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Abstract—The automatic construction of Active Appearance Models (AAMs) is

usually posed as finding the location of the base mesh vertices in the input training

images. In this paper, we repose the problem as an energy-minimizing image

coding problem and propose an efficient gradient-descent algorithm to solve it.

Index Terms—Active Appearance Models, automatic construction, unsupervised

learning, image coding, inverse compositional image alignment, quadratic

smoothness priors.
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1 INTRODUCTION

ACTIVE Appearance Models (AAMs) [5] and the closely related
concepts of Active Blobs [21] and 3D Morphable Models (3DMMs)
[22], [15], [3] are nonlinear, generative models of a certain visual
phenomenon. The most frequent application of AAMs to date has
been face modeling [17]; however, AAMs and 3DMMs may be
useful for modeling other phenomena as well [21], [15].

AAMs are normally constructed from training images in which

the location of the AAM shape mesh vertices are hand-marked.

Recently, the task of automatically constructing AAMs (i.e.,

without hand-marking the mesh) has received a great deal of

attention. The most common approach is to use some form of

motion estimation to precompute the location of the model mesh in

the training images. One such technique is optical flow [15], [4]. A

very closely related approach is to nonrigidly align the training

data and the model [20]. Finally, feature-point tracking has also

been used [23]. All of these approaches are pragmatic and lack

elegance. Ultimately, they use an ad hoc motion estimation

technique to estimate the training data that would have been

marked by hand. Hence, they are limited by the assumptions made

by the motion estimation algorithms. The optical flow approaches

only work when the optical flow algorithms work and the feature

point tracking algorithms only work when there are strong, well-

defined features to track.
In this paper, we pose the problem of automatically construct-

ing an AAM as an image coding problem. In this respect, the

closest related work is that of Davies et al. who posed the problem

of automatically constructing a statistical shape model (as opposed

to an AAM) as a coding problem [7], [6]. Image coding is the task

of representing a set of images as accurately as possible with a

fixed number of parameters (or bits, even). Perhaps the most well-

known image coding problem is the one that leads to Principal

Components Analysis (PCA) [13]. Even though PCA is optimal (in

a certain sense), its coding power is limited. Often a very large

number of parameters are needed to code a set of images

accurately. The problem with PCA is that the coding is linear in

the pixel intensities. Nonlinear coding schemes, such as ones based

on AAMs, can be far more powerful.

Another closely related body of work is the unsupervised

learning literature where a number of approaches have recently

been proposed that simultaneously solve for an appearance model

and the parameters of a transformation relating the images [10],

[11], [16]. Most of these approaches, however, assume that the set

transformations, or shape component, is given a priori; i.e., it is

independent of the training data rather than being learnt from the

training data. When constructing an AAM, however, the shape

basis is unknown and must be solved for. More recently, there has

been some work on simultaneously learning both a shape model

and an appearance model [14], [12]. This work is perhaps the most

closely related work to ours in the unsupervised learning

literature. Our algorithm can be regarded as solving a similar

problem to that of [14], [12], but for the more powerful AAM

model of Cootes and Taylor [5], with all the benefits that entails. In

a sense, it is a combination of the AAM modeling work of [5] and

the unsupervised learning work of [14]. Our algorithm is also

closely related to the unsupervised learning of generative,

graphical models [8], [9].

2 BACKGROUND: LINEAR CODING AND PCA

Suppose we are given a set of N example training images from the

set to be coded: IiðxÞ where i ¼ 1; 2; . . . ; N and where x ¼ ðx; yÞT
are the pixel coordinates. The coding goal is to represent these

images as accurately as possible using the following Linear

Appearance Model:

LAMðx; ��Þ � A0ðxÞ þ
Xn
j¼1

�jAjðxÞ; ð1Þ

where A0ðxÞ; A1ðxÞ; . . . ; AnðxÞ are a set of constant basis images and

�� ¼ ð�1; . . . ; �nÞT are a set of coding parameters. In common vision

terminology “appearance” means pixel intensities IiðxÞ or

LAMðx; ��Þ [19]. Note that without loss of generality we can

assume that the basis images AjðxÞ are orthonormal.
The goal of coding is to make the model LAMðx;��Þ “as close as

possible” to each image IiðxÞ. We use the Euclidean L2 norm to

measure “as close as possible” and so minimize:

��i � ð�i
1; . . . ; �

i
nÞ

T � argmin
��

X
x2Ii

IiðxÞ � LAMðx; ��Þ
� �2

; ð2Þ

where (with a slight abuse of terminology) the summation is

performed over all of the pixels in the images Ii. (As is normal with

PCA, we assume that all the images Ii are the same size.)

2.1 Coding and Decoding

Suppose for now that the basis images AjðxÞ are known. Coding an

image IiðxÞ is then the process of estimating the coding parameters

��i ¼ ð�i
1; . . . ; �

i
nÞ

T for that image; i.e., performing the minimization

in (2). The solution to this least squares problem is:

�i
j ¼

X
x2Ii

AjðxÞ IiðxÞ �A0ðxÞ
� �

: ð3Þ

Coding an image is little more than n image dot-products which

can be performed very efficiently.
Decoding an image is reversing this process; i.e., generating the

model instance LAMðx; ��Þ by evaluating (1). Decoding an image is

therefore also a very efficient process.

2.2 Optimal Coding: Principal Components Analysis

We now address choice of the basis images AjðxÞ. This question is

normally posed as one of minimizing the total coding error in (2)

across all of the example images IiðxÞ:
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arg min
AjðxÞ

XN
i¼1

min
��

X
x2Ii

IiðxÞ � LAMðx;��Þ
� �2 !

: ð4Þ

It is well known that the minimum of this expression is attained

when the basis images AjðxÞ are the Principal Components of the

images IiðxÞ [13].

3 CODING WITH AAMS

The linear coding problem in Section 2 has the nice property that

there is a closed-form solution for the optimal Linear Appearance

Model (i.e., the basis functions.) The coding power of the optimal

Linear Appearance Model can be very weak, however. We now

consider coding with AAMs.

3.1 Active Appearance Models

There are two components to an Active Appearance Model (AAM)

[5], [18], its shape and its appearance. We first define each

component in turn and then how to generate a model instance. (We

follow the notation of [18] and, as in that paper, do not perform a

joint shape/appearance PCA.)

3.1.1 Shape

The shape of an AAM is defined by the vertex locations of a

triangulated mesh. The shape s of an AAM is a vector of the x and

y coordinates of the v vertices that make up the mesh:

s � ðx1; y1; x2; y2; . . . ; xv; yvÞT: ð5Þ

AAMs allow linear shape variation; i.e., the shape s can be

expressed as a base shape s0 plus a linear combination of m shape

vectors sj:

s � s0 þ
Xm
j¼1

pjsj; ð6Þ

where the coefficients pj are the shape parameters. See Fig. 1d for

an example. As in Section 2, wherever necessary we assume that

the shape vectors sj are orthonormal.

3.1.2 Appearance

As a convenient abuse of terminology, let s0 also denote the pixels

x ¼ ðx; yÞT that lie inside the base mesh s0. The appearance of an

AAM is an image AðxÞ defined over the pixels in the base mesh

x 2 s0. AAMs allow linear appearance variation; i.e., the appear-

ance AðxÞ can be expressed as a base appearance A0ðxÞ plus a

linear combination of n appearance images AjðxÞ:

AðxÞ � A0ðxÞ þ
Xn
j¼1

�jAjðxÞ 8 x 2 s0; ð7Þ

where the coefficients �j are the appearance parameters. See Fig. 1c

for an example. As in Section 2, wherever necessary we assume

that the images Aj are orthonormal.

3.1.3 Generating a Model Instance: Decoding

Given the shape parameters p ¼ ðp1; p2; . . . ; pmÞT, (6) can be used to

compute the shape s. Similarly, the appearance parameters �� ¼
ð�1; �2; . . . ; �nÞT can be used to compute the appearance AðxÞ. The
AAMmodel instance is then computed by warping the appearance

AðxÞ from the base mesh s0 onto the model shape s. In particular,

the pair of meshes s0 and s define a piecewise affine warp from s0
to s which we denote Wðx;pÞ. The AAM model instance is

computed by backwards warping the appearance A from s0 to s as

follows:

AAMðx;p;��Þ �AðW�1ðx;pÞÞ ¼ A0ðW�1ðx;pÞÞ

þ
Xn
j¼1

�jAjðW�1ðx;pÞÞ 8 x 2 s:
ð8Þ

Given a pixel w in s, the origin of this pixel under the warp is the

pixel W�1ðx;pÞ in s0. The appearance model is sampled at this

point and AAMðx;p;��Þ set to that value.

3.2 AAM Fitting: Image Coding

Analogously to Section 2.1, the goal of coding an image IiðxÞ with

an AAM is to minimize the Euclidean L2 error between the image

and the model:

argmin
p;��

X
x2Ii

IiðxÞ �AAMðx;p;��Þ
� �2

; ð9Þ

i.e., fit the AAM to Ii. Because AAMs are nonlinear in their shape

parameters p, (9) is a nonlinear optimization problem. Coding an

image is therefore subject to all of the difficulties associated with

nonlinear optimization, primarily local minima.
Another issue is computational efficiency. Performing a non-

linear optimization can be a slow process, especially with image

sized data. Fortunately, we have recently proposed an efficient

algorithm for fitting (coding with) AAMs [18]. Our algorithm

actually minimizes:

argmin
p;��

X
x2s0

IiðWðx;pÞÞ � A0ðxÞ þ
Xn
j¼1

�jAjðxÞ
 !" #2

: ð10Þ

There are two differences between (9) and (10): 1) the warp

Wðx;pÞ estimated in one is the inverse of that estimated in the

other, and 2) the error is computed in different reference frames,

the input image Ii and the model frame s0. The first of these

differences is not important; the warp can be inverted after it has

been estimated. The second difference is theoretically important;

strictly, the two error criteria weight the pixels differently and, so,

the optimal solution will be slightly different. In practice, however,

using (10) and then inverting Wðx; pÞ gives a good approximate

solution to (9). The benefit of coding an image this way is that the

solution of (10) can be performed far more efficiently. It can be

performed in real time (� 7ms or 150Hz) for typical AAMs [18].

Using (10) is therefore approximate, but very efficient. If efficiency

is not a concern, the straight-forward Gauss-Newton solution of (9)

can be used instead. The remainder of this paper is based on (10)

rather than (9). A similar, but slower, coding algorithm can also be

derived from (9).

3.3 Optimal Coding/Automatic Construction of AAMs

Analogously to Section 2.2, we now ask what is the best choice for

the AAM shape vectors sj, j ¼ 0; 1; . . . ;m, and the AAM

appearance images AjðxÞ, j ¼ 0; 1; . . . ; n. We pose this question

as minimizing the total coding error across all of the example

images IiðxÞ:

arg min
sj;AjðxÞ

XN
i¼1

min
p;��

X
x2s0

IiðWðx;pÞÞ
� 

� A0ðxÞ þ
Xn
j¼1

�jAjðxÞ
 !#21A:

ð11Þ

Pulling the inner “min” outside the summation requires that we

introduce an index on p and �� since a different set of coding

parameters will in general be needed for for each example image

IiðxÞ. This leaves the optimal AAM coding problem as minimizing:
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arg min
sj;AjðxÞ;pi ;��i

XN
i¼1

X
x2s0

IiðWðx;piÞÞ � A0ðxÞ þ
Xn
j¼1

�i
jAjðxÞ

 !" #2
:

ð12Þ

Equation (12) is another way to pose the automatic AAM

construction problem; i.e., find the AAM shape and appearance

basis vectors that represent the training images as accurately as

possible. Unlike the approach of trying to compute the correspon-

dence between the training images and the model [15], [4], [20],

[23], this formulation of the problem has a well defined optimality
criterion. This approach is similar to that of Davies et al. [7], [6]
who optimize a minimum description length criterion for
statistical shape models. The algorithm of [7], [6] is of course not
applicable to AAMs.

3.4 Solving the Optimal AAM Coding Problem

The minimization in (12) is a huge nonlinear optimization over a

very large number of variables. Solving it requires far more effort

than computing the eigenvectors of the covariance matrix (as in

PCA). We solve it by iteratively computing Aj, ��
i, sj, and pi in
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Fig. 1. Experimental results for a set of randomly generated square patterns. See text for details. (a) Example Inputs (4 of 100). (b) PCA Results: A0-A3. (c) AAM
Appearance: A0-A3. (d) AAM Shape s0, s0 þ 50s1 s0 þ 50s2, s0 þ 50s3. (e) PCA Reconstructed (Eight Appearance Parameters). (f) AAM Reconstructed (eight
Parameters, four Shape, four Appearance). (g) Error Plot.



turn, assuming where necessary that initial estimates of the others
are available. We initialize the algorithm by setting sj and pi to be
zero and using PCA to estimate Aj and ��i. We also need to specify
the number of shape components m. Like PCA, the algorithm
simultaneous generates results for any desired range of n, the
number of appearance parameters. Since the algorithm is quite
efficient, it can be run multiple times for different settings of m to
obtain the best trade off between shape and appearance. The
components of the AAM (Aj, ��

i, sj, and pi) are then updated in
turn as follows:

Updating Aj: If we know sj and pi we can compute the warp
Wðx; piÞ between the base mesh s0 and the mesh s ¼ si for each
input image Ii. The problem then reduces to a warped version
of the original linear coding problem. (When pi ¼ 0 this is the
original optimal linear coding problem.) We warp each image
onto the base mesh to give IiðWðx; piÞÞ. We then perform PCA
on these vectors, setting A0ðxÞ to be the mean vector and AjðxÞ,
j ¼ 1; . . . ; n, to be the eigenvectors of the covariance matrix with
the n largest eigenvalues.

Updating ��i: If sj and pi are known, we can again compute
Wðx;piÞ. If Aj are also known, we can then compute ��i with
the warped equivalent of (3):

�i
j ¼

X
x2s0

AjðxÞ IiðWðx;piÞÞ �A0ðxÞ
� �

: ð13Þ

Updating sj: We first assume that the mesh shape s is completely
free for every image Ii. Let Wðx; sÞ denote the piecewise affine
warp from the base mesh s0 to the mesh s. We then compute a
mesh si for each image Ii by minimizing:

si ¼ argmin
s

X
x2s0

IiðWðx; sÞÞ � A0ðxÞ þ
Xn
j¼1

�i
jAjðxÞ

 !" #2
ð14Þ

using our AAM fitting algorithm [18]. We then compute sj,
j ¼ 0; . . . ; m by performing PCA on the vectors si, setting s0 to
be the mean vector and sj to the eigenvectors of the covariance
matrix with the m largest eigenvalues.

Updating pi: If Aj and sj are known, this task is just a special
instance of the AAM fitting algorithm. We use the algorithm in
[18] to compute:

pi ¼ argmin
p

X
x2s0

IiðWðx;pÞÞ � A0ðxÞ þ
Xn
j¼1

�i
jAjðxÞ

 !" #2
: ð15Þ

The algorithm we have just described is a nonlinear optimiza-
tion and just like any other nonlinear optimization is prone to
falling into local minima. There are a variety of techniques that
can be used to help avoid local minima in image alignment
tasks such as those in (14) and (15). Typical examples include
processing on a Gaussian pyramid and using progressive
transformation complexity [2]. As well as using these heuristics,
we add one more to (14). Instead of optimizing (14), we actually
optimize

si ¼ argmin
s

X
x2s0

IiðWðx; sÞÞ � A0ðxÞ þ
Xn
j¼1

�i
jAjðxÞ

 !" #2
þsTQs;

ð16Þ

where sTQs is a quadratic form which encourages the mesh s to
deform smoothly. (We also project out the component of Q in
the subspace corresponding to the previous estimate of the
shape vectors sj to allow the mesh to move freely in that space.)
Note that to minimize the quantity in (16) our AAM fitting
algorithm [18] has to be modified slightly [1].

3.5 Experimental Results

In Fig. 1, we present the results of running our algorithm on a set of
100 randomly generated square patterns. Each pattern consists of
four equally sized squares arranged to produce a larger square.
The squares have randomly generated translations, rotations,
scales, and intensities. Fig. 1a includes four example inputs.
Because this data mostly consists of constant intensity regions,
using optical flow to align the inputs would not be possible. Hence,
methods such as [15], [4] are not applicable to this data. Also, since
the input is a random collection of images, rather than a video
sequence, using feature point tracking techniques like [23] would
also not be possible. Finally, it would even be hard to manually
ground-truth this data. We use a mesh consisting of 25 vertices. See
Fig. 1d. The “correct” location of every one of these “landmarks” in
every training image is in the middle of a constant intensity region.
It is therefore essentially impossible to mark by hand. In fact, this is
one of the additional benefits of our automatic algorithm: It does
not require that the mesh vertices correspond to “semantically
meaningful” points in the images.

The results of performing PCA on the data in Fig. 1a are
included in Fig. 1b and the results of reconstructing the input
images with eight eigenvectors are shown in Fig. 1e. The AAM
computed with our algorithm is shown in Figs. 1c and 1d. Fig. 1c
includes the appearance variation A0; A1; A2; A3. Fig. 1d illustrates
the shape variation. Specifically we plot: s0, s0 þ 50� s1,
s0 þ 50� s2, and s0 þ 50� s3. The results of reconstructing the
input images using the AAM with eight parameters (four shape,
four appearance) are shown in Fig. 1f. Finally, Fig. 1g plots the
RMS coding error (the square root of either (4) or (12)) per pixel as
a function of the number of combined AAM shape and appearance
parameters. (Note that the dynamic range of each parameter is
different and so a different number of bits would be needed to
code each parameter, with a given accuracy. Our application is
model building, however, not image coding, and we only aim to
minimize the number of parameters, not the total number of bits.)

Studying Fig. 1g, and comparing Figs. 1e and 1f, we see that the
automatically constructed AAM represents the input images very
well. Also, studying Figs. 1c and 1d, we see that our algorithm has
“learnt” that the input images consist of four equally sized squares
with different randomly generated intensities (see Fig. 1c) that can
be translated, rotated, and scaled (see Fig. 1d). This solution is
intuitively the optimal solution. The only reason that the coding
error in Fig. 1g does not become exactly zero after nþm ¼ 8

parameters is because of the interpolation errors around the edges
of the squares than can be best seen in Fig. 1c. In the accompanying
movie “ws.mpg,” we include an illustration of the algorithm
running on this data. In the movie, the top-left panel displays the
input image overlayed with the current estimate of the AAM mesh
for that image. The remainder of the top row displays the current
estimate of the shape in the same format as Fig. 1d. The bottom
row displays the current estimate of the AAM appearance
variation in the same format as Fig. 1c. For the data in Fig. 1 our
algorithm converged in 10 iterations, each iteration taking
approximately 45 seconds on a 2.0 GHz P4.

In Fig. 2, we present the results of our algorithm on 200 images
of a face. Fig. 2b includes the mean appearance and the first four
PCA eigenvectors. Fig. 2c includes the first AAM appearance
eigenvector and the first three shape eigenvectors. Again, the AAM
coding (see Fig. 2e) is far more accurate than the PCA coding (see
Figs. 2d and 2f).1 The accompanying movie “face.mpg” includes an
illustration of the algorithm running on this face data.

In Fig. 2e, we also overlay the locations of the two eyes and the
mouth computed by warping their locations from the mean face
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using the piecewise affine warp for each input image. These results
illustrate how our algorithm implicitly computes the correspon-
dence between the input images. Finally, we computed a measure

of the generalizability of the automatically computed AAM. We
computed how well the AAM could explain a subset of four
images withheld from the training data (but from the same
sequence.) The RMS pixel error for the four images was 3.8 gray-
levels, a substantial improvement over the same measure for PCA
of 9.5 gray-levels.

4 CONCLUSION

We have posed the automatic construction of AAMs as an image

coding problem. This approach should be compared with the
traditional approach of attempting to compute the correspondence
between the training samples and the AAM mesh and then
computing the AAM in the normal manner [15], [4], [20], [23]. Our
approach is more elegant, being posed in terms of a well-defined
optimality criterion (see (12)) and, more generally, since it can
operate on data (such as Fig. 1) for which neither optical flow nor
feature point tracking is possible. On the other hand, our
formulation does lead to a huge nonlinear optimization. Although

there are a variety of heuristics to help avoid local minima (see
Section 3.4), avoiding them is still a difficult task and, ultimately
for some datasets, the more pragmatic approach may be the
correspondence based approach.
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Fig. 2. Results on a set of face images. The input consists of 200 face images like
the five examples in (a). The output (c) consists of three AAM shape vectors and
one AAM appearance image. Comparing the AAM reconstruction using three
shape and one appearance parameters (e) against a PCA reconstruction with four
parameters (d), we find that the automatically computed AAM coding is far more
accurate than the optimal linear coding (PCA). The quantitative coding error is
shown in (f) and the PCA eigenvectors in (b). (a) Inputs (5 of 200), (b) PCA results,
(c) AAM, (d) PCA recons, (e) AAM recons, and (f) error plot.


