
Lucas-Kanade 20 Years On: A Unifying Framework: Part 4

Simon Baker, Ralph Gross, and Iain Matthews

CMU-RI-TR-04-14

Abstract

Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the

most widely used techniques in computer vision. Applications range from optical flow, tracking,

and layered motion, to mosaic construction, medical image registration, and face coding. Numer-

ous algorithms have been proposed and a variety of extensions have been made to the original

formulation. We present an overview of image alignment, describing most of the algorithms in

a consistent framework. We concentrate on the inverse compositional algorithm, an efficient al-

gorithm that we recently proposed. We examine which of the extensions to the Lucas-Kanade

algorithm can be used with the inverse compositional algorithm without any significant loss of

efficiency, and which cannot. In this paper, the fourth and final part in the series, we cover the ad-

dition of priors on the parameters. We first consider the addition of priors on the warp parameters.

We show that priors can be added with minimal extra cost to all of the algorithms in Parts 1–3.

Next we consider the addition of priors on both the warp and appearance parameters. Image align-

ment with appearance variation was covered in Part 3. For each algorithm in Part 3, we describe

whether priors can be placed on the appearance parameters or not, and if so what the cost is.

Keywords: Image alignment, unifying framework, the Lucas-Kanade algorithm, the inverse com-

positional algorithm, priors on the parameters, linear appearance variation, robust error functions.



1 Introduction

Image alignment consists of moving, and possibly deforming, a template to minimize the differ-

ence between the template and an image. Since its first use in the Lucas-Kanade algorithm [16],

image alignment has become one of the most widely used techniques in computer vision. Besides

optical flow, some of its other applications include tracking [8,14], parametric and layered motion

estimation [7], mosaic construction [19], medical image registration [9], and face coding [10, 17].

The usual approach to image alignment is gradient descent. A variety of other numerical algo-

rithms have also been proposed [13], but gradient descent is the defacto standard. We propose a

unifying framework for image alignment, describing the various algorithms and their extensions in

a consistent manner. Throughout the framework we concentrate on the inverse compositional algo-

rithm, an efficient algorithm that we recently proposed [3,5]. We examine which of the extensions

to the Lucas-Kanade algorithm can be applied to the inverse compositional algorithm without any

significant loss of efficiency, and which extensions require additional computation.

In this paper, the fourth and final part in the series, we cover the addition of priors on the

parameters. We begin in Section 3 by considering priors on the warp parameters. We first show

how to add priors on the inefficient Lucas-Kanade algorithm. We then proceed to show how the

efficient inverse compositional algorithm [5] can be extended to allow priors on the parameters

with minimal extra cost. We then briefly outline how the same approach can be used for all of the

other algorithms in Parts 1-3 [1, 2, 4]. We end by describing a variety of applications.

In Section 4 we cover the addition of priors on both the warp and appearance parameters.

Image alignment with linear appearance variation was covered in Part 3 [1] of this series. We

begin Section 4 by describing how the simultaneous inverse compositional algorithm [1] can be

extended to allow priors on both the warp and appearance parameters. For each algorithm in Part 3,

we then describe whether priors can be placed on the appearance parameters or not, and if so what

1



the cost is. We end by describing a few applications of priors on the appearance parameters.

2 Review of Parts 1–3

2.1 Background: The Lucas-Kanade Algorithm

The original image alignment algorithm was the Lucas-Kanade algorithm [16]. The goal of Lucas-

Kanade is to align a template image to an input image , where is a column

vector containing the pixel coordinates. If the Lucas-Kanade algorithm is being used to track an

image patch from time to time , the template is an extracted sub-region (a

window, maybe) of the image at and is the image at .

Let denote the parameterized set of allowed warps, where is a

vector of parameters. The warp takes the pixel in the coordinate frame of the template

and maps it to the sub-pixel location in the coordinate frame of the image . If we are

tracking a large image patch moving in 3D we may consider the set of affine warps:

(1)

where there are 6 parameters as, for example, was done in [7]. In gen-

eral, the number of parameters may be arbitrarily large and can be arbitrarily complex.

One example of a complex warp is the set of piecewise affine warps used in [3, 10, 18].

2.1.1 Goal of the Lucas-Kanade Algorithm

The goal of the Lucas-Kanade algorithm is to minimize the sum of squared error between two

images, the template and the image warped back onto the coordinate frame of the template:

(2)

2



Warping back to compute requires interpolating the image at the sub-pixel loca-

tions . The minimization in Equation (2) is performed with respect to and the sum is

performed over all of the pixels in the template image . Minimizing the expression in Equa-

tion (2) is a non-linear optimization even if is linear in because the pixel values

are, in general, non-linear in . In fact, the pixel values are essentially un-related to the pixel

coordinates . To optimize the expression in Equation (2), the Lucas-Kanade algorithm assumes

that a current estimate of is known and then iteratively solves for increments to the parameters

; i.e. the following expression is (approximately) minimized:

(3)

with respect to , and then the parameters are updated:

(4)

These two steps are iterated until the estimates of the parameters converge. Typically the test for

convergence is whether some norm of the vector is below a threshold ; i.e. .

2.1.2 Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-Newton gradient descent non-linear optimization

algorithm) is then derived as follows. The non-linear expression in Equation (3) is linearized by

performing a first order Taylor expansion of to give:

(5)

In this expression, is the gradient of image evaluated at ; i.e. is

computed in the coordinate frame of and then warped back onto the coordinate frame of using

3



the current estimate of the warp . (We follow the notational convention that the partial

derivatives with respect to a column vector are laid out as a row vector. This convention has the

advantage that the chain rule results in a matrix multiplication, as in Equation (5).) The term

is the Jacobian of the warp. If then:

(6)

For example, the affine warp in Equation (1) has the Jacobian:

(7)

Equation (5) is a least squares problem and has a closed from solution which can be derived as

follows. The partial derivative of the expression in Equation (5) with respect to is:

(8)

Then denote:

(9)

the steepest descent images. Setting the expression in Equation (8) to equal zero and solving gives

the closed form solution of Equation (5) as:

(10)

where is the (Gauss-Newton approximation to the) Hessian matrix:

(11)

4



The Lucas-Kanade Algorithm

Iterate:
(1) Warp with to compute
(2) Compute the error image using Equation (12)
(3) Warp the gradient with
(4) Evaluate the Jacobian at
(5) Compute the steepest descent images using Equation (9)
(6) Compute the Hessian matrix using Equation (11)
(7) Compute
(8) Invert the Hessian and compute
(9) Update the parameters

until

Figure 1: The Lucas-Kanade algorithm [16] consists of iteratively applying Equations (10) & (4) until the
estimates of the parameters converge. Typically the test for convergence is whether some norm of the
vector is below a user specifi ed threshold . Because the gradient must be evaluated at
and the Jacobian must be evaluated at , all 9 steps must be repeated in every iteration of the algorithm.

and:

(12)

is the error image. The Lucas-Kanade algorithm, summarized in Figure 1, consists of iteratively

applying Equations (10) and (4). Because the gradient must be evaluated at and the

Jacobian at , they both depend on . In general, therefore, both the steepest-descent images

and the Hessian must be recomputed in every iteration of the algorithm. See Figure 1.

2.1.3 Computational Cost of the Lucas-Kanade Algorithm

Assume that the number of warp parameters is and the number of pixels in is . Step 1 of the

Lucas-Kanade algorithm usually takes time . For each pixel in we compute

and then sample at that location. The computational cost of computing depends on

but for most warps the cost is per pixel. Step 2 takes time . Step 3 takes the

same time as Step 1, usually . Computing the Jacobian in Step 4 also depends on but

for most warps the cost is per pixel. The total cost of Step 4 is therefore . Step 5

5



Table 1: The computational cost of one iteration of the Lucas-Kanade algorithm. If is the number of warp
parameters and is the number of pixels in the template , the cost of each iteration is . The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time .

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

takes time , Step 6 takes time , and Step 7 takes time . Step 8 takes time

to invert the Hessian matrix and time to multiply the result by the steepest descent

parameter updated computed in Step 7. Step 9 just takes time to increment the parameters

by the updates. The total computational cost of each iteration is therefore , the most

expensive step being Step 6. See Table 1 for a summary of these computational costs.

2.2 Part 1: The Inverse Compositional Algorithm

2.2.1 Goal of the Inverse Compositional Algorithm

As a number of authors have pointed out, there is a huge computational cost in re-evaluating

the Hessian in every iteration of the Lucas-Kanade algorithm [11, 14, 19]. If the Hessian were

constant it could be precomputed and then re-used. In [5] we proposed the inverse compositional

algorithm as a way of reformulating image alignment so that the Hessian is constant and can be

precomputed. Although the goal of the inverse compositional algorithm is the same as the Lucas-

Kanade algorithm (see Equation (2)) the inverse compositional algorithm iteratively minimizes:

(13)

with respect to and then updates the warp:

(14)

The expression:

(15)

6



is the composition of 2 warps. For example, if is the affine warp of Equation (1) then:

(16)

i.e. the parameters of are:

(17)

a simple bilinear combination of the parameters of and . The expression

is the inverse of . The parameters of are:

(18)

If , the affine warp is degenerate and not invertible. All

pixels are mapped onto a straight line in . We exclude all such affine warps from consideration.

The Lucas-Kanade algorithm iteratively applies Equations (3) and (4). The inverse composi-

tional algorithm iteratively applies Equations (13) and (14). Perhaps somewhat surprisingly, these

two algorithms can be shown to be equivalent to first order in . They both take the same steps

as they minimize the expression in Equation (2). See [4] for the proof of equivalence.

7



2.2.2 Derivation of the Inverse Compositional Algorithm

Performing a first order Taylor expansion on Equation (13) gives:

(19)

Assuming that is the identity warp, the solution to this least-squares problem is:

(20)

where are the steepest-descent images with replaced by :

(21)

is the Hessian matrix computed using the new steepest-descent images:

(22)

and the Jacobian is evaluated at . Since there is nothing in either the steepest-descent

images or the Hessian that depends on , they can both be pre-computed. The inverse composition

algorithm is summarized in Figures 2 and 3.

2.2.3 Computational Cost of the Inverse Compositional Algorithm

The inverse compositional algorithm is far more computationally efficient than the Lucas-Kanade

algorithm. See Table 2 for a summary. The most time consuming steps, Steps 3–6, can be per-

formed once as a pre-computation. The pre-computation takes time . The only

additional cost is inverting and composing it with . These two steps typically

require operations, as for the affine warp in Equations (16) and (18). Potentially these 2

8



The Inverse Compositional Algorithm

Pre-compute:
(3) Evaluate the gradient of the template
(4) Evaluate the Jacobian at
(5) Compute the steepest descent images using Equation (21)
(6) Compute the Hessian matrix using Equation (22) and invert it

Iterate:
(1) Warp with to compute
(2) Compute the error image using Equation (12)
(7) Compute
(8) Compute
(9) Update the warp

until

Figure 2: The inverse compositional algorithm [3, 5]. All of the computationally demanding steps are
performed once in a pre-computation step. The main algorithm simply consists of image warping (Step 1),
image differencing (Step 2), image dot products (Step 7), multiplication with the inverse of the Hessian
(Step 8), and the update to the warp (Step 9). All of these steps are effi cient and take time .

Table 2: The computation cost of the inverse compositional algorithm. The one time pre-computation cost
of computing the steepest descent images and the Hessian in Steps 3-6 is . After that, the cost
of each iteration is a substantial saving over the Lucas-Kanade iteration cost of .

Pre- Step 3 Step 4 Step 5 Step 6 Total
Computation

Per Step 1 Step 2 Step 7 Step 8 Step 9 Total
Iteration

steps could be fairly involved, as in [3], but the computational overhead is almost always com-

pletely negligible. Overall the cost of the inverse compositional algorithm is per

iteration rather than for the Lucas-Kanade algorithm, a substantial saving.

2.3 Part 2: The Choice of the Error Function

In Part 2 [2] we extended the inverse compositional algorithm to fit with a weighted L2 norm:

(23)

9



1 2 3 4 5 6
−0.06

−0.04

−0.02

0

0.02

1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4 x 107

1 2 3 4 5 6
−0.5

0

0.5

1

1.5

Warped

Parameter Updates
Inverse Hessian

Hessian

Error
SD Parameter Updates

Template Gradients Jacobian

Template

Image

Warp Parameters

Steepest Descent Images

Step 8

Step 7

Step 9

Step 7

Step 3

Step 2

Step 4

Step 6

Step 1

Step 5

+ -

Figure 3: A schematic overview of the inverse compositional algorithm. Steps 3-6 (light-color arrows)
are performed once as a pre-computation. The main algorithm simply consists of iterating: image warping
(Step 1), image differencing (Step 2), image dot products (Step 7), multiplication with the inverse of the
Hessian (Step 8), and the update to the warp (Step 9). All of these steps can be performed effi ciently.

where is an arbitrary symmetric, positive definite quadratic form. The Euclidean L2 norm

is the special case where ; i.e. if and otherwise.

We therefore refer to the original inverse compositional algorithm as the Euclidean inverse com-

positional algorithm. The inverse compositional algorithm with a weighted L2 norm runs just as

fast as the Euclidean inverse compositional algorithm. In Part 2 [2] we also extended the inverse

10



compositional algorithm to fit with a robust error function:

(24)

where is a symmetric robust error function [15]. The naive robust inverse compositional al-

gorithm (iteratively reweighted least squares) is far less efficient than the Euclidean algorithm.

However, we described and evaluated two efficient approximations to the robust inverse composi-

tional algorithm, one using the H-algorithm [12], the other using spatial coherence of .

2.4 Part 3: Linear Appearance Variation

In Part 3 [1] we considered linear appearance variation described by a set , , of

known appearance variation images. We first considered the Euclidean L2 norm: i.e. how to fit:

(25)

simultaneously with respect to the warp and appearance parameters, and . We

described the inefficient simultaneous inverse compositional algorithm, an efficient approximation

to the simultaneous algorithm, the efficient project out algorithm, and the efficient normalization

algorithm. We also considered fitting with a robust norm and linear appearance variation:

(26)

We described the inefficient robust simultaneous algorithm, the inefficient robust normalization

algorithm, and efficient approximation to both of these algorithms using spatial coherence.

11



3 Priors on the Warp Parameters

3.1 The Lucas-Kanade Algorithm with a Prior

3.1.1 Goal of the Algorithm

We assume that the prior on the warp parameters can be combined with the image alignment

goal in Equation (2) to give the expression:

(27)

to be minimized with respect to the warp parameters . The vector of functions contains the

prior on the parameters. It encourages the warp parameters to take values such that is

small. (Note that the prior term can be generalized from the Euclidean L2 norm of the

functions to the weighted L2 norm where is an arbitrary symmetric,

positive definite quadratic form. This generalization is analogous to the approach in Section 3 of

Part 2 [2].) Following the approach in Section 2.1.1 the Lucas-Kanade algorithm assumes that is

known and solves for additive updates to the warp parameters by approximately minimizing:

(28)

with respect to . The algorithm then updates the parameters .

3.1.2 Derivation of the Algorithm

The derivation of the algorithm then follows Section 2.1.2. The expression in Equation (28) is

linearized by performing first order Taylor expansions on the two terms to give:

(29)

12



The partial derivative of the expression in Equation (29) with respect to is:

(30)

Setting the expression in Equation (30) to equal zero and solving gives the closed form solution:

(31)

where the Hessian is:

(32)

These two expressions simplify to:

(33)

and:

(34)

The Lucas-Kanade algorithm with a prior then consists of iteratively applying Equation (33) and

updating the warp parameters additively . The algorithm is summarized in Figure 4.

3.1.3 Computational Cost

Assume that the time taken to evaluate both and is for each . Steps 2 and 5

therefore take an additional time . Step 6 takes extra time and Step 7 . The

overall algorithm therefore takes per iteration, compared to

13



The Lucas-Kanade Algorithm with a Prior

Iterate:
(1) Warp with to compute
(2) Compute the error image and
(3) Warp the gradient with
(4) Evaluate the Jacobian at
(5) Compute the steepest descent images and
(6) Compute the Hessian matrix using Equation (32)

(7) Compute
(8) Invert the Hessian and compute using Equation (33)
(9) Update the parameters

until

Figure 4: The Lucas-Kanade algorithm with a prior consists of iteratively applying Equations (33) and
(4). As well as computing the steepest descent images, the algorithm needs to compute the steepest descent
direction of the prior . The Hessian is the sum of the Lucas-Kanade Hessian and the
Hessian of . Overall the algorithm is little slower than the Lucas-Kanade algorithm itself.

Table 3: The computational cost of one iteration of the Lucas-Kanade algorithm with a prior. Steps 2, 5, and
7 take extra time and Step 6 . Since is usually small all , the extra computational
cost is negligible compared to the cost of the conventional Lucas-Kanade algorithm.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Step 7 Step 8 Step 9 Total

for the conventional Lucas-Kanade algorithm. Since is usually small and , the extra

computational cost is negligible. The computational cost is summarized in Table 3.

3.2 The Inverse Compositional Algorithm with a Prior

3.2.1 Goal of the Algorithm

To derive the inverse compositional algorithm with a prior, we need the equivalent of Equation (28)

in the inverse compositional framework. The first term is dealt with as in Section 2.2.1. The

second term is more problematic. When we use the inverse compositional algorithm, we effectively

14



reparameterize the problem. This new parameterization needs to be reflected in the second term.

Remember that with the inverse compositional algorithm, the update to the warp is:

(35)

Let denote the parameters of . For example, for the affine warp in

Section 2, is derived by combining Equations (17) and (18). For simplicity, approximate the

parameters of with the first order approximation . We therefore have:

(36)

When we compute in the inverse compositional algorithm, the first order equivalent additive

update to the warp parameters is:

(37)

For the affine warp above:

(38)

The equivalent of Equation (28) in the inverse compositional framework is then:

(39)

15



3.2.2 Derivation of the Algorithm

The derivation of the algorithm then follows Section 2.2.2. The expression in Equation (39) is

linearized by performing first order Taylor expansions on the two terms to give:

(40)

The minimum of this quadratic has the closed form solution:

(41)

where the Hessian is:

(42)

These expressions simplify to:

(43)

and:

(44)

The inverse compositional algorithmwith a prior (see Figure 5) then consists of iteratively applying

Equation (43) and updating the warp .

3.2.3 Computational Cost

Assuming that it takes time to evaluate , the inverse compositional algorithmwith a prior

requires extra computation in Step 2, and in Steps 5a, 6a, and 7. An extra is

16



The Inverse Compositional Algorithm with a Prior

Pre-compute:
(3) Evaluate the gradient of the template
(4) Evaluate the Jacobian at
(5) Compute the steepest descent images using Equation (21)
(6) Compute the Hessian matrix using Equation (22)

Iterate:
(1) Warp with to compute
(2) Compute the error image and
(5a) Compute
(6a) Compute the Hessian matrix using Equation (44)

(7) Compute
(8) Invert the Hessian and compute using Equation (43)
(9) Update the warp

until

Figure 5: The inverse compositional algorithm with a prior consists of iteratively applying Equations (43)
and (14). In addition to the steps taken by the Euclidean inverse compositional algorithm, the algorithm must
compute the error in the prior (Step 2), the steepest descent direction for the prior (Step 5a), the combined
Hessian (Step 6a), the modifi ed steepest descent update (Step 7) and the Gauss-Newton update (Step 8).

Table 4: The inverse compositional algorithm with a prior requires extra computation in Step 2,
in Steps 5a, 6a, and 7. Overall, the algorithm takes time per iteration. Assum-

ing , the extra computational cost over the original inverse compositional algorithm is negligible.

Pre- Step 3 Step 4 Step 5 Step 6 Total
Computation

Per Step 1 Step 2 Step 5a Step 6a Step 7
Iteration

Step 8 Step 9 Total

also required in Step 8 to invert the Hessian. Overall, the algorithm takes time

per iteration, compared with for the inverse compositional algorithm. See Table 2.

Assuming and , the extra computational cost is negligible. The computational

cost of the inverse compositional algorithm with a prior is summarized in Table 4.

17



3.3 Extensions to the Inverse Compositional Algorithm

A natural question at this point is whether a prior on the warp parameters can be added to all the

extensions to the inverse compositional algorithm in Parts 1–3. The answer is yes. The changes

that need to be made are always the same, and so the details are omitted: (1) the extra term

must be added to the steepest descent parameter updates in Step 7, and

(2) the extra term must be added to the Hessian. In the simultaneous

inverse compositional algorithm in Part 3 (and all its variants), the steepest descent parameter

update is an dimensional vector (where there are warp and appearance parameters) and

the Hessian is a dimensional matrix. In these cases, the extra terms are added

to the appropriate sub-vector and sub-matrix corresponding to the warp parameters. In all cases,

the extra computational cost is , which if , is always negligibly small.

3.4 Applications

There are a wide variety of applications of putting priors on the warp parameters. We just mention

three, although plenty more exist. The first example is to impose smoothness priors on the warp,

as for example was done in [6]. The second example is to constrain a 2D AAM so that it is a valid

instance of a 3D shape model, as in [20]. The final example is to constrain the shape parameters of

an Active Appearance Model to remain within the bounds learnt from the training data [17]; e.g.

to remain withing three standard deviations of the mean shape.

18



4 Priors on the Warp and Appearance Parameters

4.1 Review: The Simultaneous Inverse Compositional Algorithm

4.1.1 Goal of the Algorithm

In [1] we considered the optimization of:

(45)

simultaneously with respect to the warp and appearance parameters, and .

The first algorithm we considered was the simultaneous inverse compositional algorithm. The

simultaneous inverse compositional algorithm uses the inverse compositional parameter update on

the warp parameters. The appearance parameters are updated additively. Composition does not

have any meaning for them. The algorithm operates by iteratively minimizing:

(46)

simultaneously with respect to and , and then updating the warp

and the appearance parameters .

4.1.2 Derivation of the Algorithm

Performing a first order Taylor expansion on and in Equation (46),

and assuming as in Section 2.2.2 that is the identity warp, gives:

(47)

19



Neglecting second order terms, the above expression simplifies to:

(48)

To simplify the notation, denote:

(49)

i.e. is an dimensional column vector containing the warp parameters concatenated with

the appearance parameters . Similarly, denote the dimensional steepest-descent images:

(50)

Finally, denote the modified error image:

(51)

Equation (48) then simplifies to:

(52)

the minimum of which is attained at:

(53)

where is the Hessian with appearance variation:

(54)

20



The Simultaneous Inverse Compositional Algorithm

Pre-compute:
(3) Evaluate the gradients and for
(4) Evaluate the Jacobian at

Iterate:
(1) Warp with to compute
(2) Compute the error image using Equation (51)
(5) Compute the steepest descent images using Equation (50)
(6) Compute the Hessian matrix using Equation (54) and invert it
(7) Compute
(8) Compute
(9) Update and

until

Figure 6: The simultaneous inverse compositional algorithm for appearance variation operates by iteratively
applying Equations (50), (51), (53), and (54) to compute . The incremental updates to the warp and
appearance parameters are then extracted from and used to update the parameters in Step 9. Because
the steepest descent images depend on the appearance parameters (see Equation (50)), Steps (5) and (6) must
be performed in every iteration. See Table 5 for a summary of the computational cost.

In summary, the simultaneous inverse compositional algorithm for appearance variation proceeds

by iteratively applying Equations (50), (51), (53), and (54) to compute . The incremental

updates to the warp and appearance parameters are then extracted from and used to

update the warp and the appearance parameters .

Unfortunately the steepest descent images depend on the (appearance) parameters and so must

be re-computed in every iteration. The result is the algorithm summarized in Figure 6.

4.1.3 Computational Cost

Overall the simultaneous inverse compositional algorithm is even slower than the Lucas-Kanade

algorithm because the computational cost of most of the steps depends on the total number of

parameters rather than just the number of warp parameters . See Table 5 for a summary.

Also see [1] for an efficient approximation to the simultaneous inverse compositional algorithm, as

well as two other efficient algorithms, the project out algorithm and the normalization algorithm.

21



Table 5: The computation cost of the simultaneous inverse compositional algorithm. Overall the algorithm
is even slower than the Lucas-Kanade algorithm because the computational cost of most of the steps depends
on the total number of parameters rather than just the number of warp parameters .

Pre- Step 3 Step 4 Total
Computation

Per Step 1 Step 2 Step 5 Step 6
Iteration

Step 7 Step 8 Step 9 Total

4.2 The Simultaneous Inverse Compositional Algorithm with a Prior

4.2.1 Goal of the Algorithm

We assume that the prior on the warp and appearance parameters can be combined with the

image alignment goal in Equation (45) to give the expression:

(55)

to be minimized simultaneously with respect to the warp and appearance parameters, and

. The vector of functions contains the prior on the parameters. It encourages the

warp and appearance parameters to take values such that is small. As in Section 4.1.1,

we use the inverse compositional parameter update on the warp parameters and the additive update

on the appearance parameters. The algorithm operates by iteratively minimizing:

(56)

22



simultaneously with respect to and , and then updating the warp

and the appearance parameters .

4.2.2 Derivation of the Algorithm

Performing first order Taylor expansions on the two terms in Equation (56) gives:

(57)

Denote the steepest descent direction of the prior by:

(58)

Equation (57) then simplifies to:

(59)

The minimum of this expression is attained at:

(60)

where is the Hessian:

(61)

The simultaneous inverse compositional algorithm with a prior proceeds by iteratively applying

Equation (60) and updating the warp and the appearance

parameters . The algorithm is summarized in Figure 7.

23



The Simultaneous Inverse Compositional Algorithm

Pre-compute:
(3) Evaluate the gradients and for
(4) Evaluate the Jacobian at

Iterate:
(1) Warp with to compute
(2) Compute the error image and
(5) Compute the steepest descent images and
(6) Compute the Hessian matrix using Equation (61) and invert it
(7) Compute
(8) Compute using Equation (60)
(9) Update and

until

Figure 7: The simultaneous inverse compositional algorithm with a prior. In Steps 2, 5, 6, 7, and 8,
additional processing is required for the prior , but otherwise the flow of the algorithm is the same.

Table 6: The computation cost of the simultaneous inverse compositional algorithm with a prior. Assuming
, the extra computational cost over the simultaneous inverse compositional algorithm is negligible.

Pre- Step 3 Step 4 Total
Computation

Per Step 1 Step 2 Step 5
Iteration

Step 6 Step 7

Step 8 Step 9 Total

4.2.3 Computational Cost

Assume that the time taken to evaluate both and is for each . Step 2

therefore requires extra time , Step 5 requires , Step 6 requires

, and Step 7 requires . Overall, the extra computational cost is

which is negligible if . The computational cost is summarized in Table 6.

24



4.3 Extension to Other Algorithms

Although a prior on the warp parameters can be added to all of the algorithms in Parts 1-3, the same

is not true of a prior on the warp and appearance parameters. A prior on the warp and appearance

parameters cannot even be added to all the algorithms in Part 3. Such a prior can be added to the

efficient and robust extensions of the simultaneous inverse compositional algorithm. See Part 3. A

prior on the appearance parameters, however, cannot be applied to the other algorithms in Part 3.

In particular a prior on the appearance parameters cannot be added to either the project out or

normalization algorithms (on any of their variants.) Neither of those algorithms explicitly solves

for the appearance parameters using gradient descent. Instead, the appearance parameters as solved

for implicitly using linear algebra. In general, the prior of the appearance parameters will not be

a linear constraint and so the closed form solutions for the appearance parameters used by both of

those algorithms are inapplicable. Hence, when placing a prior on the appearance parameters, one

of the variants of the simultaneous inverse compositional algorithm must be used.

4.4 Applications

Perhaps the most natural application of priors on the appearance parameters is to constrain the

(shape and) appearance of an Active Appearance Model to remain within the bounds learnt from

the training data [17]; e.g. to remain withing three standard deviations of the mean.

5 Conclusion

5.1 Summary

We have shown how to add priors on the parameters to the algorithms considered in Parts 1–3 of

this series [1,2,4]. In Section 3 we considered priors on the warp parameters. We first showed how

a prior on the warp parameters can be added to the Euclidean inverse compositional algorithm.

25



We then described how the same approach can be used with all of the other algorithms in Parts 1–

3 [1, 2, 4]. In all cases, the extra computational cost is generally very small.

In Section 4 we considered priors on the warp and appearance parameters. We showed how

such a prior can be added to the simultaneous inverse compositional algorithm, and its variants [1].

The same approach is not applicable to the other algorithms in Part 3 [1], in particular the project

out and normalization algorithms. These algorithms do not explicitly solve for the appearance

parameters using gradient descent. Instead they solve for the appearance implicitly using closed

form solutions that are no longer applicable when a prior is placed on the appearance parameters.

5.2 Discussion

In the previous parts of this series we discussed which algorithm is the best one to use. If a prior on

the warp parameters is all that is needed, the answer is the same as without the prior (and depends

on the exact situation, as discussed in Parts 1–3.) The additional computational cost is roughly

the same for all algorithms, and is generally negligible (unless the prior is computationally time

consuming to evaluate.) If a prior on both the warp and appearance parameters is needed (or just a

prior on the appearance parameters), the only options are the simultaneous inverse compositional

algorithm. The only choice then is whether to use the efficient approximation or not.

5.3 Future Work

Although the Lucas-Kanade algorithm is now well over 20 years old [16], the subject still remains

of substantial research interest. Recent developments in linear appearance modeling [8, 10, 14, 17]

have made the subject even more relevant. Ultimately, the subject retains its interest because

the Lucas-Kanade algorithms minimizes one of the two most fundamental distance measures in

computer vision, the image intensity difference (the other error function being the distance between

features). There are a wide variety of possible areas for future work, including, but not limited to,

26



avoiding local minimal, aligning filtered images, and 3D to 2D image alignment.

Acknowledgments
The research described in this paper was conducted under U.S. Department of Defense contract
N41756-03-C4024.

References
[1] S. Baker, R. Gross, and I. Matthews. Lucas-Kanade 20 years on: A unifying framework:

Part 3. Technical Report CMU-RI-TR-03-35, Robotics Institute, Carnegie Mellon University,
2003.

[2] S. Baker, R. Gross, I. Matthews, and T. Ishikawa. Lucas-Kanade 20 years on: A unify-
ing framework: Part 2. Technical Report CMU-RI-TR-03-01, Robotics Institute, Carnegie
Mellon University, 2003.

[3] S. Baker and I. Matthews. Equivalence and efficiency of image alignment algorithms. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 1,
pages 1090–1097, 2001.

[4] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework: Part 1. Tech-
nical Report CMU-RI-TR-02-16, Robotics Institute, Carnegie Mellon University, 2003.

[5] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. International
Journal of Computer Vision, 56(3):221–255, 2004.

[6] S. Baker, I. Matthews, and J. Schneider. Image coding with active appearance models. Tech-
nical Report CMU-RI-TR-03-13, Robotics Institute, Carnegie Mellon University, April 2003.

[7] J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani. Hierarchical model-based motion
estimation. In Proceedings of the European Conference on Computer Vision, pages 237–252,
1992.

[8] M. Black and A. Jepson. Eigen-tracking: Robust matching and tracking of articulated objects
using a view-based representation. International Journal of Computer Vision, 36(2):101–130,
1998.

[9] G.E. Christensen and H.J. Johnson. Image consistent registration. IEEE Transactions on
Medical Imaging, 20(7):568–582, 2001.

[10] T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.

[11] F. Dellaert and R. Collins. Fast image-based tracking by selective pixel integration. In Pro-
ceedings of the ICCV Workshop on Frame-Rate Vision, pages 1–22, 1999.

27



[12] R. Dutter and P.J. Huber. Numerical methods for the nonlinear robust regression problem.
Journal of Statistical and Computational Simulation, 13:79–113, 1981.

[13] M. Gleicher. Projective registration with difference decomposition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 331–337, 1997.

[14] G.D. Hager and P.N. Belhumeur. Efficient region tracking with parametric models of ge-
ometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(10):1025–1039, 1998.

[15] P.J. Huber. Robust Statistics. John Wiley & Sons, 1981.

[16] B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 674–679, 1981.

[17] I. Matthews and S. Baker. Active Appearance Models revisited. International Journal of
Computer Vision, 2004. In Press.

[18] S. Sclaroff and J. Isidoro. Active blobs. In Proceedings of the 6th IEEE International Con-
ference on Computer Vision, pages 1146–1153, 1998.

[19] H.-Y. Shum and R. Szeliski. Construction of panoramic image mosaics with global and local
alignment. International Journal of Computer Vision, 16(1):63–84, 2000.

[20] J. Xiao, S. Baker, I. Matthews, and R. Gross. Real-time combined 2D+3D active appearance
models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2004. In Press.

28


