy of
a set of player role distributions, disentangling the player
tracking data into distinct role distributions to allow the
discovery of the underlying team structure. This was effi-
ciently solved using an expectation maximisation approach
that simultaneously assigns players to roles throughout a
match, and discovers the team’s overall formation (set of
role distributions). The proposed approach is completely
unsupervised, and learns the spatial structure of a team
directly from data. The role-alignment provides a consistent
spatial ordering across the tracking data to enable a host of
new group behaviour analysis tasks to be performed such as
formation visualisation, large-scale formation clustering and
role-based player analysis. It was shown that the method
can visually summarise a game, giving an indication of
dominance and tactics. Additionally, the formation descrip-
tor was shown to represent the characteristic style of teams
significantly better (3 times more) than other match descrip-
tors typically used to describe team behaviour. The utility

of the approach was demonstrated in performing large-
scale individual and team analysis using a full season of
data from men’s professional soccer, consisting of over 21.5
million frames of player tracking data, spanning 20 teams
and 374 matches.
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