
Lucas-Kanade 20 Years On: Part 5

Simon Baker, Raju Patil, German Cheung, and Iain Matthews

CMU-RI-TR-04-64

Abstract

Image alignment is one of the most widely used techniques in computer vision.
Applications range from optical flow, tracking and layered motion, to mosaic construc-
tion, medical image registration, and face model fitting. The original image alignment
algorithm was the Lucas-Kanade algorithm. Since then, numerous extensions have
been made to it. In particular, Baker and Matthews recently proposed the inverse com-
positional algorithm, an efficient algorithm applicable to most 2D image alignment
problems. In this report, we investigate whether the 2D inverse compositional algo-
rithm can be generalized to 2.5D and 3D. By 3D we mean volumetric data consisting
of a dense 3D array of voxels. By 2.5D we mean a surface in 3D represented by a
collection of 3D surface points. We show that the inverse compositional algorithm is
easily generalized to 3D. On the other hand, while algebraically it appears as though
the 2.5D case may be treated similarly, doing so violates one of the assumptions in the
proof of equivalence of the two algorithms.

Keywords: Image alignment, Lucas-Kanade, inverse compositional, 2D, 2.5D, 3D.



1 Introduction

Image alignment consists of moving (and deforming) a template to minimize the difference be-

tween the template and an input image. Since the first use of image alignment in the Lucas-Kanade

algorithm [13], image alignment has become one of the most widely used techniques in computer

vision. Other applications include tracking [7, 12], parametric motion estimation [6], mosaic con-

struction [16], medical image registration [10], and face model fitting [14].

Numerous extensions has been proposed to the Lucas-Kanade algorithm. The alignment warp

has been generalized to include affine warps, homographies, 3D rotations and a variety of other

more esoteric warps [6, 14, 16]. Other extensions have allowed linear appearance variation and

used robust fitting functions [7,12]. Techniques have been proposed to allow the addition of priors

on the warp parameters [2]. In [1–3,5] we presented an overview of these extensions to the Lucas-

Kanade algorithm. This overview concentrated on the inverse compositional algorithm, an efficient

algorithm proposed in [4] which is applicable to most 2D image alignment problems.

In this report we investigate whether the efficient 2D inverse compositional algorithm can be

generalized to 2.5D and 3D. By 3D we mean volumetric data consisting of a dense 3D array

of voxels, for example medical MRI and CT data [10]. By 2.5D we mean a 2D surface in 3D

represented by a collection of 3D surface points, and imaged by a conventional camera to generate

a 2D image. We show that the inverse compositional algorithm is easily generalized to 3D. On

the other hand, while algebraically it appears as though the 2.5D case may be treated similarly,

doing so violates one of the assumptions in the proof of equivalence of the two algorithms. We

also discuss the relationship between the incorrectness of this algorithm and two extensions of the

inverse compositional algorithm to fit (what we would classify as) 2.5D head models [15, 17].

1



2 Background: 2D Image Alignment Algorithms

2.1 The Lucas-Kanade Algorithm

The goal of the Lucas-Kanade algorithm [13] is to align a 2D template to a 2D input image

, where is a 2D column vector containing the pixel coordinates. Let de-

note the parameterized set of allowed warps, where is a vector of parameters. The

warp takes the pixel in the template and maps it to the sub-pixel location in

the image . If the Lucas-Kanade algorithm is being used to compute optical flow, then

is a translation. It could also be a similarity transform or an affine warp [6]. In general, the number

of parameters may be arbitrarily large and can be arbitrarily complex [14, 16].

Algebraically the goal of the Lucas-Kanade algorithm is to minimize the sum of squared error

between the template and the image warped back onto the template coordinate frame:

(1)

with respect to . Warping back to compute requires interpolating the image at

the sub-pixel locations . The minimization in Equation (1) is performed with respect to

and the sum is performed over all of the pixels in the template image . Minimizing the

expression in Equation (1) is a non-linear optimization even if is linear in because the

pixel values are, in general, non-linear in . In fact, the pixel values are essentially un-

related to the pixel coordinates . To optimize the expression in Equation (1), the Lucas-Kanade

algorithm assumes that a current estimate of is known and then iteratively solves for increments

to the parameters ; i.e. the following expression is (approximately) minimized:

(2)

2



with respect to , and then the parameters are updated:

(3)

These two steps are iterated until the estimates of the parameters converge.

The Lucas-Kanade algorithm (which is a Gauss-Newton gradient descent non-linear optimiza-

tion algorithm) is derived as follows. The non-linear expression in Equation (2) is linearized by

performing a first order Taylor expansion of to give:

(4)

In this expression, is the gradient of image evaluated at ; i.e. is

computed in the coordinate frame of and then warped back onto the coordinate frame of using

the current estimate of the warp . The term is called the Jacobian of the warp.

Equation (4) is a least squares problem and has a closed from solution which can be derived as

follows. The partial derivative of the expression in Equation (4) with respect to is:

(5)

where we refer to as the steepest descent images. Setting this expression to equal zero and

solving gives the closed form solution of Equation (4) as:

(6)

where is the (Gauss-Newton approximation to the) Hessian matrix:

(7)

3



The Lucas-Kanade algorithm [13] consists of iteratively applying Equations (6) and (3). Because

the gradient must be evaluated at and the Jacobian at , they both depend on .

In general, therefore, the Hessian must be recomputed in every iteration because the parameters

vary from iteration to iteration. The slowest step in the computation is recomputing the Hessian in

Equation (7). This step takes time where is the number of pixels in the template.

2.2 The Inverse Compositional Algorithm

There is a huge computational cost in re-evaluating the Hessian in every iteration of the Lucas-

Kanade algorithm [11, 12, 16]. If the Hessian were constant it could be precomputed and then

re-used. In [4] we proposed the inverse compositional algorithm, a general way of reformulating

image alignment so that the Hessian is constant and so can be precomputed. (A variety of other

authors have proposed similar algorithms for limited subsets of warps [11,12].) Although the goal

of the inverse compositional algorithm is the same as the Lucas-Kanade algorithm, i.e. to minimize

the expression in Equation (1), the inverse compositional algorithm iteratively minimizes:

(8)

with respect to (note that the roles of and are reversed) and then updates the warp:

(9)

The expression is the composition of 2 warps and

the expression is the inverse of , hence the name inverse compositional.

The Lucas-Kanade algorithm iteratively applies Equations (2) and (3). The inverse composi-

tional algorithm iteratively applies Equations (8) and (9). Perhaps somewhat surprisingly, these

two algorithms can be shown to be equivalent to first order in . They both take the same steps

as they minimize the expression in Equation (1). See [5] for the proof of equivalence.

4



Performing a first order Taylor expansion of Equation (8) gives:

(10)

Assuming that is the identity warp, the solution to this least-squares problem is:

(11)

where is the Hessian matrix with replaced by :

(12)

and the Jacobian is evaluated at . Since there is nothing in either the steepest descent

images or the Hessian that depends on , they can both be pre-computed. The online cost

of the inverse compositional algorithm is per iteration rather than for

the Lucas-Kanade algorithm, a huge saving. See [5] for the details.

3 3D Volumetric Data

By 3D data, we mean volumetric data defined on a dense 3D array of voxels. A 3D image is a

scalar field defined over the voxels; i.e. each voxel has an intensity or density, just as how each

pixel in a 2D image has an intensity. (3D images can easily be generalized to the equivalent of a

color image, where we have a vector of values for each voxel.) The most common examples of 3D

images are medical image data such as MRI and CT scans [10].

The 3D image alignment problem is to align a 3D template with a 3D input image

where is a 3D column vector containing the voxel coordinates. If

5



denotes the parameterized set of allowed warps (for example, 6 parameter rigid transformations

consisting of a 3D translation and a 3D rotation), the goal is to minimize:

(13)

with respect to , where the summation is over all of the voxels in the 3D template.

3.1 The 3D Lucas-Kanade Algorithm

It is straight-forward to generalize the Lucas-Kanade algorithm to 3D. The result is to iterate:

(14)

and where is the 3D Lucas-Kanade Hessian matrix:

(15)

3.2 The 3D Inverse Compositional Algorithm

It is also straight-forward to general the inverse compositional algorithm. The result is to iterate:

(16)

and where is the 3D inverse compositional

Hessian matrix:

(17)

All we have done in the above but replace the 2D quantities with the corresponding 3D versions.

The proof of equivalence of the 3D Lucas-Kanade and inverse compositional algorithms is identical

6



to that for the 2D algorithms in [5], except the 2D quantities must be replaced with the 3D versions.

Note, that in particular, the 3D algorithms use the 3D gradient .

4 2.5D Surface Data in 3D

By 2.5D data, we mean 2D images of a set of 3D points on a 2D surface in 3D space. 2.5D data

has components of both 2D image data (2D images of points on a 2D surface) and 3D volumetric

data (the points are 3D points in 3D space.) The goal of 2.5D image alignment is to minimize:

(18)

with respect to . In this expression, the summation is over all 3D points on the surface of

the object. The 3D point is the destination of under the 3D warp. If the surface in

question is rigid, might be a 6 parameter rigid transformation (3D translation and 3D

rotation.) Alternatively, it might be a more complex model such as the 22 parameter articulated

human model used in [8]. is a camera matrix mapping 3D coordinates in the world into

2D coordinates in the images. is a 2D template image, and is a 2D input image.

Equation (18) can be used in a variety of problems in computer vision [8,9]. It models the case

where we have a 3D model of the shape of (the surface of) and object; i.e. knowledge of the 3D .

We also have the color (or intensity) of the 3D points in a template (or model estimation) image

. We now wish to know how the object has moved (or deformed) to a second time instant

when we capture a new image . The warp models how the object has deformed and

is the image captured by the same stationary camera at the second time.

If we denote as the intensity (or color) of the 3D point , Equation (18) can

be though of defining a 3D-to-2D image alignment problem:

(19)

7



The second term is the intensity (color) of the 3D point . The first term

is the 2D image color of the corresponding point. 3D-to-2D image alignment has been used by a

number of authors including recently in our “shape-from-silhouette across time” algorithms [8,9].

Note that the formulation in Equation (18) can be generalized in many ways. The number of

cameras and images can be increased. It can also be extended to account for the visibility of the

surface in 3D. Finally, the camera(s) can be moving (rigidly). Everything we derive in this section

applies to these more general cases. We keep the notation simple for ease of understanding only.

4.1 The 2.5D Lucas-Kanade Algorithm

It is straight-forward to generalize the Lucas-Kanade algorithm to 2.5D. The result is to iterate:

(20)

and where is the 2.5D Lucas-Kanade Hessian matrix:

(21)

This algorithm is almost exactly the same as the algorithm used in [8,9]. (A Levenberg-Marquardt

formulation is actually used in [8, 9] rather than a Gauss-Newton formulation. As shown in [5],

there is very little difference between these two formulations of image alignment.)

4.2 Incorrectness of the 2.5D Inverse Compositional Algorithm

In order to derive an inverse compositional algorithm for 2.5D data we would need to show that

approximately minimizing:

(22)

8



with respect to and updating is equivalent to approximately minimizing:

(23)

with respect to and updating . While the corre-

sponding versions of Equations (22) and (23) can be shown to be equivalent for 2D and 3D data,

these equations are not equivalent for 2.5D data. The key assumption in the proof of equivalence

(see [5]) that is violated with 2.5D data is that:

(24)

The corresponding version of this equation for 3D data is:

(25)

This equation is valid for 3D data because we implicitly assume that:

(26)

and where is the “correct solution” to the alignment problem. This assumption

is just that the template matches the input image at the correct solution; i.e. the assumption

made by any image alignment algorithm. (For technical reasons, we also assume that is

the identity warp [5].) The corresponding assumption for 2.5D data is that:

(27)

The difference between 3D and 2.5D data is that while it is reasonable to assume that Equation (26)

holds for all in 3D space, it is only reasonable to assume that Equation (27) holds for on the 2D

surface of the object. It is important for Equation (27) to hold away from the surface of the object

because our algorithms use gradients. The inverse compositional algorithm uses the gradients of

9



Image Plane

Camera

Camera

Pinhole

Rotated
Surface

Image Plane

Camera

Camera

Pinhole

Surface

3D Image

3D Image Does Not Equal

Is Constant

Rays Where 3D Image

Rotated 3D Image Except on Surface

Figure 1: The reason for the incorrectness of the inverse compositional algorithm for 2.5D data. Left: A
2D surface imaged by a camera generates an equivalent 3D image where the ray through each pixel has a
constant intensity. Right: If the 2D surface is rotated (by a warp , say) the corresponding 3D image
is not equal to the 3D image on the left rotated by . The 3D image on the right and the 3D image
on the left rotated appropriately agree on the 2D surface, but not away from the surface. The gradients at
the surface are also not the same. This is what makes the 2.5D inverse compositional algorithm incorrect.

the right-hand sides of Equations (26) and (27) whereas the Lucas-Kanade algorithm uses those of

the left-hand sides. Equations (26) and (27) must hold everywhere to relate the gradients.

Equation (27) does not hold, in general, for points off the surface of the object. The functions

and are 3D images; for each 3D point a unique intensity or

is defined. The intensity in 3D space is defined by the intensity radiated by the surface and the

camera projection matrix. If the surface is rotated in 3D (say), without moving the camera, a

different 3D image is created that is not simply a rotated version of the 3D image created by the

unrotated object. A simple concrete example is illustrated in Figure 1. Equation (27) does not hold

away from the surface in Figure 1 and so the inverse compositional algorithm is incorrect.

5 Conclusion

In this report we have shown that the 2D inverse compositional image alignment algorithm [5] can

be generalized to 3D volumetric data such as that generated by MRI and CT scanners. We have

10



also shown that the corresponding generalization to 2.5D data (2D images of 2D surfaces in 3D

space) is incorrect. We have explained which assumption in the proof of correctness [5] is violated.

It is unfortunate that the direct generalization of the inverse compositional algorithm to 2.5D

data is incorrect. Our definition of 2.5D data corresponds to “texture-mapped 2D surfaces in 3D”.

Such models have a variety of applications in computer vision, including, for example, 3D non-

rigid head tracking [14, 15, 17] and 3D articulated human tracking [8, 9]. More generally, image

alignment for such models is a natural way to pose the general 3D tracking problem, including

rigid, articulated, and non-rigid models of motion. The inverse compositional algorithm for 2.5D

data would have allowed the development of real-time general purpose 3D tracking algorithms.

The fact that the direct generalization of the inverse compositional algorithm is incorrect does

not mean that it is impossible to use the inverse compositional algorithm for “texture-mapped 2D

surfaces in 3D.” Recently, Romdhani and Vetter [15] and Xiao et al. [17] have both used exten-

sions of the 2D inverse compositional algorithm to develop efficient 3D non-rigid head tracking

algorithms. To avoid the problems described in Section 4, both of these papers “un-roll” the 2D

surface and pose the problem as mapping from a 2D texture space to a 2D image. The 3D shape

and the camera matrix are embedded in the 2D warp .

The 2D inverse compositional algorithm is not directly applicable to the un-rolled texture maps

because the identity warp is not one of the warps , an assumption made by the inverse

compositional algorithm [5]. Romdhani and Vetter [15] avoid this problem by generalizing the

inverse compositional algorithm to use a warp update:

(28)

where is a fixed vector of parameters. This equation should be compared with the usual update

in Equation (9). The incremental warp is rather than .

This leads to the Jacobians of the warp being evaluated at the warp parameters leading to a

11



dependence of the algorithm on . Empirically, the authors find that the algorithm performs

better when . They therefore pre-compute the steepest descent images and Hessian for

multiple different values of and use the closest one in the online phase of the algorithm.

Xiao et al. [17] avoid the problem in a different way. They increase the set of warps

to include the identity 2D warp. This means introducing far more parameters than necessary

to model the phenomenon in question. Without further modification, this larger set of parameters

would lead to more local minima and worse fitting robustness. To avoid this problem, Xiao et

al. [17] add a prior on the parameters using the extension of the 2D inverse compositional algorithm

described in [2]. This constrains the parameters to the “physically realizable”. Xiao et al. optimize:

(29)

where is the prior that enforces the (heavily weighted soft) constraints on the parameters.

The prior can be an arbitrary non-linear function without significantly effecting the speed

because it does not depend on the images and . A natural area for future work is to extend

either [15] or [17] to the articulated human tracking application in [8, 9].

References
[1] S. Baker, R. Gross, and I. Matthews. Lucas-Kanade 20 years on: A unifying framework: Part

3. Technical Report CMU-RI-TR-03-35, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, November 2003.

[2] S. Baker, R. Gross, and I. Matthews. Lucas-Kanade 20 years on: A unifying framework: Part
4. Technical Report CMU-RI-TR-04-14, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, February 2004.

[3] S. Baker, R. Gross, I. Matthews, and T. Ishikawa. Lucas-Kanade 20 years on: A unify-
ing framework: Part 2. Technical Report CMU-RI-TR-03-01, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, February 2003.

[4] S. Baker and I. Matthews. Equivalence and efficiency of image alignment algorithms. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 1,
pages 1090–1097, 2001.

12



[5] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. International
Journal of Computer Vision, 56(3):221–255, 2004. Previously appeared as “Lucas-Kanade
20 years on: A Unifying Framework: Part 1”, CMU Robotics Institute Technical Report
CMU-RI-TR-02-16, July 2002.

[6] J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani. Hierarchical model-based motion
estimation. In Proceedings of the European Conference on Computer Vision, pages 237–252,
1992.

[7] M. Black and A. Jepson. Eigen-tracking: Robust matching and tracking of articulated objects
using a view-based representation. International Journal of Computer Vision, 36(2):101–130,
1998.

[8] K.M. Cheung, S. Baker, and T. Kanade. Shape-from-silhouette of articulated objects and its
use for human body kinematics estimation and motion capture. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2003.

[9] K.M. Cheung, S. Baker, and T. Kanade. Visual hull alignment and refinement across time: A
3D reconstruction algorithm combining shape-from-silhouette with stereo. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2003.

[10] G.E. Christensen and H.J. Johnson. Image consistent registration. IEEE Transactions on
Medical Imaging, 20(7):568–582, 2001.

[11] F. Dellaert and R. Collins. Fast image-based tracking by selective pixel integration. In Pro-
ceedings of the ICCV Workshop on Frame-Rate Vision, pages 1–22, 1999.

[12] G.D. Hager and P.N. Belhumeur. Efficient region tracking with parametric models of ge-
ometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(10):1025–1039, 1998.

[13] B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 674–679, 1981.

[14] I. Matthews and S. Baker. Active Appearance Models revisited. International Journal of
Computer Vision, 60(2), 2004.

[15] S. Romdhani and T. Vetter. Efficient, robust and accurate fitting of a 3D morphable model. In
Proceedings of the IEEE International Conference on Computer Vision, pages 59–66, 2003.

[16] H.-Y. Shum and R. Szeliski. Construction of panoramic image mosaics with global and local
alignment. International Journal of Computer Vision, 16(1):63–84, 2000.

[17] J. Xiao, S. Baker, I. Matthews, and T. Kanade. Real-time combined 2D+3D active appearance
models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2004.

13


