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Abstract

Since the Lucas-Kanade algorithm was proposed in 1981, image alignment has become one of
the most widely used techniques in computer vision. Applications range from optical flow, tracking
and layered motion, to mosaic construction, medical image registration, and face coding. Numer-
ous algorithms have been proposed and a wide variety of extensions have been made to the original
formulation. We present an overview of image alignment, describing most of the algorithms and
their extensions in a consistent framework. We concentrate on the inverse compositional algo-
rithm, an efficient algorithm that we recently proposed. We examine which of the extensions to
the Lucas-Kanade algorithm can be used with the inverse compositional algorithm without any
significant loss of efficiency, and which require extra computation. In this paper, Part 2 in a se-
ries of papers, we cover the choice of the error function. We first consider weighted L2 norms.

Afterwards we consider robust error functions.

Keywords: Image alignment, Lucas-Kanade, a unifying framework, the inverse compositional

algorithm, weighted L2 norms, robust error functions.



1 Introduction

Image alignment consists of moving, and possibly deforming, a template to minimize the differ-
ence between the template and an input image. Since the first use of image alignment in the Lucas-
Kanade algorithm [12], image alignment has become one of the most widely used techniques in
computer vision. Other applications include tracking [4, 9], parametric motion estimation [3],
mosaic construction [15], medical image registration [5], and face coding [1, 6].

The usual approach to image alignment is gradient descent [2]. A variety of other numerical
algorithms have also been proposed, but gradient descent is the defacto standard. We propose a
unifying framework for image alignment, describing the various algorithms and their extensions
in a consistent manner. Throughout the framework we concentrate on the inverse compositional
algorithm, an efficient algorithm that we recently proposed [1, 2]. We examine which of the exten-
sions to the Lucas-Kanade algorithm can be applied to the inverse compositional algorithm without
any significant loss of efficiency, and which extensions require additional computation. Wherever
possible we provide empirical results to illustrate the various algorithms and their extensions.

In this paper, Part 2 in a series of papers, we cover the choice of the error function. The
Lucas-Kanade algorithm [12] uses the Euclidean L2 norm (or sum of squared difference, SSD) to
measure the degree of fit between the template and the input image. This is not the only choice.
The most straightforward extension is use to a weighted L2 norm. We first show how the inverse
compositional algorithm can be extended to use an arbitrary weighted L2 norm. We describe three
applications of weighted L2 norms: (1) weighting the pixels with confidence values, (2) pixel
selection for efficiency, and (3) allowing linear appearance variation without any lost of efficiency.

Another natural extension is to use a robust error function. In the second part of this paper we
investigate how the inverse compositional algorithm can be extended to use a robust error function.
We first derive the iteratively reweighted least squares (IRLS) algorithm and show that it results in
a substantial loss of efficiency. Since the iteratively reweighted least squares algorithm is so slow,
we describe two efficient approximations to it: (1) the H-Algorithm described in [8] and used in
[9] and (2) an algorithm we recently proposed [11] that uses the spatial coherence of the outliers.

The remainder of this paper is organized as follows. We begin in Section 2 with a review
of the Lucas-Kanade and inverse compositional algorithms. In Section 3 we extend the inverse
compositional algorithm to use an arbitrary weighted L2 norm and describe its applications. We

proceed in Section 4 to study robust error functions, to investigate several iteratively reweighted



least squares algorithms, both efficient and inefficient. We conclude in Section 5 with a summary
and discussion. In future papers in this multi-part series we will cover various algorithms to allow

appearance variation, and various algorithms to add priors on the warp and appearance parameters.

2 Background: Image Alignment Algorithms

2.1 Lucas-Kanade

The original image alignment algorithm was the Lucas-Kanade algorithm [12]. The goal of Lucas-
Kanade is to align a template image 7'(x) to an input image I(x), where x = (z,y)T is a column
vector containing the pixel coordinates. If the Lucas-Kanade algorithm is being used to track an
image patch from time ¢ = 1 to time ¢t = 2, the template 7'(x) is an extracted sub-region (a 64 x 64
window, maybe) of the image at ¢ = 1 and I(x) is the image at ¢ = 2.

Let W (x; p) denote the parameterized set of allowed warps, where p = (p1,...p,)T is a
vector of parameters. The warp W (x; p) takes the pixel x in the coordinate frame of the template
T and maps it to the sub-pixel location W (x; p) in the coordinate frame of the image I. If we are

tracking a large image patch moving in 3D we may consider the set of affine warps:

X
l+p)-z + D3y + s 1+p1 ps D
W(x;p) = ( = 1
(xp) ( P2 + (I+ps)-y + Dpe P2 1+4+ps pe Z{ )

where there are 6 parameters p = (p1, Pa, D3, P4, D5, D6) - as, for example, was done in [3]. In gen-
eral, the number of parameters n may be arbitrarily large and W (x; p) can be arbitrarily complex.

One example of a complex warp is the set of piecewise affine warps used in [6, 14, 1].

2.1.1 Goal of the Lucas-Kanade Algorithm

The goal of the Lucas-Kanade algorithm is to minimize the sum of squared error between two

images, the template 7" and the image I warped back onto the coordinate frame of the template:

S I(W(x;p) - T(x)]. )

X

Warping I back to compute (W (x; p)) requires interpolating the image I at the sub-pixel loca-

tions W(x; p). The minimization in Equation (2) is performed with respect to p and the sum is
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performed over all of the pixels x in the template image 7'(x). Minimizing the expression in Equa-
tion (2) is a non-linear optimization even if W (x; p) is linear in p because the pixel values I(x)
are, in general, non-linear in x. In fact, the pixel values I(x) are essentially un-related to the pixel
coordinates x. To optimize the expression in Equation (2), the Lucas-Kanade algorithm assumes
that a current estimate of p is known and then iteratively solves for increments to the parameters

Ap; i.e. the following expression is (approximately) minimized:

S I(W(x;p+ Ap)) — T(x) 3)

X

with respect to Ap, and then the parameters are updated:
P < p+Ap. “4)

These two steps are iterated until the estimates of the parameters p converge. Typically the test for

convergence is whether some norm of the vector Ap is below a threshold €; i.e. || Ap|| < e.

2.1.2 Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-Newton gradient descent non-linear optimization
algorithm) is then derived as follows. The non-linear expression in Equation (3) is linearized by

performing a first order Taylor expansion of (W (x; p + Ap)) to give:

oW
S | I(W(x;p)) + Vngp -T(x)| . (5)
In this expression, VI = (2L, g—;) is the gradient of image I evaluated at W(x; p); i.e. VI is

computed in the coordinate frame of I and then warped back onto the coordinate frame of 7" using
the current estimate of the warp W (x; p). (We follow the notational convention that the partial

derivatives with respect to a column vector are laid out as a row vector. This convention has the

advantage that the chain rule results in a matrix multiplication, as in Equation (5).) The term %

is the Jacobian of the warp. If W (x; p) = (W,(x; p), W, (x;p))" then:

W, W, W,
oW _ dp1 9p2 "7 Opn (6)
ap - ow, oW, oaw, :

Op1 dp2 "7 Opn
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For example, the affine warp in Equation (1) has the Jacobian:

oW 0 010
_:<x y ) ™)

op 0z 0y 01

Equation (5) is a least squares problem and has a closed from solution which can be derived as

follows. The partial derivative of the expression in Equation (5) with respect to Ap is:

2

X

[VI%—V:] | H(Wlxip))+ V1% Ap - T(x)| ®)

where we refer to VI as the steepest descent images. Setting this expression to equal zero and

solving gives the closed form solution of Equation (5) as:

= Z [Vf —] ' [T(x) - I(W(x;p))] )

where H is the n x n (Gauss-Newton approximation to the) Hessian matrix:

H=Y% lw%—‘:] lw%—Y] (10)

X

The Lucas-Kanade algorithm [12] consists of iteratively applying Equations (9) and (4). Because
the gradient VI must be evaluated at W (x; p) and the J acoblan W at p, they both in depend on

p. In general, therefore, the Hessian must be recomputed in every iteration because the parameters

p vary from iteration to iteration. The Lucas-Kanade algorithm is summarized in Figure 1.

2.1.3 Computational Cost of the Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the number of pixels in 7" is N. Step 1 of the
Lucas-Kanade algorithm usually takes time O(n IV). For each pixel x in 7' we compute W (x; p)
and then sample I at that location. The computational cost of computing W (x; p) depends on
W but for most warps the cost is O(n) per pixel. Step 2 takes time O(N). Step 3 takes the
same time as Step 1, usually O(n N). Computing the Jacobian in Step 4 also depends on W but
for most warps the cost is O(n) per pixel. The total cost of Step 4 is therefore O(n N). Step 5
takes time O(n V), Step 6 takes time O(n? N), and Step 7 takes time O(n V). Step 8 takes time
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The Lucas-Kanade Algorithm

Iterate:

(1) Warp I with W(x; p) to compute I(W(x; p))
(2) Compute the error image T'(x) — I(W(x; p))
(3) Warp the gradient VI with W (x; p)
(4) Evaluate the Jacobian %—V: at (x; p)
(5) Compute the steepest descent images VI %
(6) Compute the Hessian matrix using Equation (10)
(7) Compute X, [VIW[T[T(x) — I(W(x; p))]
(8) Compute Ap using Equation (9)
(9) Update the parameters p < p + Ap

until |Ap| <€

Figure 1: The Lucas-Kanade algorithm [12] consists of iteratively applying Equations (9) & (4) until the
estimates of the parameters p converge. Typically the test for convergence is whether some norm of the
vector Ap is below a user specifi ed threshold e. Because the gradient VI must be evaluated at W (x; p)

and the Jacobian %—VJ must be evaluated at p, all 9 steps must be repeated in every iteration of the algorithm.

Table 1: The computational cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and NN is the number of pixels in the template T, the cost of each iteration is O(n2 N +n?). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n? N).

Step1 | Step2| Step3 | Step4 | Step5S Step 6 Step7 | Step 8 | Step 9 Total
O(nN)| O(N) | O(nN) | O(nN)| O(nN) | O(n?2N)| O(nN) | O(n3)| O(n) | O(n?N + n?)

O(n?) to invert the Hessian matrix and time O(n?) to multiply the result by the steepest descent
parameter updated computed in Step 7. Step 9 just takes time O(n) to increment the parameters
by the updates. The total computational cost of each iteration is therefore O(n? N + n?), the most

expensive step being Step 6. See Table 1 for a summary of these computational costs.

2.2 The Inverse Compositional Algorithm
2.2.1 Goal of the Inverse Compositional Algorithm

As a number of authors have pointed out, there is a huge computational cost in re-evaluating
the Hessian in every iteration of the Lucas-Kanade algorithm [9, 7, 15]. If the Hessian were
constant it could be precomputed and then re-used. In [2] we proposed the inverse compositional
algorithm as a way of reformulating image alignment so that the Hessian is constant and can be

precomputed. Although the goal of the inverse compositional algorithm is the same as the Lucas-
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Kanade algorithm; i.e. to minimize:

S [ I(W(x;p)) — T(x) ] (11)

X

the inverse compositional algorithm iteratively minimizes:

S [T(W(x; Ap)) — I(W(x;p)) | (12)

X

with respect to Ap (note that the roles of I and T are reversed) and then updates the warp:
W(x;p) < W(x;p)oW(x;Ap)~". (13)

The expression:
W(x;p) o W(x; Ap) = W(W(x; Ap); p) (14)
is the composition of 2 warps. For example, if W (x;p) is the affine warp of Equation (1) then:

W(x;p) o W(x; Ap) =

(T+p1)-(14+Ap1) -2+ Aps-y+ Aps) +ps - (Ape -z + (1 + Aps) - y + Apg) + b5
po- (L+Ap)-z+Aps-y+ Aps) + (14 pa) - (Aps -z + (1+ Aps) -y + Apg) +ps )’

(15)
i.e. the parameters of W (x; p) o W(x; Ap) are:
p1+ Ap1 4+ p1 - Apr +p3 - Aps
P2 + Aps + p2 - Apy + py - Aps
ps + Aps +p1 - Apz +ps - Apy (16)

Pa+ Aps +p2 - Aps +ps-Apy |’
D5 + Aps + p1 - Aps + p3 - Apg
Pe + Apg + p2 - Aps + ps - Aps

a simple bilinear combination of the parameters of W (x;p) and W(x; Ap). The expression

W (x; Ap)~! is the inverse of W (x; Ap). The parameters of the inverse of the affine warp are:

—P1 —D1°Ps+ P2 D3
—D2
1 —Ds3 (17)
(I+p1) - (1+ps) —pa-ps | ~Pa—P1-Patp2-ps |’
—P5 — P4 D5+ P3 - De
—Pe — D1 Pe + P2 Ds




If (1+p1)- (1 4+ ps4) — p2 - ps = 0, the affine warp is degenerate and not invertible. All pixels are
mapped onto a straight line in /. We exclude all such affine warps from consideration.

The Lucas-Kanade algorithm iteratively applies Equations (3) and (4). The inverse composi-
tional algorithm iteratively applies Equations (12) and (13). Perhaps somewhat surprisingly, these
two algorithms can be shown to be equivalent to first order in Ap. They both take the same steps

as they minimize the expression in Equation (2). See [2] for the proof of equivalence.

2.2.2 Derivation of the Inverse Compositional Algorithm

Performing a first order Taylor expansion of Equation (12) gives:

% [ 1wy + w15 ap - 1Wisin)) | (18)

Assuming without loss of generality that W (x; 0) is the identity warp, the solution to this least-

squares problem is:

_ zlwaﬂ] (W(x;p) - T(x)] (19)

where H is the Hessian matrix with I replaced by 7"

H=Y [VT%—‘:] lVTaﬂ] (20)

X

OW

and the Jacobian S

is evaluated at (x; 0). Since there is nothing in the Hessian that depends on

P, it can be pre-computed. The inverse composition algorithm is summarized in Figures 2 and 3.

2.2.3 Computational Cost of the Inverse Compositional Algorithm

The inverse compositional algorithm is far more computationally efficient than the Lucas-Kanade
algorithm. See Table 2 for a summary. The most time consuming steps, Steps 3—6, can be per-
formed once as a pre-computation. The pre-computation takes time O(n? N + n?). The only
additional cost is inverting W (x; Ap) and composing it with W (x; p). These two steps typically
require O(n?) operations, as for the affine warp in Equations (15) and (17). Potentially these 2
steps could be fairly involved, as in [1], but the computational overhead is almost always com-
pletely negligible. Overall the cost of the inverse compositional algorithm is O(n N + n?) per

iteration rather than O(n? N + n?) for the Lucas-Kanade algorithm, a substantial saving.
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The Inverse Compositional Algorithm

Pre-compute:
3)
“4)
®)
(6)

Iterate:

e))
(@)
(7
®)
®)

Evaluate the gradient VT of the template T'(x)
Evaluate the Jacobian %—V: at (x;0)
Compute the steepest descent images VT%—V:

Compute the inverse Hessian matrix using Equation (20)

Warp I with W (x; p) to compute I(W(x; p))
Compute the error image I(W (x; p)) — T'(x)
Compute 3=, [VT ¥ [I(W (x; p)) — T(x)]
Compute Ap using Equation (19)

Update the warp W (x; p) < W(x;p) o W(x; Ap)~1

until ||Ap|| <€

Figure 2: The inverse compositional algorithm [1, 2]. All of the computationally demanding steps are
performed once in a pre-computation step. The main algorithm simply consists of image warping (Step 1),
image differencing (Step 2), image dot products (Step 7), multiplication with the inverse of the Hessian
(Step 8), and the update to the warp (Step 9). All of these steps are effi cient O(n N + n?).

Table 2: The computational cost of the inverse compositional algorithm. The one time pre-computation cost
of computing the steepest descent images and the Hessian in Steps 3-6 is O(n2 N + n3). After that, the cost
of each iteration is O(n N +n?) a substantial saving over the Lucas-Kanade iteration cost of O(n2 N +n?).

Pre- Step3 | Step 4 Step 5 Step 6 Total
Computation | O(N) | O(nN) | O(nN) | O(n®N +n?) | O(n®2 N + n3)
Per Step1 | Step2 | Step7 | Step8 | Step 9 Total
Iteration | O(nN) | O(N) | O(nN) | O(n?) | O(n?) || O(n N + n?)

3 Weighted L2 Norms

All of the algorithms in [2] (there are 9 of them) aim to minimize the expression in Equation (2).
This is not the only choice. Equation (2) uses the Euclidean L2 norm or “sum of square differences”
(SSD) to measure the “error” between the template 7'(x) and the warped input image I(W (x;p)).
Other functions could be used to measure the error. Perhaps the most natural generalization of the

Euclidean L2 norm is to use the weighted L2 norm:

Y3 Qx,y) [I(W(x;p) — T(x)]- [I(W(y;p) — T(y)] 1)

where Q(x,y) is an arbitrary symmetric, positive definite quadratic form. The Euclidean L2 norm

is the special case where Q(x,y) = 0(x,y);i.e. Q(x,y) = 1 if x = y and Q(x,y) = 0 otherwise.
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Figure 3: A schematic overview of the inverse compositional algorithm. Steps 3-6 (light-color arrows)
are performed once as a pre-computation. The main algorithm simply consists of iterating: image warping
(Step 1), image differencing (Step 2), image dot products (Step 7), multiplication with the inverse of the
Hessian (Step 8), and the update to the warp (Step 9). All of these steps can be performed effi ciently.

3.1 Inverse Compositional Algorithm with a Weighted L2 Norm
3.1.1 Goal of the Algorithm

The inverse compositional algorithm with a weighted L2 norm minimizes the expression in Equa-

tion (21) by iteratively approximately minimizing:

>3 Q(x,y) - [T(W(x;Ap)) — I(W(x;p)) |- [T(W(y; Ap)) — I(W(y;p))] (22)



with respect to Ap and updating the warp:

W(x;p) < W(x;p)o W(x;Ap) . (23)
The proof of the first order equivalence between iterating these two steps and the forwards additive
(Lucas-Kanade) minimization of the expression in Equation (21) is essentially the same as the
proofs in Sections 3.1.5 and 3.2.5 of [2]. The complete proofs are contained in Appendix A.1.

3.1.2 Derivation of the Algorithm

Performing a first order Taylor expansion on Equation (22) gives:

S ¥ Qy)- | 760+ VTl ap — 1(Wexip) | | 7)+ VT ap — 1(W(yip)|

(24)
where as usual we have assumed that W (x; 0) is the identity warp. Taking the partial derivatives

of this expression with respect to Ap gives:

2.2.0xy): [ )+VT%ﬂAp I(W(y p))} lVT%—YrJF
ZZQxy l )+VT%ﬂAp I(W(X;p))] lVT%_\grr o)

Since Q(x,y) is symmetric, this expression simplifies to:

oW

2 X ¥ Q) [ 0+ vy )Ap—f(va;p))] - [wgw;m] ©6)

where we have made explicit the fact that the steepest descent images VT%—V:(X; 0) are evaluated

at x or y (appropriately) and p = 0. The solution of Equation (26) is:

Ap HQIZ (ZQ X,y) lVT%ﬂ(x 0)] ) [I(W(y;p)) — T(y)] (27)

where Hg is the weighted Hessian matrix:

Ho = T Y 00y) [VT%—V:@;O)]T Vi), 28)
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The Inverse Compositional Algorithm with a Weighted L2 Norm

Pre-compute:

(3) Evaluate the gradient VT of the template T'(x)

(4) Evaluate the Jacobian %_V;I at (x;0)

(5) Compute the weighted steepest descent images SD ¢(y) using Equation (29)
(6) Compute the inverse weighted Hessian matrix H g using Equation (28)

Iterate:

(1) Warp I with W(x;p) to compute [(W(x; p))

(2) Compute the error image I(W (x;p)) — T'(x)

(1) Compute 2, SDq(y)[I(W(y;p)) — T(x)]

(8) Compute Ap using Equation (30)

(9) Update the warp W (x; p) + W(x;p) c W(x; Ap) !
until |Ap|| < e

Figure 4: The inverse compositional algorithm with a weighted L2 norm. The computation in each iteration
is exactly the same as without the weighted L2 norm. The only difference is that the weighted Hessian H g
and the weighted steepest descent images SD g(y) must be used in place of their unweighted equivalents.

The pre-computation is signifi cantly more costly. In particular, Step 5 takes time O(n N?) rather than
O(n N) and Step 6 takes time O(n2 N2) rather than O(n? N). If the quadratic form Q(x,y) is diagonal,
the computational cost of these steps is reduced and is essentially the same as for the Euclidean L2 norm.

As a notational convenience, denote:

SDo(y) = Y Q(x,y)

X

oW T

the weighted steepest descent images. Equation (27) then simplifies to:

Ap = Hg')Y SDo(y) [I(W(y;p)) — T(y)]- (30)

The inverse compositional algorithm with a weighted L2 norm therefore consists of iteratively

applying Equations (30) and (23). The algorithm is summarized in Figure 4.

3.1.3 Computational Cost

The only difference between the unweighted and weighted inverse compositional algorithms is that
the weighted steepest descent images and the weighted Hessian are used in place of the unweighted
versions. The online computation per iteration is exactly the same. The weighted algorithm is
equally efficient and runs in time O(n N +n?). See Table 3 for a summary. The pre-computation of

the weighted steepest descent images in Step 5 and the weighted Hessian in Step 6 is substantially
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Table 3: The online computational cost of the inverse compositional algorithm with a weighted L2 norm
is exactly the same as for the original algorithm. The only difference is that the weighted steepest descent
images and the weighted Hessian are used in place of the unweighted versions. The pre-computation cost is
substantially more however. The pre-computation of the weighted steepest descent images in Step 5 takes
time O(n N?2) rather than O(n N) and the pre-computation of the weighted Hessian in Step 6 takes time
O(n? N2 + n3) rather than O(n? N + n3). The total pre-computation cost is O(n% N2 + n?).

Pre- Step3 | Step4 Step 5 Step 6 Total
Computation || O(N) | O(nN) | O(nN?) | O(n®? N2 +n?) || O(n? N? 4+ n?)

Per Step1 | Step2 | Step7 | Step8 | Step 9 Total
Iteration || O(nN) | O(N) | O(nN) | O(n?) | O(n?) | O(n N + n?)

more however. Step 5 takes time O(n N?) rather than O(n N) and Step 6 takes time O(n? N2 +n?)
rather than O(n? N + n?). The total pre-computation is O(n? N2 + n®) rather than O(n? N + n?).

3.14 Special Case: Diagonal Quadratic Form

A special case of the inverse compositional algorithm with weighted L2 norm occurs when the

quadratic form Q(x,y) is diagonal:

Q(x,y) = Q(x)-d(x,y) (31)

where we abuse the terminology slightly and denote the diagonal of Q(x,y) by Q(x). Here,
d(x,y) is the Kronecker delta function; d(x,y) = 1if x = y and Q(x,y) = 0 otherwise. The

goal is then to minimize:

> Q) - [I(W(x;p) — T(x)]*. (32)

This expression is just like the original Euclidean L2 norm (SSD) formulation except that each
pixel x in the template is weighted by Q(x). With this special case, the weighted steepest descent

images simplify to:

T
sDq(x) = Q) [V (xi0) | 33
and the weighted Hessian simplifies to:
OW T 0W
Hy = T—(x; T—(x; )
o = xaw |1l o | o1 xi0)| en

Step 5 of the inverse compositional algorithm with a diagonal weighted L2 norm then takes time

O(n N) and Step 6 times time O(n? N) just like the original inverse compositional algorithm.
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3.2 Application 1: Weighting the Pixels with Confidence Values

Some pixels in the template may be more reliable than others. If we can determine which pixels
are the most reliable, we could weight them more strongly with a large value of Q(x). A greater
penalty will then be applied in Equation (32) if those pixels are incorrectly aligned. As a result,
the overall fitting should be more accurate and greater robustness achieved. The questions of how
to best measure confidence and weight the pixels are deferred to Sections 4.1 and 5.2. Until then,
we make somewhat ad-hoc, but sensible, choices for Q(x) to show that the inverse compositional
algorithm with a weighted L2 norm can achieve superior performance to the original algorithm.

We consider two scenarios: (1) spatially varying noise and (2) uniform (spatially invariant) noise.

3.2.1 Spatially Varying Noise

In the first scenario we assume that the noise is spatially varying. We assume that the spatially
varying noise is white Gaussian noise with variance o%(x) at pixel x. Naturally it makes sense to

give extra weight to pixels with lower noise variance. In particular, we set:

Q(x) = : (35)

(This choice is actually optimal in the Maximum Likelihood sense, assuming that the pixels x are
independent. See Sections 4.1 and 5.2 for more discussion.)

To validate this choice and show that the inverse compositional algorithm with a weighted L2
norm can achieve superior performance to the unweighted inverse compositional algorithm, we
conducted experiments similar to those in [2]. In particular, we experimented with the image I (x)
in Figure 3. We manually selected a 100 x 100 pixel template 7'(x) in the center of the face. We
then randomly generated affine warps W (x; p) in the following manner. We selected 3 canonical
points in the template. We used the bottom left corner (0, 0), the bottom right corner (99, 0), and
the center top pixel (49, 99) as the canonical points. We then randomly perturbed these points with
additive white Gaussian noise of a certain variance and fit for the affine warp parameters p that
these 3 perturbed points define. We then warped I with this affine warp W (x; p) and run the two
inverse compositional algorithms (with and without weighting) starting from the identity warp.

Since the 6 parameters in the affine warp have different units, we use the following error mea-

sure rather than the errors in the parameters. Given the current estimate of the warp, we compute
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the destinations of the 3 canonical points and compare them with the correct locations. We compute
the RMS error over the 3 points of the distance between their current and correct locations. (We
prefer this error measure to normalizing the units so the errors in the 6 parameters are comparable.)

As in [2], we compute the “average rate of convergence” and the “average frequency of con-
vergence” over a large number of randomly generated inputs (5000 to be precise). Each input
consists of a different randomly generated affine warp (and template) to estimate. In addition, we
add spatially varying additive white Gaussian noise to both the input image / and the template 7.
The average rates of convergence are plot in Figures 5(a), (c), and (e), and the average frequencies
of convergence are plot in Figures 5(b), (d), and (f). In Figures 5(a) and (b) the standard deviation
of the noise varies linearly across the template from o = 8.0 to ¢ = 24.0, in Figures 5(c) and
(d) from ¢ = 4.0 to 0 = 32.0, and in Figures 5(e) and (f) from ¢ = 8.0 to 0 = 40.0. The vari-
ation across the image is arranged so that the variation across the region where the template was
extracted from is the same as the variation across the template itself. In Figures 5(a)—(d) the noise
varies horizontally and in Figures 5(e) and (f) the noise varies vertically. In all cases, we compare
the inverse compositional algorithm with a Euclidean L2 norm against the inverse compositional
algorithm with a weighted L2 norm with weighting given by Equation (35).

The main thing to note in Figure 5 is that in all cases the weighted L2 norm performs better than
the Euclidean L2 norm, the rate of convergence is faster and the frequency of convergence is higher.
(The rate of convergence is relatively low because the amount of noise that is added is quite large.)
The other thing to note in Figure 5 is that the difference between the two algorithms increases as
the amount of noise increases. Although in these synthetic experiments the weighted algorithm has
perfect knowledge of the distribution of the added noise, the results do clearly demonstrate that the

algorithm with the weighted L2 norm can outperform the unweighted algorithm.

3.2.2 Uniform Noise

In the second scenario we assume that the noise is uniform (spatially invariant.) If the noise is
uniform the choice in Equation (35) above is to use a uniform weighting function; i.e. the original
unweighted inverse compositional algorithm. Although this choice is “optimal” (in the Maximum

Likelihood sense; see Sections 4.1 and 5.2), here we experiment with the choice:

Q(x) = |VT|. (36)
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Figure 5: An empirical comparison between the inverse compositional algorithm and the inverse compo-
sitional algorithm with a weighted L2 norm using the weighting function in Equation (35). In all cases,
the rate of convergence of the algorithm with the weighted L2 norm is faster than that of the original algo-
rithm. The frequency of convergence is also always higher. Although we have assumed that the variance
of the spatially varying noise is known to the algorithm with the weighted L2 norm, these results do clearly

demonstrate that using a weighted L2 norm can, in certain circumstances, improve the performance.
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The intuitive reason for this choice is that pixels with high gradient |VT| should be more reliable
than those with low gradient. They should therefore be given extra weight.

We repeated the experiments in Section 3.2.1 above, but now used the quadratic form in Equa-
tion (36) and added uniform, white (i.i.d.) Gaussian noise rather than spatially varying noise. Al-
though the noise is spatially uniform, we varied the standard deviation in a variety of increments
from O to 32 grey-levels. The results for 0 = 0.0, 0 = 16.0, and o = 32.0 are included in Figure 6.
In this figure, we compare three algorithms. The first is the original unweighted inverse compo-
sitional algorithm. The second and third algorithm are both the weighted inverse compositional
algorithm, but with the weighting function in Equation (36) computed in two different ways. In
the first variant “IC Weighted (clean)”, VT is computed before any noise is added to the template
T'. In the second variant “IC Weighted (noisy)”, VT is computed after the noise was added to 7T'.

For ¢ = 0.0 in Figures 6(a) and (b), the unweighted inverse compositional algorithm out-
performs the weighted version by a large amount. This is consistent with the optimal weighting
function being given by Equation (35); i.e. the Euclidean L2 norm is optimal for uniform noise.
For 0 = 16.0 and o0 = 32.0 in Figures 6(c)—(f), the weighted L2 norm outperforms the Euclidean
L2 norm, to a greater extent for the “clean” algorithm and to a lessor extent for the “noisy” algo-
rithm. This is surprising given that the Euclidean norm is supposed to be optimal. The reason for
this counter-intuitive result is that the derivation of optimality of the Euclidean algorithm assumes
that the gradient of the template VT is computed exactly. When there is noise, the estimate of
VT is relatively more accurate the larger |[VT| is. For large enough noise, this effect overcomes
the theoretical optimality of the Euclidean L2 norm. Weighting with the quadratic form in Equa-
tion (36) therefore results in superior performance because extra weight is given to the pixels where

the gradient of the template is estimated the most accurately.

3.3 Application 2: Pixel Selection for Efficiency

We have just shown how to give extra weight to the more reliable pixels. Conversely, less weight
is given to less reliable pixels. In the extreme case we might select the most reliable pixels and just
use them; i.e. give zero weight to the unreliable pixels. For example, we might just use the 1000
most reliable pixels, or the most reliable 10% of pixels. The major advantage of doing this (rather
than just giving the pixels a weight depending on our confidence in them) is that the computation

time can then be reduced. Steps 1,2, and 7 in the algorithms (see Tables 2 and 3) are linear in the
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Figure 6: An empirical comparison between the inverse compositional algorithm and the inverse compo-
sitional algorithm with a weighted L2 norm using the weighting function in Equation (36). Two variants
of the weighted algorithm are used; ‘clean” where the gradient of the template in the weighting function is
computed before any noise is added and ‘hoisy” where the gradient if computed after the noise is added to
the template. For ¢ = 0.0 the results are as one would expect. The optimal Euclidean algorithm performs
by far the best. When o = 16.0 and o = 32.0, however, the weighted algorithm out-performs the Euclidean
algorithm. This surprising result occurs because the estimate of the gradient of the template used in the
algorithm is relatively more reliable the greater its magnitude is. This effect is not modeled in the derivation
of the optimality of the Euclidean norm when the noise is uniform.
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Figure 7: The results of using a subset of the pixels. We plot the rate of convergence and the frequency
of convergence for various different subsets of pixels: 100%, 25%, 10%, 5%, 1%. The rate of convergence
is unaffected until only around 1-5% of the pixels are used. Similarly, the range of point sigmas that yield
approximately 100% convergence is also relatively unaffected until only around 1-5% of the pixels are used.
We conclude that we can use just 5-10% of the pixels and not signifi cantly affect the performance.

number of pixels N. If we use 10% of the pixels, these steps will all be approximately 10 times
faster. Since these three steps are the most time consuming ones, the overall algorithm is speeded

up dramatically. This technique was used in [7] to estimate the pan-tilt of a camera in real-time.

3.3.1 Experimental Results

An open question is how many pixels can be ignored in this way and yet not significantly affect
the fitting performance. To answer this question, we ran an experiment similar to that above. We
computed the average rates of convergence and average frequencies of convergence as above by
randomly generating a large number of different affine warp inputs. Again, 5000 inputs were used.
We added no intensity noise to the input image I or the template 7" in this case, however. Instead
we varied the percentage of pixels used. When using n% of the pixels, we selected the best n% of
pixels as measured by the magnitude of the gradient. (A more sophisticated and computationally
expensive way of selecting the pixels was proposed in [7].)

The results are presented in Figure 7. The rate of convergence in Figure 7(a) shows that the
speed of convergence does not decline significantly until only 1% of the pixels are used. The
frequency of convergence drops steadily with the percentage of pixels used, however the range of
point sigma over which the frequency of convergence is close to 100% stays steady until only 1%

of the pixels are used. For the 100 x 100 pixel template used in our experiments, we conclude that
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we can use approximately 5-10% of the pixels and not significantly affect the performance.

3.4 Application 3: Linear Appearance Variation

Another use of weighted L2 norms is for modeling linear appearance variation. The goal of the

original Lucas-Kanade algorithm was to minimize the expression in Equation (2):

Y [I(W(x;p) — T(x)]*. (37)

X

Performing this minimization assumes that the template 7'(x) appears in the input image I(x),

albeit warped by W (x; p). In various scenarios we may instead want to assume that:

m

i=1
appears in the input image (warped appropriately) where A;,7 = 1,...,m, is a set of known ap-
pearance variation images and \;,7 = 1,...,m, are a set of unknown appearance parameters. For

example, if we want to allow an arbitrary change in gain and bias between the template and the
input image we might set A; to be 7" and A, to be the “all one” image. Given the appropriate
values of \; and Ao, the expression in Equation (38) can then model any possible gain and bias.
More generally, the appearance images A; can be used to model arbitrary linear illumination vari-
ation [9] or general appearance variation [4, 1]. If the expression in Equation (38) should appear

(appropriately warped) in the input image I(x), instead of Equation (37) we should minimize:

2

> [I(W(x;p)) — T(x) — 3 Midi(x) (39)
X i=1
simultaneously with respect to the warp and appearance parameters, p and A = (A1, ..., An)".

3.4.1 Derivation of the Algorithm

If we treat the images as vectors we can rewrite Equation (39) as:

5 [1Weip) - 700~ S5 ai)| = | 10Wosim) 700 - x| a0




where ||-|| is the unweighted (Euclidean) L2 norm. This expression must be minimized simultane-
ously with respect to p and A. If we denote the linear subspace spanned by a collection of vectors
Aj; by span(4;) and its orthogonal complement by span(4;)* Equation (40) can be rewritten as:

2 2

"I(W(x;p ~T(x) — Z)\A

+ H I(W(x;p)) - T(x) - i Aidi(x)

span(A;) span(4;)*
41
where || - ||z denotes the Euclidean L2 norm of a vector projected into the linear subspace L.

The second of these two terms immediately simplifies. Since the norm in the second term only
considers the component of the vector in the orthogonal complement of span(A4;), any component

in span(A4;) can be dropped. We therefore wish to minimize:

2 2

H I(W(x;p)) Z AiAi(x (42)

| 1OWsip) - 7

span(4;) span(4;)+

The second of these two terms does not depend upon A. For any p, the minimum value of the
first term is always 0. Therefore, the simultaneous minimum over both p and A can be found
sequentially by first minimizing the second term with respect to p alone, and then treating the
optimal value of p as a constant to minimize the first term with respect to A. Assuming that the
appearance variation vectors A; are orthonormal (if they are not they can easily be orthonormalized

using Gramm-Schmidt) the minimization of the first term has the closed-form solution:
= Y Ai(x)- I(W(x;p)) — T(x)]. (43)

The only difference between minimizing the second term in Equation (42) and the original goal
of the Lucas-Kanade algorithm (see Equation (37)) is that we need to work in the linear subspace

span(A;)L. Working in this subspace can be achieved by using a weighted L2 norm with:

Qx,y) = 0(xy) = 2 [Ai(x) - Ai(y)] (44)

(assuming the vectors A; are orthonormal.) We can therefore use the inverse compositional algo-
rithm with this weighted L2 norm to minimize the second term in Equation (42). The weighted

steepest descent images (see Equation (29)) are:

$Dg(x) = 3 6x,y) - 35 (4x) - Aty ))] [VT%—V&;/,O)] @)



and so can be computed:

SD(x) = VT(x:0) - 3- [; Ady)- w%—fmm] A W@o)

i.e. the unweighted steepest descent images VT%—‘: (x; 0) are projected into span(A;)* by remov-

ing the component in the direction of A;, forz = 1,...,m in turn. The weighted Hessian matrix:

HQ = ZZQ(Xa Y)

X Yy

oW T 0W

T—(x;0 T—(y;0 47
vrio| [vr o] @)
can then also be computed as:

Hgo = ) SDg(x)SDg(x) (48)

rather than using Equation (28) because the inner product of two vectors projected into a linear
subspace is the same as if just one of the two is projected into the linear subspace.

In summary, minimizing the expression in Equation (39) with respect to p and A can be per-
formed by first minimizing the second term in Equation (42) with respect to p using the inverse
compositional algorithm with the quadratic form in Equation (44). The only changes needed to the
algorithm are: (1) to use the weighted steepest descent images in Equation (46) and (2) to use the
weighted Hessian in Equation (48). Once the inverse compositional algorithm has converged, the

optimal value of A can be computed using Equation (43) where p are the optimal warp parameters.

3.4.2 Discussion

Although the algorithm described above has been used before by several authors [9, 1], it is not the
only choice for modeling linear appearance variation. A variety of other algorithms are possible.
There are also various caveats that need to be considered when using this algorithm, most notably
the choice of the step size and the theoretical incorrectness of the algorithm when combined with
a robust error function. In Part 3 of this series of papers we will present a more complete treatment
of appearance variation. The reader is advised to read that paper before using the algorithm above,
and in particular to look at the empirical comparison with the other algorithms. Since the question

of appearance variation is so involved, we do not present any experimental results here.
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4 Robust Error Functions

Another generalization of the expression in Equation (2) is to use a robust error function instead

of the Euclidean L2 norm. The goal is then to minimize:
> p(H(W(x;p)) - T(x)];0) (49)

with respect to the warp parameters p where p(t; o) is a robust error function [10] and & =
(01,09, ...,0s)T is a vector of scale parameters. For now we treat the scale parameters as known
constants. In Section 4.5.2 we briefly describe how our algorithms can be extended to estimate
the scale parameters from sample estimates of the error or noise I(W (x;p)) — T'(x). Until Sec-

tion 4.5.2, we drop the scale parameters from p(¢; o) and denote the robust function p(t).

4.1 Choosing the Robust Function

The only formal requirements on p(¢) are: (1) that p(¢) > 0 for all ¢, (2) that p(¢) is monotonically
increasing for ¢ > 0, (3) that p(¢) is monotonically decreasing for t < 0, and (4) that p(t) is
piecewise differentiable. When p(t) = ¢ the expression in Equation (49) reduces to the Euclidean
L2 norm of Equation (2). For p(t) to be a “robust” function, it should increase asymptotically “less
fast” than ¢? for large |t|. Outliers (pixels x with large |I(W (x;p)) — T(x)|) will therefore be
penalized less in Equation (49) than in Equation (2).

A variety of choices of p(t) have been used in the literature. Black and Jepson [4] and Sawhney

and Ayer [13] both used the Geman-McLure function:

t2
t) = ———. 50
On the other hand, Hager and Belhumeur [9] used the Huber function:
112 if [t| < oy
_ 2 =
plt) = { o1]t| — of otherwise. b

Since there are a wide variety of choices for p(t) a natural question is how to choose the best
one. The choice of p(t) is outside the scope of this paper, however if we assume that the pixels x

are independent, the “theoretically correct” answer is that the robust function should be:
p(t) o< —logPI(W(x;p)) — T(x) =] (52)
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the negative log probability that the error (or noise) between the template and the warped input
images is t. Of course this does not really answer the question of how to choose p(t), but just
rephrases it as a question of what probability distribution best models the noise in real images. In
our synthetic experiments we know the distribution and so can set p(t) appropriately. The question

of how the algorithms degrade if the wrong p(¢) is used is outside the scope of this paper.

4.2 Newton vs. Gauss-Newton Formulations

So far we have formulated the robust image alignment problem in the same way that most authors
have done in the vision literature; see for example [13,4,9]. In this formulation the robust function
p(t) is given the argument I (W (x;p)) — T'(x). Since there is no “squared” term, the derivation
of any algorithm requires a second order Taylor expansion to obtain a quadratic form in Ap. Such
a derivation would therefore be like the derivation of the Newton algorithm in Section 4.2 of [2].
So that we only need to apply a first order Taylor expansion and thereby obtain a Gauss-Newton

derivation, we replace the robust function p(t) with:

o(t) = p(V). (53)

Substituting this expression into Equation (49) means that we should aim to minimize:
S o (I(W(x;p) - T(x)?). (54)

The change of variables in Equation (53) can be performed for any robust function p(t) with one

condition, p(y) must be symmetric:

p(t) = —p(=t). (55)

This condition is fairly weak. Almost all robust functions that have ever been used are symmetric,
including the Geman-McLure and Huber functions mentioned above. With the change of variables

the Geman-McLure function becomes:

t) = 56
o(t) = (56)
and the Huber function becomes:
1 ifo<t<o?
— 2 S>>0y
olt) = { o1Vt — %0% if t > o?. 57)
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4.3 Inverse Compositional Iteratively Reweighted Least Squares

4.3.1 Goal of the Algorithm

The inverse compositional algorithm with a robust function p(¢) minimizes the expression in Equa-

tion (54) by iteratively approximately minimizing:
> o ([T(W(x; Ap)) — I(W (x; p))?) (58)

with respect to Ap and updating the warp:
W(x;p) + W(x;p)o W(x; Ap)~". (59)

The proof of the first order equivalence between iterating these two steps and the forwards additive
(Lucas-Kanade) minimization of the expression in Equation (54) is essentially the same as the

proofs in Sections 3.1.5 and 3.2.5 of [2]. The complete proofs are contained in Appendix A.2.

4.3.2 Derivation of the Algorithm

Performing a first order Taylor expansion on 7'(W (x; Ap)) in Equation (58) gives:

oF ( 0+ VT Ap — 1(Wix p>>]2) )

where again we have assumed that W (x; 0) is the identity warp. Expanding gives:

Z 0 ( 2+ E(x)VT%ﬂAp + Ap [VT%—Y] lVT%—Y] Ap) (61)

(62)

where E(x) = T'(x) — I(W(x; p)). Performing a first order Taylor expansion gives:

BEx)VTIW Ap + ApT
op

> (@(E(X)z) +0 (E(x)?)

X

VTaﬂ vrW Ap
op op

The minimum of this quadratic form is attained at:

VT—E(x)

oW
") VT 5

Ap = —-H 12@(

— H,Yd (IWekp) - TP) VIO 1(Wixip) - T (6)
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Inverse Compositional Iteratively Reweighted Least Squares

Pre-compute:

(3) Evaluate the gradient VT of the template T'(x)

(4) Evaluate the Jacobian %—V: at (x;0)

(5) Compute the steepest descent images VT%—VJ

Iterate:

(1) Warp I with W(x;p) to compute I(W(x; p))
(2) Compute the error image (W (x; p)) — T'(x)
(6) Compute the Hessian matrix H, using Equation (64)
(7) Compute Yy ¢ ([I(W(x;p)) — T(x)*) [VTGXIT[I(W(x; p)) — T(x)]
(8) Compute Ap using Equation (63)
(9) Update the warp W (x; p) + W(x;p) c W(x; Ap)~*
until |Ap|| <€

Figure 8: The inverse compositional iteratively reweighted least squares algorithm consists of iteratively
applying Equations (63) & (59). Because the Hessian H, depends on the warp parameters p it must be
re-computed in every iteration. Since this step is the slowest one in the algorithm (see Table 4), the naive
implementation of this algorithm is almost as slow as the original Lucas-Kanade algorithm.

where:

B = Yo (1Wesw) - 1) [vr Y] [or Y] (64

is the Hessian matrix. Comparing Equations (63) and (64) with those in Section 3.1.4 we see that
each step of the inverse compositional algorithm with robust error function p(¢) is the same as a

step of the inverse compositional algorithm with diagonal weighted L2 norm with quadratic form:
Qx) = ¢ (I(W(x;p)) - T)). (65)

This diagonal quadratic form (or weighting function) depends on p through (W (x;p)) and so
must be updated or reweighted from iteration to iteration. This algorithm is therefore referred to as
the inverse compositional iteratively reweighted least squares algorithm and can be use to perform
image alignment with an arbitrary (symmetric) robust function g(¢). A summary of the inverse

compositional iteratively reweighted least squares algorithm is included in Figure 8.

4.3.3 Computational Cost

Since the cost of evaluating o' is constant (does not depend on n or V), the computational cost
of the inverse compositional iteratively reweighted least squares algorithm is as summarized in

Table 4. The cost of each iteration is asymptotically as slow as the Lucas-Kanade algorithm.
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Table 4: The computational cost of the inverse compositional iteratively reweighted least squares algorithm.
The one time pre-computation cost of computing the steepest descent images in Steps 3-5 is O(n N). The
cost of each iteration is O(n2 N 4 n3) which is asymptotically as slow as the Lucas-Kanade algorithm.

Pre- Step3 | Step 4 Step 5 Total
Computation | O(N) | O(nN) | O(nN) || O(nN)

Per Step1 | Step2 | Step6 Step7 | Step 8 | Step 9 Total
Iteration | O(nN) | O(N) | O(n®N) | O(nN) | O(n?) | O(n?) || O(n®2 N + n?)

4.4 Efficient Approximations

Although the iteratively reweighted least squares algorithm is inefficient, there are several approx-

imations to it that are efficient, yet perform almost as well. We now describe two examples.

44.1 The H-Algorithm

Dutter and Huber describe several different robust least squares algorithms in [8]. One of these
algorithms, the W-Algorithm, is equivalent to our inverse compositional iteratively reweighted least
squares algorithm. The only differences are: (1) we use the inverse compositional formulation and
so the updates to the vectors of parameters are different, and (2) the W-Algorithm includes scale
estimation steps. Section 4.5.2 describes how scale estimation can be added to our algorithm.
Dutter and Huber also described the H-Algorithm, a variant of the W-Algorithm. The only
significant difference between these two algorithms is that the H-Algorithm effectively uses the
unweighted Hessian of Equation (20) rather than the weighted Hessian of Equation (64). As in
the inverse compositional algorithm, the unweighted Hessian can be precomputed. Step 6, the one
slow step in the iteratively reweighted least squares algorithm, can be moved to pre-computation.
The H-Algorithm is asymptotically as efficient as the original inverse compositional algorithm.
The H-Algorithm effectively assumes that the unweighted Hessian is a good approximation to
the weighted Hessian. This approximation is similar to the various approximations made to the
Hessian in Section 4 of [2]. So long as the weighting function Q(x) = o' ([/(W(x;p)) — T(x)]?)
is not too extreme, the performance of the H-Algorithm is not much worse than that of the W-
Algorithm. It is important, however, to ensure that the weighting function does not affect the step
size. If Q(x) is on average < 1, the algorithm will take too small steps and so will converge
slowly. If Q(x) is on average >> 1, the algorithm will take too large steps and may well diverge.

(This is not an issue with the weighted Hessian because the Q)(x) appears in the definition of the
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Hessian too.) To obtain the best performance, the weighting function Q(x) should be normalized
when using the H-Algorithm. Any norm could be used to compute the “average” value of Q(x). If

the L1 norm is used, the weighting function is normalized by replacing Q(x) with:

N
S 0 Q(x) (66)

where N is the number of pixels in the template. This normalization must be performed in every
iteration of the iteratively reweighted least squares algorithm (in Step 7.) See Figure 8. The com-
putational cost of this normalization is O(n N) and so the asymptotic complexity is not affected.

The H-Algorithm was used by Hager and Belhumeur in [9] to obtain real-time robust tracking.

4.4.2 Spatial Coherence of Outliers

One way to interpret robust image alignment algorithms is that they give outliers less weight by
making o' ([I(W(x; p)) — T'(x)]?) smaller for large |[I(W (x;p)) — T'(x)|). If we assume that the
outliers appear in spatially coherent groups, we can derive a second efficient approximation. As-
suming the outliers are spatially coherent is often a reasonable assumption. For example, when part
of the template is occluded, the outliers will form a spatially coherent group around the occluder.
Similarly, specularities and shadow pixels are also usually highly spatially localized.

To take advantage of the spatial coherence of the outliers, the template is subdivided into a set
of sub-templates or blocks. Suppose there are K blocks By, Bs, ..., Bx with N; pixels in the it®
block. Although this subdivision of the template can be performed in an arbitrary manner, typically
a rectangular template would be split into a collection of rectangular blocks arranged on a regular

grid. See [11] for an example. Equation (64) can then be rewritten as:

K T

oW oW

H, = J ([I(W(x;p)) — T(x)]? [VT—] [VT—] : (67)
’ ; x%:a,- ( ) dp op

Based on the spatial coherence of the outliers, assume that o' ([I(W (x; p)) — T'(x)]?) is constant

on each block; i.e. assume o' ([I(W(x;p)) — T'(x)]?) = ¢!, say, for all x € B;. In practice this

assumption never holds completely and so g} must be estimated from ¢'([I(W(x; p)) — T'(x)]?).

One possibility is to set g} to be the mean value:

o =+ ¥ (W) - TR, (68)

i xEB;
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Another way might to be argue that if there is ever an outlier in the block, then the entire block
should be classified as an outlier. The value of g} might then to be set to be the minimum value

across the block; i.e. set the weight of the block to be the weight of the worst pixel in the block:

¢; = min¢([(I(W(x;p)) — T(x)]). (69)

xXEB;

Assuming ¢'([I(W (x;p)) — T'(x)]?) = ¢, for all x € B;, Equation (67) can then be rearranged to:

K T

oW °A%

H, =) 0> [VT—] lVT—] . (70)
) i=1  x€B; op op

The internal part of this expression does not depend on the robust function ¢’ and so is constant

across iterations. Denote:

oW T[ aw]
H, = vr—| |vr=——]|. (1)
x%:gl 3p] op

The Hessian H; is the Hessian for the sub-template B; and can be precomputed. Equation (70)
then simplifies to:
K
H, = Zgg-Hi. (72)
i=1
Although this Hessian does vary from iteration to iteration, the cost of computing it is minimal:
O(K - n?). Typically K < N (where N is the number of pixels in the template) and so O(K - n?)
is substantially smaller than O(X - n?), the cost of computing the Hessian in Step 6 of the original
inverse compositional iteratively reweighted least squares algorithm. See Figure 8 and Table4.
The spatial coherent approximation to the inverse compositional iteratively reweighted least
squares algorithm then just consists of using Equation (72) to estimate the Hessian in Step 6 rather
than Equation (64). Using Equation (72), of course, requires that the Hessians H; are precomputed
for each block s = 1, ..., K. The total cost of this pre-computation is O(N - n?). Note that when
K =1 and there is just one block the size of the original template, this efficiency approximation
reduces to the H-algorithm of the previous section. When K = N and there is one block for
each pixel, this algorithm reduces to the original inverse compositional iteratively reweighted least
squares algorithm. By varying the value of K, we can trade-off efficiency for performance.
Note that the spatial coherence of the outliers has been used before in robust image alignment

algorithms [11]. Also, Shum and Szeliski [15] have suggested using the spatial coherence of the
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Hessian itself (rather than the robust weighting function o) to obtain efficiency improvements. In

this approach, the Hessian is estimated from a single sample of [VT %]T[VT%] per block B;.

4.5 Extensions to the Algorithms

There are a number of extensions that can be applied to any of the algorithms above, the inverse

compositional iteratively reweighted least squares algorithm and its two efficient approximations.

4.5.1 Spatially Varying Robust Error Functions

The robust error function in Equation (49) treats every pixel identically; the quantity to be mini-
mized depends on the error I (W (x; p))—T'(x), but not directly on the pixel x. One straightforward

extension is to use a different robust function at each pixel; i.e. minimize:
> ox ([(W(x;p)) - T(x);0) (73)

where each g4 (t; ) is a robust function. Making this change does not affect the algorithms signif-
icantly, ¢ is simply used instead of ¢’ in Equations (63) and (64).
There are a variety of applications of this generalization. One is to give a spatially varying

weight, essentially producing a “weighted robust error function.” For example, we might set:

ox(t; o) = Q(x) o(t; o) (74)

where Q(x) is a spatially varying weighting function that plays the same role as it did in Section 3
and o(t; o) is the original spatially invariant robust function. Another closely related, but slightly

different, idea is to down-weight the error by Q(x) by setting:

ox(tio) = 4@;0). 75)

As in Section 3 one possible choice for Q(x) is | VT'(x)|. Using this choice in Equation (75) down-
weights the error I(W (x; p)) — T'(x) so that pixels with high gradient |VT'(x)| are penalized less.
(A small alignment error produces a large error I(W(x;p)) — T'(x) if the gradient is large.)
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4.5.2 Scale Estimation

Until now we have assumed that the scale parameters o are known constants. It is also pos-
sible to assume that the scale parameters are unknown and must be estimated along with the
warp parameters p. One way to do this is to assume a parametric form for the distribution
—logP[I(W(x;p)) — T(x) = z] as a function of the scale parameters o. (In Section 4.1 we
pointed out that the best choice for the robust function is p(t) o< —log P[[(W (x;p))—T(x) = t].)
If we knew the warp parameters p we could compute (W (x; p)) — T'(x) for each pixel x. We
could then estimate the scale parameters o by fitting the distribution — log P[I (W (x; p))—T'(x) =
z] to the samples [(W (x; p)) — T'(x). Of course the warp parameters are not known and so a si-
multaneous optimization must be performed over both sets of parameters. This can be achieved
by iteratively updating the warp and scale parameters in turn. After each iteration of the iteratively
weighted least squares algorithm, the current estimates of the scale parameters are updated by per-
forming one iteration of the algorithm to fit them [8, 13]. This step depends on the robust function
but is in general a non-linear optimization, which might be performed using Gauss-Newton, say.

For certain distributions, however, there is a simple closed-form solution for the scale parameters.

4.6 Experimental Results
4.6.1 Generation of the Inputs

Evaluating robust fitting algorithms is hard because there is no obvious noise model to use. (The
template and the starting affine parameters can be generated exactly as in Section 3.2.1 and [2].
This is the easy part. The hard part is to generate the input image I(x).) We start with the same
input image as in Section 3.2.1. We assume that the main cause of noise (i.e. outliers) is occlusion
and generate the input image in the following manner. The evaluation is governed by one param-
eter, the percentage of occlusion. Given this parameter, we randomly generate a rectangle in (x)
entirely within the template region that occludes the template by the appropriate percentage. We
allow a small relative error of 5% in the occlusion region to allow for the discrete nature of the
pixels. We then synthetically “occlude” the randomly generated rectangle by replacing that part
of the image with another image of the appropriate size. We use a variety of occluding images,
from the constant “all-black™ image, to images of other faces and natural scenery. By varying the

occluder image we can evaluate how sensitive the algorithms are to outlier detection. See Experi-
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ment 2 in Section 4.6.4. By varying the percentage of occlusion we can evaluate how sensitive the

algorithms are to the amount of occlusion. See Experiment 1 in Section 4.6.3.

4.6.2 The Robust Error Function and Scale Estimation

Another thing that makes evaluating robust fitting algorithms hard is choosing the robust error
function. We use the very simple robust error function:

t ifo<t<o
g1 ift>0'1.

o(t;01) = { (76)

Intuitively this function classifies pixels as outliers if the magnitude of the error is larger than the
parameter (threshold) o;. Inliers are weighted equally and outliers are given zero weight. In the
spatial coherent approximation to the inverse compositional iteratively re-weighted least squares
algorithms, we combine the multiple estimates of g} using Equation (68).

We estimate the scale parameter o, in the following way. We assume that we know the number
of outliers and the number of inliers. We then estimate o by sorting the error values (divided by
the magnitude of the gradient of the template) and setting o; so that the correct number of pixels
are classified as outliers. By varying the estimate of the number of outliers, we can evaluate how
sensitive the algorithms are to inaccurate estimates of o;. See Experiment 3 in Section 4.6.5.

Each of the choices we made above for the input generation, the robust error function, and
for scale estimation are just one of many possibilities. We like these choices, but others may
disagree. We see no obvious reason, however, why the relative performance of the algorithms we
are comparing would be significantly affected if different choices were made. If the reader wishes

to try other options, they can download our algorithms, test images, and scripts. See Section 5 4.

4.6.3 Experiment 1: Varying the Percentage of Occlusion

In our first experiment we compare four algorithms: (1) the original inverse compositional algo-
rithm, (2) the iteratively re-weighted least squares algorithm, (3) the H-algorithm, and (4) the spa-
tial coherent approximation to the iteratively re-weighted least squares algorithm with block size
5 % b pixels. As above, we compute the average speed of convergence and the average frequency of
convergence. We use the “all-black” image as the occluder. The results for three different percent-
ages of occlusion are shown in Figure 9. The results for 10% occlusion are shown in Figures 9(a)

and (b), for 30% occlusion in Figures 9(c) and (d), and for 50% occlusion in Figures 9(e) and (f).

31



The first thing to note from Figure 9 is that as the percentage of occlusion increases from
10% to 30% and 50%, the performance of the original inverse compositional algorithm drops off
rapidly. By 50% occlusion, the algorithm almost never converges. On the other hand, the 3 robust
algorithm all converge fairly well. In comparison, the inverse compositional iteratively reweighted
least squares and the spatial coherence approximation perform significantly better than the H-

algorithm both in terms of the rate and frequency of convergence, especially with more occlusion.

4.64 Experiment 2: Varying the Occluder Image

In our second experiment we investigate how the performance depends on the occluder image. We
compute the average speed of convergence and the average frequency of convergence for the same
four algorithms. We use three different occluder images, an image of scenery, an image of another
face approximately aligned, and a constant intensity image with constant intensity set to be the
average of the template. The results for 30% occlusion are shown in Figure 10.

The results for the “scenery” occluder in Figures 10(a) and (b), and for the “Face” occluder
in Figures 10(c) and (d) are qualitatively very similar to those for the “all-black™ occluder in Fig-
ures 9(c) and (d). The results for the “average grey-level” occluder in Figures 10(e) and (f) are quite
different, however. In particular, the original inverse compositional algorithm performs better than
the iteratively re-weighted least squares algorithm, although the spatial coherence approximation
to it performs as well as the original inverse compositional algorithm. The H-algorithm performs
far worse. In this case, the “average grey-level” occluder is not much of an outlier and so doesn’t
affect the original inverse compositional algorithm. The iteratively re-weighted least squares al-
gorithm throws away the most likely outliers (usually pixels with large gradients) and so performs

slightly worse than the original inverse compositional algorithm which does not.

4.6.5 Experiment 3: Varying the Estimated Percentage of Outliers

In our third experiment we investigate how the performance of the robust algorithms varies de-
pending on how well the scale estimation is performed. We vary the estimate of the number of
occluders from zero to far more than actuality. The results for the “all-black” occluder and for
30% occlusion are shown in Figure 11. The results in Figures 11(a) and (b) are for an estimated
10% of occluders, the results in Figures 11(c) and (d) for (the correct) 30% of occluders, and the

results in Figures 11(e) and (f) for an estimated 50% of occluders. If the estimated number of oc-
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Figure 9: A comparison of the original inverse compositional algorithm, the iteratively re-weighted least
squares algorithm, the H-algorithm, and the spatial coherent approximation to the iteratively re-weighted
least squares algorithm using the ‘all-black™ occluder. The original inverse compositional algorithm per-
forms very poorly, converging very infrequently. The iteratively re-weighted least squares algorithm and the
spatial approximation to it both perform very well, and the H-algorithm not quite so well.

33



8 -4 Original IC 100t e

L
LN -~

-= - IC-IRLS R Ty
7r —v— H-Algorithm 90 u .
- = - Spatial Coherence
6L 801
701

RMS Point Error
B [4,]

w

% Converged
o
S

20(| -a - Original IC

-® - |[C-IRLS

10/} —y= H-Algorithm

=« Spatial Coherence

0 o= ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8 9 10
Iteration Point Sigma
(a) Convergence Rate, ‘Scenery” Occluer (b) Divergence Rate, “‘Scenery” Occluer
8r -4 - Original IC 100}
-= - IC-IRLS
7r =¥- H-Algorithm 901
=+ Spatial Coherence
6 80r
— 70,
25 3
& S 60t
£ o
54 g 50/
0 (&)
53 2 401
5 30r
SN
20[1 -4 - QOriginal IC A
1+ -= - IC-IRLS -
10/} —w= H-Algorithm
0 ol==" SRatiaI Qoherepce ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8 9 10
Iteration Point Sigma
(c) Convergence Rate, ‘Face” Occluer (d) Divergence Rate, ‘Face” Occluer
8r -4 - Original IC 100}
-= - IC-IRLS
7r =¥- H-Algorithm 901
=+ Spatial Coherence
ol 80r .
ARy
N 70 i,
Ol 3
ut_, 5 8 b
I g, 60r %
54 2 .
S g 50+ ‘. e “
%) &) . AN
=3 o 40F . .
T ° “u,
30r .
2 *a
~ 207] -a - Original IC
1t DR 2y 1ol 7=+ IC-IRLS
4SS i A —Ae A - [| == H-Algorithm
ot ‘ ‘}%‘&"ii‘* '-f-'q"-‘.“..._...._....‘ o= Spatial Coherence
5 10 15 20 25 1 2 3 4 5 6 7 8 9 10
Iteration Point Sigma
(e) Convergence Rate, ‘Average GL” Occluer (f) Divergence Rate, “Average GL” Occluer

Figure 10: A comparison of the four algorithms for three different occluders for 30% occlusion. The results
with a ‘Scenery” occluder and a ‘face” occluder are qualitatively the same as the corresponding “all-black”
occluder results in Figures 9(c) and (d). The results for the “average grey-level” occluder are different
because this occluder does not lead to strong outliers. In this case, the robust algorithms perform slightly
worse than the original inverse compositional algorithm. The H-algorithm performs signifi cantly worse.
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Figure 11: Varying the percentage of estimated occlusion from the correct value of 30%. If the estimated
percentage of occlusion is too low, as in (a) and (b), the robust algorithms perform poorly, and almost as
poorly as the original inverse compositional algorithm. If the estimated percentage of occlusion is too high,
as in (e) and (f), the iteratively re-weighted least squares algorithm and the spatial coherence approximation
to it perform reasonably well, although not quite as well as with the correct amount of occlusion. The
H-algorithm performs much worse than the other two robust algorithms.
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Figure 12: Varying the block size in the spatial coherence algorithm. When the block size is 1 x 1 pixels,
the spatial coherence algorithm reduces to the iteratively re-weighted least squares algorithm and when the
block size is 100 x 100 pixels (the entire template), the algorithm reduces to the H-algorithm.

cluders is too low, as in Figures 11(a) and (b), the robust algorithms all perform poorly, and almost
as poorly as the original inverse compositional algorithm. If the estimated number of occluders
is too high, as in Figures 11(e) and (f), the iteratively re-weighted least squares algorithm and the
spatial coherence approximation to it perform fairly well (although not as well as when the correct

number of outliers is used). The H-algorithm performs much worse, however.

4.6.6 Experiment 4: Varying the Block Size in the Spatial Coherence Algorithm

In our final experiment we vary the block size in the spatial coherence approximation to the itera-
tively re-weighted least squares algorithm. The results are presented in Figure 12 for the “all-black”
occluder and 30% occlusion. The results confirm that as the block size varies from 1 x 1 pixels
(where the algorithm reduces to the iteratively re-weighted least squares algorithm) to 100 x 100
pixels (where the algorithm reduces to the H-algorithm) the results get generally worse. Somewhat
surprisingly, however, the performance gets slightly better at first when the block size increases to

5 x 5 or 10 x 10 pixels. This is a result of the slight smoothing in the computation of the Hessian.

5 Conclusion

5.1 Summary

In Table 5 we present a summary of the algorithms described in this paper. In Section 3 we in-

troduced the inverse compositional algorithm with a weighted L2 norm. This algorithm is just
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Table 5: A summary of the algorithms described in this paper. In Section 3 we described the inverse
compositional algorithm with a weighted L2 norm. In Section 4 we described the inverse compositional
iteratively reweighted least squares algorithm for a robust error function and two effi cient approximations.

‘ Error Function ‘ Algorithm H Effi cient? ‘ Correct? ‘ Performance ‘
| Weighted L2 | IC With Weighted L2 Norm | Yes | Yes | Good |
Robust IC Tteratively Reweighted Least Squares || No Yes Good
Robust IC IRLS H-Algorithm Yes Approximate | Poor
Robust IC IRLS with Spatial Coherence Yes Approximate | Medium

as efficient as the original inverse compositional algorithm, and performs as well. We described
three applications of this algorithm: (1) weighting the pixels with confidence values for increased
robustness and speed of convergence, (2) pixel selection for computational efficiency, and (3) effi-
ciently allowing linear appearance variation. In Section 4 we described the inverse compositional
iteratively reweighted least squares algorithm for a robust error function. This algorithm, although
it performs well, is substantially less efficient than the original inverse compositional algorithm.
We also described two efficient approximations to this algorithm: (1) the H-Algorithm [8] and
(2) an approximation that takes advantage of spatial coherence. Both of these algorithms are ef-
ficient (the H-Algorithm is slightly more efficient), however the spatial coherence approximation

performs far better in practice (and approximately as well as the IC IRLS algorithm.)

5.2 Discussion

In Part 1 we discussed which is the best algorithm to use. The discussion centered on two topics:
(1) the nature of the noise and (2) whether or not an efficient algorithm is required. The same is
true here. The algorithm to use depends on the noise and the computational requirements.

As discussed in Section 4.1 the “theoretically best” error functions to use (in the Maximum

Likelihood sense, and assuming that the pixels are independent) is:
p(t) o< —log P[I(W(x;p)) — T'(x) =1]. a7

If the noise is Gaussian, this means that a weighted L2 norm should be used (and Q(x, y) should be
set to be the inverse of the covariance of the noise.) This was empirically verified in Section 3.2.1.
If the noise is not Gaussian, the appropriate robust error function should be used instead. To ob-
tain the best performance, the inverse compositional iteratively reweighted least squares algorithm

should be used. Note, however, that this algorithm is relatively inefficient.
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If we care about obtaining high efficiency and are using an unweighted or weighted L2 norm,
the pixel selection algorithm of Section 3.3 can be used. If we care about obtaining high efficiency
and are using a robust error function, one of the two approximations to the inverse compositional
iteratively reweighted least squares algorithm should be used. Of the two, the spatial coherence
approximation is the more general and the block size can be used to control the trade-off between

computational efficiency and convergence performance. It is therefore the better choice.

5.3 Future Work

Besides the choices we have described in this paper and in Part 1 [2], there are a variety of others
that can be made by an image alignment algorithm. These include, whether to allow appearance
variation and whether to add priors on the parameters. In future papers in this series we will extend
our framework to cover these choices and, in particular, investigate whether the efficient inverse

compositional algorithm is compatible with these extensions of the Lucas-Kanade algorithm.

5.4 Matlab Code, Test Images, and Scripts

Matlab implementations of all of the algorithms described in this paper will be made available on
the World Wide Web at: http://www.cs.cmu.edu/"iainm/lk20. We will also include all of the test

images and the scripts used to generate the experimental results in this paper.
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A Proofs of Equivalence

A.l Weighted L2 Norms

The goal of image alignment with a weighted L2 norm is to minimize:
2.2 Q(xy) [I(W(xp) - T(x)]- [I(W(y;p)) - T(y)] (78)
x y

with respect to the warp parameters p. The forwards additive algorithm minimizes this expression

by iteratively minimizing:
2.2 Qkxy) - [I(W(x;p+Ap)) - T(x)]- [I(W(y;p+ Ap)) — T(y)] (79)

with respect to Ap and then updating the parameters p <— p + Ap. The forwards compositional

algorithm minimizes the same expression by iteratively minimizing:

Y3 Qx,y) [I(W(W(x;Ap);p)) — T(x)] - [I(W(W(y; Ap);p)) — T(y)]  (80)

with respect to Ap and then updating the warp W (x;p) < W (x;p) o W(x; Ap). Finally, the

inverse compositional algorithm minimizes the same expression by iteratively minimizing:

2.2 Q(x,y) [T(W(x;Ap)) — I(W(x;p))]- [T(W(y; Ap)) - I(W(y;p))] (8D

with respect to Ap and updating the warp: W(x;p) + W(x;p) o W(x; Ap) L. To show the
equivalence of the forwards additive and inverse compositional formulations, we first show the
equivalence of the forwards additive and forwards compositional formulations. Afterwards we
show the equivalence of the forwards and inverse compositional formulations. The desired result

follows by transitivity of equivalence.

A.d.1 Equivalence of Forwards Additive and Compositional Algorithms

We now show that the forwards additive and forwards compositional approaches are equivalent
in the sense that, to a first order approximation in Ap, they take the same steps in each iteration;

i.e. the updates to the warps are approximately the same. In the forwards additive formulation we
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iteratively minimize Equation (79) which simplifies to:

S Y0 y)- | 1(Wesip) + V15 ap =760 | - | 10wy + V15 ap - 7).

op
(82)
We then update p < p + Ap. The corresponding update to the warp is:
oW
W(x;p) < W(x;p+Ap) ~ W(x;p) + op °P (83)

after a Taylor expansion is made. The forwards compositional formulation in Equation (80) sim-

plifies to:
;?Q(X, y): lI(W(x; p)) + VI%—V:%—‘:Ap — T(x)] .
lI(W(}ﬂ p)) + VI%—Y%—‘:AP — T(y)] . (84)

In the forwards compositional approach, the warp update is W(x;p) < W(x;p) o W(x; Ap).

To simplify this expression, note that:

W(x;Ap) ~ W(x;0) + aﬂAp = x+ aﬂAp (85)
ap ap

is the first order Taylor expansion of W (x; Ap) and that:
W(x;p) o W(x;Ap) = W(W(x; Ap);p). (86)

Combining these last two equations, and applying the Taylor expansion again, gives the update in

the forwards compositional formulation as:

OW OW
W(x;p) + W(x;p)+ E%AP (87)

to first order in Ap. The difference between the forwards additive formulation in Equations (82)

and (83), and the forwards compositional formulation in Equations (84) and (87) is that %—V: 18

OW W

replaced by 5 - 7

. Equations (82) and (84) therefore generally result in different estimates for

Ap. (Note that in the second of these expressions %—V: is evaluated at (x; 0), rather than at (x; p).)
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If the vectors %—V: in the forwards additive formulation and %—VX%—V: in the forwards compo-

sitional formulation both span the same linear space, however, the final updates to the warp in
Equations (83) and (87) will be the same to first order in Ap and the two formulations are equiva-
lent; i.e. the optimal value of %—?Ap in Equation (82) will approximately equal the optimal value

of OW oW

ox op Ap in Equation (84). From Equation (83) we see that the first of these expressions:

OW _ OW(x;p+ Ap)

op 0Ap (88)
and from Equation (87) we see that the second of these expressions:
oW OW _ OW (x;p) o W(x;p + Ap). (89)
ox Op 0Ap
The vectors %—V: in the forwards additive formulation and %—VI%—V: in the forwards compositional

formulation therefore span the same linear space, the tangent space of the manifold W (x; p), if

(there is an € > 0 such that) for any Ap (|| Ap|| < ) there is a Ap’ such that:
W(x;p +Ap) = W(x;p) o W(x;p+ Ap'). (90)

This condition means that the function between Ap and Ap’ is defined in both directions. The
expressions in Equations (88) and (89) therefore span the same linear space. If the warp is invertible

Equation (90) always holds since Ap’ can be chosen such that:
W(x;p+Ap') = W(x;p)~' o W(x;p + Ap). 1)

If the warps are invertible then the two formulations are equivalent. In [2] we stated that the set of
warps must form a semi-group for the forwards compositional algorithm to be applied. While this
is true, for the forwards compositional algorithm also to be provably equivalent to the forwards

additive algorithm, the set of warps must form a group; i.e. every warp must be invertible.

A.1.2 Equivalence of Forwards and Inverse Compositional Algorithms

We now show that the forwards and inverse and compositional approaches are equivalent. The

proof of equivalence here takes a very different form to the proof in Appendix A.1.1. The first step
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is to note that the summations in Equations (80) and (81) are discrete approximations to integrals.

Equation (80) is the discrete version of:
| [ @Gey) - [H(W(W(x; Ap);p)) — Tx) |- [I(W(W(x; Ap); p)) — T(y)] dxdy (92)

where the integrations are both performed over the template 7. Setting x' = W(x; Ap) (or
equivalently x = W(x; Ap)™!) and y' = W (y; Ap) (or equivalently y = W (y’; Ap)™!), and

changing variables, Equation (92) becomes:

/W(T> /W(T) [/(W(x';p) - T(W(x'; ap) ) | - [I(W(y'sp)) - T(W(y'; Ap) 1) |-

dx'dy’ (93)

ox’

OW1
ay’

‘8W—1

where the integration is now performed over the image of 7" under the warp W (x; Ap) which we

denote: W(T) = {W(x; Ap) |x € T'}. Since W(x; 0) is the identity warp, it follows that:

-1

-1
|‘9W — 1+0(Ap). 94)

ox!

oW
= 1+ O(Ap) and | dy’

The integration domain W(T") is equal to 7' = {W(x; 0) | x € T'} to a zeroth order approximation

also. Since we are ignoring higher order terms in Ap, Equation (93) simplifies to:
| ] (7w ap) ) — IW (s p) ] - [T(W(y'; 4p) ) — I(W(¥'sp)) | ax'dy’ (95)

where we have assumed that (W (x'; Ap) 1) —I(W(x'; p)) and T(W (y'; Ap) 1)—I(W(y'; p))
are both O(Ap). (This assumption is equivalent to the assumption made in [9] that the current esti-
mate of the parameters is approximately correct.) The first order terms in the Jacobian and the area
of integration can therefore be ignored. Equation (95) is the continuous version of Equation (81)
except that the terms W (x; Ap) and W (y; Ap) are inverted. The estimate of Ap that is com-
puted by the inverse compositional algorithm using Equation (81) therefore gives an estimate of
W (x; Ap) that is the inverse of the incremental warp computed by the forwards compositional al-
gorithm using Equation (80). Since the inverse compositional algorithm inverts W (x; Ap) before

composing it with W (x; p), the two algorithms take the same steps to first order in Ap.
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A.2 Robust Error Functions

The goal of image alignment with a robust error functions is to minimize:
> o (I(W(x;p)) - T(x)?) (96)

with respect to the warp parameters p. The forwards additive algorithm minimizes this expression
by iteratively minimizing:

> o ([I(W(x;p) + Ap) — T(x)]*) ©7)

X

with respect to Ap and then updating the parameters p < p + Ap. The forwards compositional

algorithm minimizes the same expression by iteratively minimizing:
> o (I(W(W(x; Ap);p)) — T(x)]*) (98)

with respect to Ap and then updating the warp W (x;p) < W (x;p) o W(x; Ap). Finally, the

inverse compositional algorithm minimizes the same expression by iteratively minimizing:
> o (IT(W(x; Ap)) — I(W(x;p))]?) . (99)

with respect to Ap and updating the warp: W(x;p) + W(x;p) o W(x; Ap)~!. To show the
equivalence of the forwards additive and inverse compositional formulations, we first show the
equivalence of the forwards additive and forwards compositional formulations. Afterwards we
show the equivalence of the forwards and inverse compositional formulations. The desired result

follows by transitivity of equivalence.

A.2.1 Equivalence of Forwards Additive and Compositional Algorithms

The proof of equivalence of the forwards additive and compositional algorithms with a robust error
function is almost exactly the same as the proof of equivalence of the corresponding algorithms
with a weighted L2 norm. See Appendix A.l.1. The only difference in the argument is that the
two equations used to estimate the updates to the parameters, Equations (82) and (84), must be

replaced with their equivalents for the robust error function. The equivalent of Equation (82) is:

2 0 ( [I(W(x; p)) + Vfaa—v:Ap - T(x)] ) (100)
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and the equivalent of Equation (84) is:

OW OW ?
I(W (x; VI——Ap—-T . 101
ggw xim) + 910 T~ 7(x) ) (ton)
Otherwise the argument proceeds exactly as in Appendix A.1.1, but using Equation (100) in place
of Equation (82) and Equation (101) in place of Equation (84).

A.2.2 Equivalence of Forwards and Inverse Compositional Algorithms

The proof of equivalence of the forwards and inverse compositional algorithms with a robust error
function is almost exactly the same as the proof of equivalence of the corresponding algorithms
with a weighted L2 norm. See Appendix A.1.2. The first step is to write down the integral version

of Equation (98) which is:

/e (11(W(W(x; Ap);p) - T(x) ") dx. (102)
Setting x’ = W(x; Ap), or equivalently x = W (x'; Ap)~!, and changing variables, Equa-
tion (102) becomes:

oW1

[T et o P

where the integration is now performed over the image of 7" under the warp W (x; Ap) which we

denote: W(T') = {W(x; Ap) | x € T'}. Since W(x; 0) is the identity warp, it follows that:

-1
|‘9W — 1+ 0(Ap). (104)

ox'

The integration domain W(T') is equal to T = {W (x; 0) | x € T'} to a zeroth order approximation

also. Since we are ignoring higher order terms in Ap, Equation (103) simplifies to:
2
[e([Twex; ap)™) - 1W(xip) ] ) ax (105)
T

In making this simplification we have assumed that T(W (x’; Ap)™') — I(W(x'; p)) is O(Ap).
(This assumption is equivalent to the assumption made in [9] that the current estimate of the pa-

rameters is approximately correct.) The first order terms in the Jacobian and the area of integration
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can therefore be ignored. Equation (105) is the continuous version of Equation (99) except that
the term W (x; Ap) is inverted. The estimate of Ap that is computed by the inverse compositional
algorithm using Equation (99) therefore gives an estimate of W (x; Ap) that is the inverse of the
incremental warp computed by the forwards compositional algorithm using Equation (98). Since
the inverse compositional algorithm inverts W (x; Ap) before composing it with W (x; p), the two

algorithms take the same steps to first order in Ap.
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