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Representing Team Behaviours from Noisy
Data Using Player Role

Alina Bialkowski, Patrick Lucey, Peter Carr, Sridha Sridharan
and Iain Matthews

Abstract Due to their unobtrusive nature, vision-based approaches to tracking
sports players have been preferred over wearable sensors as they do not require the
players to be instrumented for each match. Unfortunately however, due to the heavy
occlusion between players, variation in resolution and pose, in addition to fluctuat-
ing illumination conditions, tracking players continuously is still an unsolved vision
problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and
false player detections) is problematic as it generates discontinuities in the input
data stream. One method of circumventing this issue is to use an occupancy map,
where the field is discretised into a series of zones and a count of player detections
in each zone is obtained. A series of frames can then be concatenated to represent a
set-play or example of team behaviour. A problem with this approach though is that
the compressibility is low (i.e. the variability in the feature space is incredibly high).
In this paper, we propose the use of a bilinear spatiotemporal basis model using a role
representation to clean-up the noisy detections which operates in a low-dimensional
space. To evaluate our approach, we used a fully instrumented field-hockey pitch
with 8 fixed high-definition (HD) cameras and evaluated our approach on approxi-
mately 200,000 frames of data from a state-of-the-art real-time player detector and
compare it to manually labeled data.
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12.1 Introduction

As the sophistication of analysis increases in professional sport, more organisations
are looking at using player tracking data to obtain an advantage over their competi-
tors. For sports like field-hockey, the dynamic and continuous nature makes analysis
extremely challenging as game-events are not segmented into discrete plays, the
speed of play is very quick (e.g. the ball can move at 125 km/h), and the size of the
field is very large, with each player free to occupy any area at any time. A com-
mon approach to this problem is to use each player’s x, y position in every frame
to recognise team events [19, 20, 23]. However, as reliably tracking players in this
environment over relatively long periods of time (i.e. >1 min) remains an unsolved
computer vision problem, often large amounts of tracking data contains “holes” or
“gaps” making analysis very difficult.

For tasks such as automatic event annotation (e.g. goals, corners, free-kicks),
representations that describe the global pattern of team behaviours such as team-
centroids or occupancy can be utilised on noisy detections. While these macroscopic
representations can pick up on the global patterns, specific information such as indi-
vidual player behaviours may be ignored which could be important for more specific
events or retrieval tasks. As such, amicroscopic representation (i.e. continuous tracks
of each player) is preferred but this requires human intervention for long tracks. An
example of this is shown in Fig. 12.1.

As player motion and position (i.e. proximity to teammates and opponents) is
heavily linked to game-context and where the action on the field is taking place,
these contextual features can be used to fill in the gaps of missed tracks caused by
missed or false detections. In team sports, an important contextual feature is char-
acterised by a formation: a coarse spatial structure which the players maintain over
the course of the match. Additionally, player movements are governed by physical
limits, such as acceleration, which makes trajectories smooth over time. These two
observations suggest significant correlation (and therefore redundancy) in the spa-
tiotemporal signal of player movement data. A core contribution of this work is to
recover a low-dimensional approximation for a time series of player locations. The
compact representation is critical for understanding team behaviour. First, it enables
the recovery of a true underlying signal from a set of noisy detections. Second, it
allows for efficient clustering and retrieval of game events.

A key insight of this work is that even perfect tracking data is not sufficient for
understanding team behaviour, and an appropriate representation is necessary. A for-
mation implicitly defines a set of roles or individual responsibilities which are then
distributed amongst the players by the captain or coach. In dynamic games like field
hockey, it may be opportunistic for players to swap roles (either temporarily or perma-
nently). As a result, when analysing the strategy of a particular game situation, players
are typically identified by the role they are currently playing and not necessarily by
an individualistic attribute like name. In this paper, we present a role representa-
tion which provides a more compact representation compared to player identity, and
allows us to use subspace methods such as the bilinear spatiotemporal basis model [3]
to “denoise” noisy detections (which is common from a vision system).
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Fig. 12.1 (Top) Detecting and tracking players over long-periods of time is challenging and often
results in missed detections (highlighted in red) and false detections. (Bottom) In this paper, we
evaluate two representations which are robust to false and missed detections: (1) an occupancy map
(left), which is formed by quantising the field into discrete areas, and (2) a bilinear spatiotemporal
model, which can be used to estimate continuous player tracks (right) from detection data and
compactly represent spatiotemporal patterns

To enable this research we used player detection data captured via 8 fixed high-
definition (HD) cameras, across seven complete field-hockey matches (over 8 h of
match data for each camera). We utilise a state-of-the-art real-time player detector [9]
to give player positions at every frame, affiliate detection results into teams using
a colour histogram model, and then compare two approaches for representing the
team behaviours: an occupancy map representation and a bilinear spatiotemporal
basis model, which models the movement of players by role.

12.2 Related Work

Due to the host of military, surveillance and sport applications, research into
recognising group behaviour has recently increased dramatically. Outside of the
sports realm, most of this work has focussed on dynamic groups, where individual
agents can leave and join groups over the period of observation. An initial approach
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was to recognise the activities of individual agents and then combine these to infer
group activities [5]. Sukthankar and Sycara [33, 34] recognised group activities as
a whole but pruned the size of possible activities by using temporal ordering con-
straints and agent resource dependencies. Sadilek and Kautz [30] used GPS locations
of multiple agents in a “capture the flag” game to recognise low-level activities such
as approaching and being at the same location. All of these works assume that the
position and movements of all agents are known, and that all behaviours can be
mapped to an activity within the library. Recently, Zhang et al. [37] used a “bag of
words” and Support Vector Machine (SVM) approach to recognise group activities
on the Mock Prison dataset [10].

Sports related research mostly centres on low-level activity detection with the
majority conducted on American Football. In the seminal work by Intille and
Bobick [18], they recognised a single football play pCurl51, using a Bayesian net-
work to model the interactions between the players trajectories. Li et al. [24], mod-
elled and classified five offensive football plays (dropback, combo dropback, middle
run, left run, right run). Siddiquie et al. [31], performed automated experiments to
classify seven offensive football plays using a shape (HoG) and motion (HoF) based
spatio-temporal features. Instead of recognising football plays, Li and Chellapa [23]
used a spatio-temporal driving force model to segment the two groups/teams using
their trajectories. Researchers at Oregon State University have also done substantial
research in the football space [15, 16, 32] with the goal of automatically detecting
offensive plays from a raw video source and transferring this knowledge to a simula-
tor. For soccer, Kim et al. [20] used the global motion of all players in a soccer match
to predict where the play will evolve in the short-term. Beetz et al. [6] developed
the automated sport game models (ASPOGAMO) system which can automatically
track player and ball positions via a vision system. Using soccer as an example, the
system was used to create a heat-map of player positions (i.e. which area of the field
did a player mostly spend time in) and also has the capability of clustering passes
into low-level classes (i.e. long, short etc.), although no thorough analysis was con-
ducted due to a lack of data. In basketball, Perse et al. [28] used trajectories of player
movement to recognise three type of team offensive patterns. Morariu and Davis [27]
integrated interval-based temporal reasoning with probabilistic logical inference to
recognise events in one-on-one basketball. Hervieu and Bouthemy [14] also used
player trajectories to recognise low-level team activities using a hierarchical parallel
semi-Markov model.

It is worth noting that an enormous amount of research interest has used broadcast
sports footage for video summarisation in addition to action, activity and highlight
detection [6, 12, 13, 17, 22, 25, 26, 36], but given that these approaches are not
automatic (i.e. the broadcast footage is generated by humans) and that the telecasted
view captures only a portion of the field, analysing groups has been impossible
because some individuals are normally out of frame. Although similar in spirit to the
research mentioned above, our work differs as: (1) we rely only on player detections
rather than tracking, and (2) we compare across many matches.
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12.3 Detection Data

12.3.1 Field-Hockey Test-Bed

In this work, we investigate the behaviours of several international field-hockey teams
from player tracking data. To enable this research, we recorded video footage from
a recent field-hockey tournament using eight stationary HD cameras which provide
complete coverage of the 91.4 × 55.0 m playing surface, as displayed in Fig. 12.2.

12.3.2 Player Detection and Team Affiliation

For each camera, player image patches are extracted using a real-time person
detector [9], which detects players by interpreting background subtraction results
in terms of 3D geometry, where players are coarsely modelled as cylinders of height
1.8 m. This equates to 40–100 pixels height in the image depending on the distance

Fig. 12.2 View of the field-hockey pitch from the 8 fixed HD cameras
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Fig. 12.3 a We detect players using a real-time person detector, and b represent the colours of each
image patch using histograms of the foreground pixels in LAB colour space. c An image patch is
then assigned to the closer of the two team histogram models (or “other” if the distance to each
model exceeds a threshold)

from the camera, so for scale invariance, we normalise the image patches to a fixed
size of 90 × 45 pixels. The image patches are then classified into teams using colour
histograms of the foreground pixels, as illustrated in Fig. 12.3. The LAB colour space
is used for representing the colours of each image patch, ignoring the luminance chan-
nel as it is affected by illumination changes. Nine bins are used for each dimension,
and the histograms are normalised to sum to one.

Models for the two teams are learnt using k-means clustering from a training
set of approximately 4,000 training histograms, and the Bhattacharyya coefficient is
used as the comparison metric. A detected image patch is then classified to the closer
of the two team models, or if it falls outside a threshold, it is classified as “others”
(i.e. noise, referees, goalies). In our dataset, teams wear contrasting colours, so colour
histograms are sufficient for distinguishing between the two teams. Detections from
the eight cameras are then aggregated by projecting the player positions to field co-
ordinates using each camera’s homography, and merging player detections based on
proximity (Fig. 12.4).

The performance of the detector and team classification compared to ground truth
annotated frames using precision and recall metrics is shown in Table 12.1. From this
table, it can be seen that while recall is high, the team classification has quite low
precision in some matches. The poor performance is mainly attributed to non-team-
players (referees, goalies, and false-positive player detections caused by background
clutter) being misclassified into one of the teams, as they contain a combination of
team colours. A more sophisticated representation could be used for modelling the
teams as well as non-team image patches, and online learning of the colour models to
adapt with changes in illumination would further improve results. From these results,
it is evident that our team behaviour representation must be able to deal with a high
degree of noise.
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Team A Team B Refs, Goalies

Fig. 12.4 (Left) We detect players in each camera using a real-time person detector and project
these into real world co-ordinates. (Right) We then classify the detections into one of the two teams
(or others) and aggregate the detections from each camera to extract the state of the game at each
time instant

Table 12.1 Precision and recall values of the player detector and team affiliation classifier, after
aggregating all cameras
Match code No. of

Frames
Precision Recall

Detector
(%)

Team A
(%)

Team B
(%)

Detector
(%)

Team A
(%)

Team B
(%)

10-USA-RSA-1 14,352 81.1 67.2 77.7 89.0 98.3 98.4

24-JPN-USA-1 20,904 89.5 91.7 90.0 87.5 95.2 97.4

24-JPN-USA-2 7,447 85.8 72.4 79.7 90.0 97.6 97.0

12.4 Modelling Team Behaviours from Detections

An intuitive representation of team behaviours in sports would be to track all players
(maintaining their identity) and the ball. For field-hockey, this would result in a 42
dimensional signal per frame (i.e. 21 objects with x and y coordinates—10 field
players excluding the goalie × 2 teams, and the ball). However, since we cannot
reliably and accurately track the player and ball over long durations, an alternative
is to represent the match via player detections.

Player detection data can be modelled as a series of observations O, where each
observation consists of an (x, y) ground location, a timestamp t , and a team affiliation
estimate τ ∈ {α,β}. At any given time instant t , the set of detected player locations
Ot = {xA, yA, xB , yB , . . . } is of arbitrary length because some players may not have
been detected and/or background clutter may have been incorrectly classified as a
player. Therefore, the number of player detections at any given frame is generally
not equal to the actual number of players 2P , where P = 10 players per team.

By representing the detections at each frame, we overcome the issue of tracking,
but as a consequence we remove the player identity component of the signal and
need another method to maintain feature correspondences. We propose to employ
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an occupancy map descriptor, which is formed by breaking the field into a series of
spatial bins and counting the number of players that occupy each of the bins.

12.4.1 Team Occupancy Maps

The team occupancy descriptor, xot , is a quantised occupancy map of the player
positions on the field for each team represented at time t . Given we have the locations
of players from the player detector system and have assigned team affiliation, an
occupancy map can be constructed for each frame by quantising the 91.4 × 55.0 m
field into K bins, and counting how many player detections for that team fall within
each location. The dimensionality of the formation descriptor is equal to twice the
number of bins (i.e. K × 2) so that both teams A and B are accounted for, resulting
in xoi = [a1, . . . , aK ; b1, . . . , bK ], where ak and bk are the player counts in bin k for
teams A and B respectively. Such an occupancy map can then be used to represent
team activities by concatenating frames.

Depending on the level of complexity of the activity that we wish to recognise, we
can use varying descriptor sizes (coarse/fine). We evaluate five different descriptor
sizes: K = 2(2 × 1), K = 8(4 × 2), K = 32(8 × 4), K = 135(15 × 9) and
K = 540(30×18), with examples illustrated in Fig. 12.5. The different quantisations
represent how much tolerance there is in player’s positions (e.g. in 15×9 quantisation,
each player is assigned to an area of approximately 6 m2).

12.4.2 Recognising Team Activities

To evaluate the different occupancy map representations, we conducted a series of
isolated activity recognition experiments. We use the occupancy maps to recognise
five activities, corresponding to important game states in field-hockey, shown in
Fig. 12.6. As these activities coincide with a single event (e.g. the ball crossing the
out line, or a goal being scored), they do not have distinct onset and offset times.

2x1 4x2 8x4 15x9 30x18

Fig. 12.5 Example team occupancy maps for different descriptor sizes
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(b)(a)

(e)

(d)(c)

Fig. 12.6 Diagrams and examples of structured plays that occur in field-hockey. a Faceoff. b
Penalty corner. c Long corner. d Defensive corner. e Goal

To account for this, we used the event as the start of the activity and went forward
10 s as the offset time, which gave us a series of 10 s play clips.

Since an activity can occur for either team, we compare the template descriptors
in both orientations (xo = [a,b]T , and xo = [brot , arot ]T , where arot represents
a rotation of the field by 180◦ for team a’s formation descriptor, so that the new
descriptor is given by arot [k] = a[K + 1 − k], for k = 1, 2, . . . , K ). We calculate
the distance to the template in both orientations, and take the minimum as the distance
measure.

Seven full matches (corresponding to over 8 hours of game play), were annotated
with the 5 activities of interest: face-offs, penalty corners, goals, long corners and
defensive corners as shown in Table 12.2. The annotated activities were split into
testing and training sets using a leave-one-out cross-validation strategy, where one
match half was used for testing and the remaining halves for training. We used a
k-Nearest Neighbour classification approach, taking the mode activity label of the
closest k examples in the training set, using L2 as our distance measure. Confusion
matrices using k = 10 are presented in Fig. 12.7.

Most activities are well recognised, however goals are often misclassified as the
other activities because they are less structured, with a lot of variability possible.
Defensive corners and long corners are sometimes confused with one another as the
main difference is the team which maintains possession, which is not discernible from
the occupancy descriptors. The best accuracy was achieved using an 8×4 descriptor
with an accuracy of 78.2 %. Quantising at a finer level beyond this, resulted in a
slightly reduced accuracy, which can be explained by players not aligning to the
exact locations in the training activity templates, due to variability in activities (and
our distance metric only compares corresponding field locations between occupancy
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Table 12.2 Frequency of the annotated activities in each match half
Face off Penalty corner Goal Long corner Defensive corner

(L) (R) (L) (R)

1-JPN-USA-1 3 2 2 11 5 4 4

1-JPN-USA-2 2 6 1 4 10 7 3

2-RSA-SCO-1 2 4 2 11 4 3 3

2-RSA-SCO-2 3 9 2 3 12 4 3

5-USA-SCO-1 3 4 2 7 4 1 7

5-USA-SCO-2 3 8 2 3 3 2 2

9-JPN-SCO-1 2 4 2 8 7 5 2

9-JPN-SCO-2 1 1 0 10 10 6 0

10-USA-RSA-1 5 9 5 5 5 8 0

10-USA-RSA-2 6 4 5 6 7 4 1

23-ESP-SCO-1 3 4 2 7 6 1 1

23-ESP-SCO-2 3 7 2 9 5 2 1

24-JPN-USA-1 4 3 3 9 6 5 1

24-JPN-USA-2 2 2 1 5 9 7 6

Total 42 67 31 98 93 59 34
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Fig. 12.7 Confusion matrices for isolated activity recognition using different occupancy map
descriptor sizes

maps). A more coarse descriptor is able to represent the activity with tolerance for
player position variations. This indicates that the annotated activities can be described
by the distribution of the players on a relatively macroscopic scale rather than the
exact positions approximated with the finer descriptors.

Despite their simplicity, it is evident that occupancy maps can be used to recognise
important game states in the presence of noise and without any tracking information.
However, if we wish to recognise the fine behaviours of teams (i.e. at the level of
individual player behaviours), an occupancy map representation requires a very high
dimensionality feature vector (e.g. a grid of 30 ×18 requires 540 feature dimensions
per frame to represent player locations to a precision of ∼3 m2). In addition, when
modelling longer term behaviours, occupancy map descriptors are not very compress-
ible in the temporal domain, because they do not directly model player movements
(which are smooth) but occupancies in different zones of the field, which are discrete
and do not vary smoothly or predictably in time, particularly with noisy detections.
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In order to model individual behaviours in team sports compactly, we need a method
to clean-up noisy detections and a representation which exploits the high degree of
correlation between players. Player tracks could allow this, but we must overcome
the issue of noisy detections (i.e. missed and false detections).

12.5 Representing Adversarial Movements

The task of tracking players across time is equivalent to generating a vector of ordered
player locations pτ

t = [x1, y1, x2, y2, . . . , xP , yP ]T for each team τ from the noisy
detections Ot at each time instant. The particular ordering of players is arbitrary, but
must be consistent across time. Therefore, we refer to pτ

t as a static labeling of player
locations. It is important to note that pτ

t is not simply a subset of Ot . If a player was
not detected, an algorithm must somehow infer the location of the unseen player.

We focus on generic team behaviours and assume any observed arrangement of
players from team α could also have been observed for players from team β. As a
result, there is a 180◦ symmetry in our data. For any given vector of player locations

pτ
t , there is an equivalent complement

!
p

τ

t from rotating all (x, y) locations about the
centre of the field and swapping the associated team affiliations.

12.5.1 Formations and Roles

In the majority of team sports, the coach or captain designates an overall structure or
system of play for a team. In field hockey, the structure is described as a formation
involving roles or individual responsibilities (see Fig. 12.8). For instance, the 5:3:2
formation defines a set of roles R = {left back (LB), right back (RB), left halfback

LB

RB

LH

RH

CH

LW

RW

CF

IL

IR

Fig. 12.8 The dynamic nature of the game requires players to switch roles and responsibilities on
occasion, for example, the left halfback LH overlaps with the inside left IL to exploit a possible
opportunity
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Table 12.3 We manually
labelled player location,
identity and role at each
frame for parts of four games
from an international
field-hockey tournament

Match code No. of frames

10-USA-RSA-1 3,894

10-USA-RSA-2 8,839

24-JPN-USA-1 4,855

24-JPN-USA-2 7,418

(LH), center halfback (CH), right halfback (RH), inside left (IL), inside right (IR), left
wing (LW), center forward (CF), right wing (RW)}. Each player is assigned exactly
one role, and every role is assigned to only one player at any instant in time. Due to
the dynamic nature of team sports, roles are generally not fixed and players will swap
roles throughout a match, temporarily adopting the responsibilities of another player.
Mathematically, assigning roles is equivalent to permuting the player ordering pτ

t .
We define a P × P permutation matrix xτ

t at time t which describes the players in
terms of roles rτ

t
rτ
t = xτ

t p
τ
t (12.1)

By definition, each element xτ
t (i, j) is a binary variable, and every column and

row in xτ
t must sum to one. If xτ

t (i, j) = 1 then player i is assigned role j . In contrast
to pτ

t , we refer to rτ
t as a dynamic labeling of player locations.

Because the spatial relationships of a formation are defined in terms of roles (and
not individualistic attributes like name) and players swap roles during the game, we
expect the spatiotemporal patterns in {rτ

1 , r
τ
2 , . . . , r

τ
T } to be more compact compared

to {pτ
1,p

τ
2, . . . ,p

τ
T }. Additionally, we expect a team to maintain its formation while

moving up and down the field. As a result, position data r̃τ
t expressed relative to the

mean (x, y) location of the team should be even more compressible. To test these
conjectures, we manually tracked all players over 25,000 time-steps (which equates
to 8 × 25,000 = 200,000 frames across 8 cameras), and asked a field hockey expert
to assign roles to the player locations in each frame. A breakdown of the manually
labelled data is given in Table 12.3.

For brevity, we explain the analysis in terms of roles rτ
t since the original player

ordering pτ
t is just a special non-permuted case xτ

t = I. We ran PCA on the temporal

data series produced by both teams {rτ
1 , r

τ
2 , . . . , r

τ
25,000,

!
r

τ

1,
!
r

τ

2, . . . ,
!
r

τ

25,000}. This
was to measure how well the low-dimensional representation r̂τ

t matches the original
data rτ

t using the L∞ norm of the residual ∆r = r̂τ
t − rτ

t

∥∆r∥∞ = max(∥∆r(1)∥2, . . . , ∥∆r(P)∥2) (12.2)

where ∥∆r(p)∥2 is the L2 norm of the pth x and y components of ∆r. We chose
the L∞ norm instead of the L2 norm because large deviations may signify very
different formations, e.g. a single player could be breaking away to score. Figure 12.9
illustrates how both pτ

t and rτ
t are quite compressible on the training data. However,

when we test on unseen data (with role labels), the dynamic role-based ordering rτ
t
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Fig. 12.9 Plot showing the reconstruction error as a function of the number of eigenvectors used to
reconstruct the signal using the L∞ norm for original and mean-removed features for both identity
and role representations on training data (left) and unseen test data (right)

is much more compressible than the static ordering pτ
t . Relative positions are more

compressible than absolute positions in both orderings.

12.5.2 Incorporating Adversarial Behaviour

A player’s movements are correlated not only to teammates but to opposition players
as well. Therefore, we anticipate that player location data can be further compressed
if the locations of players on teams A and B are concatenated into a single vector
rABt = [rAt , rBt ]T.

In Fig. 12.10, we show the mean formations for the identity and role representa-
tion. We can see that the role representation has a more uniform spread between the
players, while the identity representation has a more crowded shape, which high-
lights the constant swapping of roles during a match. In terms of compressibility,
Table 12.4 shows that using an adversarial representation gains better compressibility
for both cases, and that using both a role and adversarial representation yields the
most compressibility.

LB

RW

CF

IR

IL
LH

CH

RH

RB

LB

RW

LW

CF

IR

ILLH
CH

RH

RB

LW

Fig. 12.10 Examples showing the difference between the mean formations using the: (left) identity
and (right) role representations on one of the matches
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Table 12.4 Showing the compressibility of different representations. Compressibility in this con-
text refers to the percentage of features required to represent 95 % of the original signal
Representation Compressibility

Identity (%) Role (%)

Single team 30 25

Adversarial teams 20 15

12.6 Cleaning-Up Noisy Data

12.6.1 Spatiotemporal Bilinear Basis Model

The representation of time-varying spatial data is a well-studied problem in computer
vision (see [8] for overview). Recently, Akhter et al. [3], presented a bilinear spa-
tiotemporal basis model which captures and exploits the dependencies across both
the spatial and temporal dimensions in an efficient and elegant manner, which can
be applied to our problem domain. Given we have P players per team, we can form
our role-based adversarial representation, r, as a spatiotemporal structure S, given
2P total players sampled at F time instances as

SF×2P =

⎡

⎢⎣
r1

1 . . . r1
2P

...
...

r F1 . . . r F2P

⎤

⎥⎦ (12.3)

where r ij denotes the j th index within the role representation at the i th time instant.
Thus, the time-varying structure matrix S contains 2FP parameters. This representa-
tion of the structure is an over parameterization because it does not take into account
the high degree of regularity generally exhibited by motion data. One way to exploit
the regularity in spatiotemporal data is to represent the 2D formation or shape at each
time instance as a linear combination of a small number of shape basis vectors b j
weighted by coefficients ωi

j as si = ∑
j ω

i
jb

T
j [7, 11]. An alternative representation

of the time-varying structure is to model it in the trajectory subspace, as a linear com-
bination of trajectory basis vectors, θ i as s j =

∑
i a

j
i θ i , where a j

i is the coefficient
weighting each trajectory basis vector [1, 35]. As a result, the structure matrix can
be represented as either

S = ΩBT or S = ΘAT (12.4)

where B is a P × Ks matrix containing Ks shape basis vectors, each representing a
2D structure of length 2P , and Ω , is an F × Ks matrix containing the corresponding
shape coefficients ωi

j ; and Θ is an F × Kt matrix containing Kt trajectory basis
as its columns, and A is a 2P × Kt matrix of trajectory coefficients. The num-
ber of shape basis vectors used to represent a particular instance of motion data is
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Ks ≤ min{F, 2P}, and Kt ≤ {F, 2P} is the number of trajectory basis vectors
spanning the trajectory subspace.

Both representations ofS are over parameterisations because they do not capitalise
on either the spatial or temporal regularity. AsS can be expressed exactly asS = ΩBT

and also S = ΘAT , then there exists a factorization

S = ΘCBT (12.5)

where C = ΘTΩ = ATB is a Kt × Ks matrix of spatiotemporal coefficients. This
equation describes the bilinear spatiotemporal basis, which contains both shape and
trajectory bases linked together by a common set of coefficients.

Due to the high degree of temporal smoothness in the motion of humans, a prede-
fined analytical trajectory basis can be used without significant loss in representation.
A particularly suitable choice of a conditioning trajectory basis is the Discrete Cosine
Transform (DCT) basis, which has been found to be close to the optimal Principal
Component Analysis (PCA) basis if the data is generated from a stationary first-
order Markov process [29]. Given the high temporal regularity present in almost all
human motion, it has been found that the DCT is an excellent basis for trajectories
of faces [2, 3] and bodies [4]. Figure 12.11 shows that due to the highly structured
nature of the game, and the fact that human motion over short periods of time is very
simple, we can gain enormous dimensionality reduction especially in the temporal
domain. From this, we can effectively represent 5 s plays with no more than Kt = 3
and Ks = 33 with a maximum error of less than 2 m. In terms of dimensionality
reduction, this means we can represent temporal signals using 3 × 33 = 99 coef-
ficients. For 5 s plays, this means a reduction of over 60 times. We found greater
compressibility could be achieved on longer plays.
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Fig. 12.11 Plot showing the mean reconstruction error of the test data as the number of temporal
basis (Kt ) and spatial basis (Ks ) vary for 5 s plays (i.e. Ktmax = 150). We magnified the plot to
show the first 10 temporal basis to highlight that only Kt = 3 is required to represent coarse player
motion
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12.6.2 The Assignment Problem

In the previous section, roles were specified by a human expert. We now address the
problem of automatically assigning roles to an arbitrary ordering of player locations
pτ
t . Assuming a suitably similar vector r̂τ of player locations in role order exists, we

define the optimal assignment of roles as the permutation matrixxτ⋆
t which minimises

the square L2 reconstruction error

xτ⋆
t = arg min

xτ
t

∥r̂τ − xτ
t p

τ
t ∥2

2. (12.6)

This is the linear assignment problem where an entry C(i, j) in the cost matrix is
the Euclidean distance between role locations

C(i, j) = ∥r̂τ (i) − pτ
t ( j)∥2. (12.7)

The optimal permutation matrix can be found in polynomial time using the Hun-
garian (or Kuhn-Munkres) algorithm [21].

12.6.3 Assignment Initialization

To solve the assignment problem, we need a reference formation to compare to. Using
the mean formation (see Fig. 12.10) is a reasonable initialization as the team should
maintain that basic formation in most circumstances. However, in different areas of
the field there are subtle changes in formation due to the what the opposition are
doing as well as the game-state. To incorporate these semantics, we used a codebook
of formations which consists of every formation within our training set. However,
this mapping is difficult to do as the input features have no assignment. Given we have
the assignment labels of the training data, we can learn a mapping matrix W from
the mean and covariances of the training data to its assignment labels via the linear
transform X = WTZ. Given N training examples, we can learn W by concatenating
the mean and covariance into an input vector zn , which corresponds to the labeled
formation xn . We compile all these features into the matrices X and Z, and given
these, we use linear regression to learn W by solving

W = XZT (ZZT + λI)−1 (12.8)

where λ is the regularization term. Using this approach, we can estimate a labelled
formation from the training set which best describes the current unlabeled one. In
terms of assignment performance on the test set, this approach works very well
compared to using the mean formation for both the identity and role labels as can be
seen in Table 12.5. Figure 12.12 shows the confusion matrices for both Team A and
Team B for both representations. It is worth noting that the role representation gave far
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Table 12.5 Accuracy of the
assignment using a mean
formation as well as a
codebook of possible
formations

Prototype Hit rate
Team A Team B

Identity Mean formation 38.36 29.74
Codebook 49.10 37.15

Role Mean formation 49.47 50.30
Codebook 74.18 69.70

better results than the identity representation, which is not surprising seeing that only
spatial location is used. In terms of the role representation (bottom two plots), it can
be seen that there is little confusion between the 3 defenders (LB, CH, RB) and the 3
forwards (LW, CF, RW). However, the midfield 4 (LH, RH, IL, IR) tend to interchange
position a lot causing high confusion. Noticeably, there is a discrepancy between
Team A and Team B which is understandable in this case as Team B interchanges
positions more than twice the amount than Team A upon analysis of the ground-truth.
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Fig. 12.12 Confusion matrix showing the hit-rates for correctly assigning identity (top row) and
role (bottom) for Team1 (left) and Team 2 (right) on the test set
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12.7 Interpreting Noisy Data

In practice, we will not obtain perfect data from a vision-system so our method has to
be robust against both missed and false detections. Given the four annotated matches
(presented in Table 12.3), the precision and recall rates for the detector and the team
affiliation are given in the left side of Table 12.6. In this work, we consider a detection
to be made if a player was within 2 m of a ground-truth label.

12.7.1 Assigning Noisy Detections

To determine whether or not we should make the assignment or discard the detection,
some type of game context feature is required (e.g. the part of the field most of the
players are located). To do this, we employed a similar strategy to the one we proposed
in Sect. 12.6.3. However, instead of learning the mapping from the clean features Z,
we learn from the noisy features Znoisy. As the player detector has systematic errors
(there are some “black-spots” on the field due to reduced camera coverage, or game
situations where players bunch together), we include the number of players detected
from the system as well as the mean and covariance in our noisy game context feature
znoisy, which we can then use to learn Wnoisy. We are able to do this as we make
the assumption that the clean centroid is a good approximation to the noisy centroid
which was found to be a valid assumption as can be seen in Fig. 12.13. Using this
assumption, we can obtain a reasonable prototypical formation to make our player
assignments.

Using the estimated prototype, we then make the role assignments using the
Hungarian algorithm. This is challenging however, as we may have missed or false
detections which alters the one-to-one mapping between the prototype and input
detections. To counter this, we employed an “exhaustive” approach, where if we
have fewer detections than the number of players in the prototype, we find all the
possible combinations that the labels could be assigned then use the combination
which yielded the lowest cost from the assignments made. Conversely, if we had
more detections than the number of players, we find all the possible combinations
that the detections could be and then use the combination of detections which had
the lowest cost.

For example, given we have only 9 detections for a team, we first find the
10 possible combinations that prototype could be (i.e. [1, . . . , 9], [2, . . . , 10],

Table 12.6 Precision-Recall
rates for the raw detections
(left) and with the initialised
assignments (right)

Raw detections With assignment
Precision Recall Precision Recall

Detections 77.49 89.86 91.90 80.46

Team A 72.54 86.14 86.69 74.17

Team B 79.84 89.66 92.91 82.85
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Fig. 12.13 As the centroids of both the clean (solid) and noisy (dashed) of both teams (blue =
team1, red = team2) are roughly equivalent, we learn a mapping matrix using linear regression to
find a formation from the training set which can best describe the noisy test formation

[1, 2, 4, . . . , 10], [1, 2, 3, 5, . . . , 10] etc.). For each one of these combinations, we
then perform the Hungarian algorithm and calculate the cost of the made assign-
ments. After we have exhaustively gone through all possible combinations, we make
the assignment based on the combination with the lowest cost. Or given we have 11
detections for a team, we first find the 11 possible combinations that the detections
could be, find the cost for each set and choose the one with the lowest cost. How-
ever, sometimes we get false positives which means that even though we may get
10 detections for a team we may only have 7 or 8 valid candidates. Employing this
approach greatly improves the precision rate, while the recall rate decreases which
is to be expected (see right side of Table 12.6). Even despite the drop in recall, we
still assign role reasonably well (over 55 % compared to 66 % on the clean data) as
can be seen in Table 12.7.

Table 12.7 Detection rates assigning roles to the noisy data. The column on the far right gives the
effective hit-rate (i.e. missed detections omitted) of the correct assignments

Correct Incorrect Missed Hit rate

Team A 41.89 32.89 25.22 56.02

Team B 45.92 35.56 18.53 56.36
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12.7.2 Denoising the Detections

While our precision and recall rates from the detector are relatively high, to do
useful analysis we need a continuous estimate of the player label at each time step
to do formation and play analysis. This means that we need a method which can
de-noise the signal—i.e. a method which can impute missing data and filter out false
detections. Given the spatial bases, the bilinear coefficients and an initial estimate
of the player labels, we can use an Expectation Maximization (EM) algorithm to
denoise the detections. The approach we use is similar to [3]. Using this approach,
the expectation step is simplified to making an initial hard assignment of the labels
which can be gained by finding the initial assignments using the method described
in the previous section. From this initialization, we have an initial guess of Ŝ. In the
maximization step, we can calculate C = ΘT ŜB, and then estimate S from our new
C as well as our spatial and temporal basis B and Θ . An example of the cleaned up
detections using this approach is shown in Fig. 12.14.

As the recall rate of the denoised data is 100 %, we are interested to see how
precise our method is in inferring player position based on their label. To test this,
we calculated the precision rate for the detections and the denoised detections against
a distance threshold—that is, the minimum distance a player had to be to ground-truth
to be recognised as a correct detection). The results are shown in Fig. 12.15. As can
be seen from these figures, the detections from the player detector are very accurate
and do not vary with respect to the error threshold (i.e. it either detects a player very
precisely or not at all). Conversely, the denoised data is heavily smoothed due to the
bilinear model, so we lose some of the finer detail to gain a continuous signal.
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Fig. 12.14 Given our noisy detections (black), using our bilinear model we can estimate the tra-
jectory of each player over time. We can see our estimate (red) is close to the ground-truth (blue)
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Fig. 12.15 Precision accuracy versus the distance threshold from ground truth (in metres) (left)
the overall detections, (right) the detections based on team affiliation. The solid lines refer to the
raw detections and the dashed lines refer to the denoised signal

12.8 Summary

Accurately tracking players over long durations of time is an unsolved computer
vision problem, and prevents automated analysis of team sports using traditional rep-
resentations based on player tracks. In this paper, we instead directly modelled team
behaviours from raw player detections, and compared two representations which
are robust to missed and false detections: (1) occupancy maps and (2) a bilinear-
spatiotemporal basis model. We demonstrated that occupancy map features can accu-
rately represent global group behaviours, and can be used to recognise group activities
corresponding to important game states from raw player detections, without player
tracking or ball information. However, one of the challenges of an occupancy map
representation is that high dimensionality is required, and it is difficult to model team
behaviours at the level of individual players. To overcome this, we proposed the use
of a bilinear spatiotemporal basis model using a role representation to clean-up the
noisy detections which operates in a low-dimensional space. This provides a very
compact representation of group behaviours, and can facilitate tasks such as cluster-
ing and retrieval. We evaluated our approach on approximately 200,000 frames of
field-hockey data from a state-of-the-art real-time player detector.
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