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Abstract

There are two major formulations of image alignment us-
ing gradient descent. The first estimates an additive incre-
ment to the parameters (the additive approach), the second
an incremental warp (the compositional approach). We first
prove that these two formulations are equivalent. A very ef-
ficient algorithm was recently proposed by Hager and Bel-
humeur using the additive approach that unfortunately can
only be applied to a very restricted class of warps. We show
that using the compositional approach an equally efficient
algorithm (the inverse compositional algorithm) can be de-
rived that can be applied to any set of warps which form
a group. While most warps used in computer vision form
groups, there are a certain warps that do not. Perhaps most
notable is the set of piecewise affine warps used in Flexible
Appearance Models (FAMs). We end this paper by extend-
ing the inverse compositional algorithm to apply to FAMs.

1 Introduction

Image alignment or registration consists of moving, and
possibly deforming, a template to minimize the difference
between the template and an image. Some of the applica-
tions of alignment include optical flow [Lucas and Kanade,
1981], tracking [Black and Jepson, 1998, Hager and Bel-
humeur, 1998, Cascia et al., 2000], parametric and layered
motion estimation [Bergen et al., 1992], mosaic-ing [Shum
and Szeliski, 2000], and face coding [Cootes et al., 1998].

The usual approach to image alignment is gradient de-
scent. Various other numerical algorithms (such as differ-

ence decomposition [Gleicher, 1997, Cascia et al., 2000])
have also been proposed, but gradient descent is the defacto
standard. There are several different formulations of gra-
dient descent, however. One major difference between the
various algorithms is whether they estimate an additive in-
crement to the parameters [Lucas and Kanade, 1981] (an ap-
proach which we will call additive), or whether instead they
estimate an incremental warp [Shum and Szeliski, 2000] (an
approach which we will refer to as compositional.)

The first part of this paper proves that these two ap-
proaches are equivalent in the sense that they take the same
steps in each iteration (to a first order approximation.) One
difference between the two formulations, however, is that
additive algorithms can be applied to any type of warp,

whereas compositional algorithms can only be applied to
sets of warps that form semi-groups. The incremental warp
must be composed with the current estimate of the warp and
so the set of warps must be closed under composition.

Another difference between the various algorithms is
their efficiency. For example, [Hager and Belhumeur, 1998]

recently proposed a very efficient algorithm. The key step
in the derivation of their algorithm is to apply a change of
variables to invert the role of the image and the template.
To do this the Jacobian of the change of variables must take
a particularly simple form. As a result their algorithm can
unfortunately only be used with translations, 2D similarity
transforms, affine warps, and certain other esoteric warps.

Hager and Belhumeur use the additive formulation. We
therefore call their algorithm the inverse additive algorithm.
A natural question then, is what happens if we apply the
same change of variables in the compositional formulation?
It turns out that the change of variables in this case is al-
ways the identity, the Jacobian of which is 1, to a first order
approximation. Noticing this fact immediately leads us to
a new efficient image alignment algorithm that can be ap-
plied to much wider class of warps. The change of variables
means that every warp in the set must now be invertible, but
that is the only new restriction. The inverse compositional
algorithm proposed in this paper can be applied to any set
of warps that form a group. This includes many warps that
the inverse additive algorithm cannot be applied to, such as
homographies and 3D rotations [Shum and Szeliski, 2000].

Although nearly all warps used in computer vision are
groups, there is one important set that is not, the piecewise
affine warps used in Flexible Appearance Models1 (FAMs),
Active Appearance Models (AAMs) [Cootes et al., 1998],
and Active Blobs [Sclaroff and Isidoro, 1998]. Although
the inverse compositional algorithm cannot be directly used
with piecewise affine warps, in the final part of this paper
we show how it can be extended to apply to such warps.
The approach is to derive first order approximations to the
inversion and composition operators. Until now, the users
of piecewise affine warps have had to resort to “non gradi-
ent descent” algorithms in order to obtain efficiency. Our
image alignment framework leads naturally to the first effi-

1We use the term Flexible Appearance Model for models based on
piecewise affine warps and which have independent shape and appearance
eigenspaces, unlike AAMs which have coupled eigen-spaces.
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cient gradient descent algorithm for FAMs.

2 Equivalence

Suppose we are trying to align a template image T (x) to an
input image I(x), where x = (x, y)T is a vector containing
the image coordinates. If the warp is denoted by W(x;p),
where p = (p1, . . . pn)T is a vector of parameters, we as-
sume that the goal of image alignment is to minimize:

∑

x

[ I(W(x;p)) − T (x) ]2 (1)

with respect to p, where the sum is performed over the pix-
els x in the template image T (x).

2.1 Additive Image Alignment

The additive approach assumes that a current estimate of p
is known and then iteratively solves for increments to the
parameters ∆p; i.e. the following expression is minimized:

∑

x

[ I(W(x;p+∆p))− T (x) ]2 (2)

with respect to ∆p. Performing a first order Taylor expan-
sion on this expression gives:

∑

x

[

I(W(x;p)) +∇I
∂W

∂p
∆p− T (x)

]2

. (3)

This is a least squares problem, the solution of which is:

∆p =
∑

x

H−1

[

∇I
∂W

∂p

]T

[T (x)− I(W(x;p))] (4)

where H is the n× n Hessian matrix:

H =
∑

x

[

∇I
∂W

∂p

]T [

∇I
∂W

∂p

]

. (5)

The additive algorithm [Lucas and Kanade, 1981] consists
of iterating the following steps until the estimates of the pa-
rameters p converge:

1. Warp I with W(x;p) to compute I(W(x;p));

2. Compute the error image T (x)− I(W(x;p));

3. Warp the gradient of image I to compute ∇I;

4. Evaluate the Jacobian ∂W
∂p

;

5. Compute the Hessian matrix using Equation (5);

6. Compute ∆p using Equation (4);

7. Update the parameters p← p+∆p.

Because the warped gradient ∇I and the Jacobian ∂W
∂p

both, in general, depend on p, all of these steps must be
performed in every iteration of the algorithm. The estimate
of the parameters p varies from iteration to iteration.

2.2 Compositional Image Alignment

The compositional approach also assumes that a current es-
timate of p is known, but iteratively solves for an an incre-
mental warp W(x;∆p) rather than an additive update to p
[Shum and Szeliski, 2000]; i.e. the following is minimized:

∑

x

[ I(W(W(x;∆p);p)) − T (x) ]2 (6)

with respect to ∆p. A first order Taylor expansion gives:

∑

x

[

I(W(W(x;0);p)) +∇I(W)
∂W

∂p
∆p− T (x)

]2

.

(7)
where I(W)(x) is the warped image I(W(x;p)). Assum-
ing (without loss of generality) that W(x;0) is the identity,
then I(W(W(x;0),p)) = I(W(x;p)). There are then
two differences between Equations (3) and (7). The first
difference is that the gradient of I(x) is replaced with the
gradient of I(W(x;p)). The second difference is hidden
by the concise notation. The Jacobian ∂W

∂p
is evaluated at

(x;p) in Equation (3), but in Equation (7) it is evaluated at
(x;0); i.e. where the Taylor expansion was performed.

The only changes to the algorithm are therefore: (1) the
gradient of I(W(x;p)) should be used in Step 3, (2) the
Jacobian should be evaluated at (x;0) in Step 4, and (3) the
warp is updated W(x;p) ← W(x;p) ◦ W(x;∆p) in
Step 7. The Jacobian in Step 4 is a constant across itera-
tions and can be pre-computed. (It is also generally simpler
analytically [Shum and Szeliski, 2000].) On the other hand,
the update of the warp is more complex. Instead of simply
adding the updates ∆p to the current estimate of the param-
eters p, the incremental update to the warp W(x;∆p) must
be composed with the current estimate W(x;p). This oper-
ation typically involves multiplying two matrices, although
for more complex warps it can be more involved. The warps
must also form a semi-group if W(x;p) ◦W(x;∆p) is al-
ways to be a valid warp, and W(x;0) is to be the identity.

2.3 Proof of Equivalence

In the additive formulation we minimize:

∑

x

[

I(W(x;p)) +∇I
∂W

∂p
∆p− T (x)

]2

(8)

with respect to ∆p and then update p ← p + ∆p. The
corresponding update to the warp is:

W(x;p) ← W(x;p+∆p) ≈ W(x;p)+
∂W

∂p
∆p (9)
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when a first order Taylor expansion is made in ∆p. In the
compositional formulation we minimize:

∑

x

[

I(W(W(x;0);p)) +∇I(W)
∂W

∂p
∆p− T (x)

]2

.

(10)
where∇I(W) is the gradient of I(W(x;p)), which equals
∇I ∂W

∂x by the chain rule. Assuming that W(x;0) is the
identity warp, Equation (10) simplifies further to:

∑

x

[

I(W(x;p)) +∇I
∂W

∂x

∂W

∂p
∆p− T (x)

]2

. (11)

In the compositional approach, the update to the warp is
W(x;p) ← W(x;p) ◦W(x;∆p). In order to simplify
this expression, note that:

W(x;∆p) ≈ W(x;0)+
∂W

∂p
∆p = x+

∂W

∂p
∆p (12)

is the first order Taylor expansion of W(x;∆p) and that:

W(x;p) ◦W(x;∆p) = W(W(x;∆p);p). (13)

Combining these last two equations, and applying the Tay-
lor expansion again, gives the update in the compositional
formulation as:

W(x;p) ← W(x;p) +
∂W

∂x

∂W

∂p
∆p. (14)

The only difference between the additive formulation in
Equations (8) and (9), and the compositional formulation in
Equations (11) and (14) is that ∂W

∂p
is replaced by ∂W

∂x
∂W
∂p

.
Equations (8) and (11) therefore generally result in differ-
ent estimates for ∆p. The overall updates to the warp are
the same to first order in ∆p, however. The warp update
vectors ∂W

∂p in the additive formulation and ∂W
∂x

∂W
∂p in the

compositional formulation both span the same linear space,
the tangent space ofW(x;p). The optimal value of ∂W

∂p
∆p

in Equation (8) will therefore equal the optimal value of
∂W
∂x

∂W
∂p

∆p in Equation (11) and so the updates are equal;
i.e. we have proved that the two formulations are equivalent.

2.4 Modeling Appearance Variation

Often it is assumed that T (x) is not just a single image,
but is actually a single image plus an unknown vector in a
(known) linear subspace. Often the linear subspace is used
to model illumination change [Hager and Belhumeur, 1998,
Cascia et al., 2000], but could easily model more general
appearance variation [Cootes et al., 1998, Black and Jepson,
1998]. We now briefly describe how either of the equivalent
algorithms can be extended to allow appearance variation.
(See the technical report [Baker et al., 2001] for the details.)

Suppose that the images A1(x), . . . , Ad(x) are an or-
thonormal basis for the appearance linear subspace. Image
alignment is then posed as minimizing:

∑

x

[

I(W(x;p)) − T (x)−
d

∑

i=1

λiAi(x)

]2

(15)

simultaneously over the vector of parameters p and the ap-
pearance coefficients λi. If we denote the linear subspace
by span(Ai) and its orthogonal complement by span(Ai)⊥,
the expression in Equation (15) can be rewritten as:
∥

∥

∥

∥

∥

I(W(x;p)) − T (x)−
d

∑

i=1

λiAi(x)

∥

∥

∥

∥

∥

2

span(Ai)⊥

+

∥

∥

∥

∥

∥

I(W(x;p)) − T (x)−
d

∑

i=1

λiAi(x)

∥

∥

∥

∥

∥

2

span(Ai)

(16)

where ∥ ·∥2L denotes the square of the Euclidean norm of the
vector projected into the linear subspace L. Since the norm
only considers the components of vectors in the orthogo-
nal complement of span(Ai), any component in span(Ai)
itself can be dropped. We therefore have to minimize:

∥I(W(x;p)) − T (x)∥2span(Ai)⊥
+

∥

∥

∥

∥

∥

I(W(x;p)) − T (x)−
d

∑

i=1

λiAi(x)

∥

∥

∥

∥

∥

2

span(Ai)

. (17)

The first of these two terms does not depend upon λi. For
any p, the minimum value of the second term is always 0.
The minimization can therefore be performed sequentially

by first minimizing the first term with respect to p alone,
and then minimizing the second term with respect to λi.

Minimizing the first term in Equation (17) is not really
any different to solving the original alignment problem. We
just need to work in the linear subspace span(Ai)⊥; i.e. we
project ∇I ∂W

∂p
into span(Ai)⊥ in Equations (4) and (5).

The error image does not need to be projected into this sub-
space because if one of the two terms in a dot product is
projected into a linear subspace, the result is the same as
if they both were. Minimizing the second term in Equa-
tion (17) has the closed-form solution:

λi =
∑

x

Ai(x) · [I(W(x;p)) − T (x)] . (18)

The description here has been in terms of the additive for-
mulation, but the first term in Equation (17) can alterna-
tively be optimized with a compositional algorithm.

3 Efficiency
As a number of authors have pointed out, there is a huge
computational cost in re-evaluating the Hessian in every it-
eration (Steps 3–5) of the algorithm [Hager and Belhumeur,
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1998, Dellaert and Collins, 1999, Shum and Szeliski, 2000].
If only the Hessian were a constant, it could just be pre-
computed and then re-used. Each iteration of the algorithm
would then just consist of an image warp (Step 1), an image
difference (Step 2), a collection of image “dot-products”
(Step 6), and the update to the parameters (Step 7). All
of these operations are very simple and can easily be per-
formed at (close to) frame-rate [Dellaert and Collins, 1999].

Unfortunately the Hessian is, in general, a function of
p in both the additive and the compositional formulations.
Although various approximate solutions can be used (such
as only updating the Hessian every few iterations and ef-
ficiently approximating the Hessian [Shum and Szeliski,
2000]) these approximations are all inelegant, and it is of-
ten hard to say how good approximations they really are. It
would be far better if the problem could be reformulated in
an equivalent way in which the Hessian is exactly constant.

3.1 Inverse Additive Image Alignment

The key to efficiency is switching the role of the image and
the template, as in [Hager and Belhumeur, 1998], to yield
the inverse additive algorithm. There, the authors change
variables y = W(x;p) or x = W(y;p)−1. Because the
summation in Equation (1) is a discrete approximation to
an integral, the Jacobian (with respect to y) of the warp
W(y;p)−1 has to be incorporated when the change of vari-
ables is performed. Equation (1) therefore becomes:

∑

y

∣

∣

∣

∣

∂W−1

∂y

∣

∣

∣

∣

·
[

I(y) − T (W(y;p)−1)
]2

(19)

where the summation is over the sub-region of I that corre-
sponds to the template T warped with W(x;p),

Much of [Hager and Belhumeur, 1998] is concerned with

the Jacobian ∂W−1

∂y . Hager and Belhumeur have to assume
that this Jacobian has a special form to proceed, namely that
the product of it with the other Jacobian ∂W

∂p (see Equa-

tion (20) in [Hager and Belhumeur, 1998]) can be factored
into a component that only depends upon p (and which can
be moved out of the summation and dealt with later), and
a second component that only depends upon x (which be-
comes an iteration independent weighting factor.)

The full details of the inverse additive algorithm are out-
side the scope of this paper. But, it is this assumption about
the product of the two Jacobians that results in the inverse
additive algorithm only being applicable to a small num-
ber of warps: 2D translations, 2D similarity transforms, 2D
affine warps, and a small number of more esoteric warps.

3.2 Inverse Compositional Image Alignment

The main focus of this paper is the inverse compositional

algorithm, and its extension to FAMs. The inverse compo-
sitional algorithm is derived in a similar way to the algo-

rithm of [Hager and Belhumeur, 1998] but uses the compo-
sitional formulation rather than the additive one. The proof
of equivalence follows in the next section, but the result is
that the algorithm minimizes:

∑

x

[T (W(x;∆p))− I(W(x;p)) ]2 (20)

with respect to ∆p. (Note that the roles of I and T are
reversed.) Performing a first order Taylor expansion gives:

∑

x

[

T (W(x;0)) +∇T
∂W

∂p
∆p− I(W(x;p))

]2

.

(21)
Assuming again without loss of generality that W(x;0) is
the identity, the solution to this least-squares problem is:

∆p = −
∑

x

H−1

[

∇T
∂W

∂p

]T

[T (x)− I(W(x;p)) ]

(22)
where H is the Hessian matrix with I replaced by T :

H =
∑

x

[

∇T
∂W

∂p

]T [

∇T
∂W

∂p

]

(23)

and the Jacobian ∂W
∂p

is evaluated at (x;0). Since there is
nothing in the Hessian that depends upon p, it is constant
across iterations and can be pre-computed. The algorithm
then becomes iterating the following four steps until the pa-
rameters p converge:

1. Warp I with W(x;p) to compute I(W(x;p));

2. Compute the error image I(W(x;p)) − T (x);

3. Compute ∆p using Equation (22);

4. Update: W(x;p)←W(x;p) ◦W(x;∆p)−1.

This algorithm is much more efficient than the forwards al-
gorithms. Steps (3-5) of the forwards algorithms need only
be performed once as a pre-computation, rather than once
per iteration. The only extra cost is inverting W(x;∆p)
and composing it with W(x;p). This typically requires a
matrix inversion and a matrix multiplication on small (3×3
for the homography) matrices. Potentially these two steps
could be more involved as we will see in Section 4. The in-
verse compositional algorithm is almost exactly as efficient
as the inverse additive algorithm [Hager and Belhumeur,
1998]. It can, however, be applied to any warps that form
a group, including homographies and 3D rotations, rather
than only to a small collection of warps. The group prop-
erty is required to perform Step 4 of the algorithm.

Note that a restricted version of the inverse composi-
tional algorithm was proposed (for homographies only) in
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[Dellaert and Collins, 1999]. We have shown that the algo-
rithm can be applied to a much wider class of warps. Also
note that the appearance variation extension in Section 2.4
also applies to the inverse compositional algorithm [Baker
et al., 2001]. The only change needed to the algorithm is
projecting ∇T ∂W

∂p into span(Ai)⊥ in Equations (22–23).

3.3 Equivalence to the Forwards Algorithm

Showing that the inverse compositional algorithm takes the
same steps, to a first order approximation, as the forwards
compositional algorithm is quite different to showing that
the two forwards algorithms are equivalent. As mentioned
in passing above, the first step is to note that the summa-
tions in Equations (7) and (20) are discrete approximations
to integrals. Equation (7) is the discrete version of:

∫

T

[ I(W(W(x;∆p);p)) − T (x) ]2 dx (24)

where the integration is performed over the template T . Set-
ting y = W(x;∆p), or equivalently x = W(y;∆p)−1,
and changing variables, Equation (24) becomes:

∫

W(T )

[

I(W(y;p)) − T (W(y;∆p)−1)
]2

∣

∣

∣

∣

∂W−1

∂y

∣

∣

∣

∣

dy

(25)
where the integration is now performed over the image of
T under the warp W(x;∆p) which we denote: W(T ) =
y ∈ {W(x;∆p) |x ∈ T }. Because W(x;0) is assumed
to be the identity warp, we have:

∣

∣

∣

∣

∂W−1

∂y

∣

∣

∣

∣

= 1 +O(∆p). (26)

The region over which integration is performed W(T ) =
{W(x;∆p) |x ∈ T } is equal to T = {W(x;0) |x ∈ T }
to a zeroth order approximation also. Since we are ignoring
higher order terms in ∆p, Equation (25) simplifies to:

∫

T

[

T (W(y;∆p)−1)− I(W(y;p))
]2

dy. (27)

Here we assume that T (W(y;∆p)−1) − I(W(y;p)), or
equivalently T (y)−I(W(y;p)), is O(∆p). (This assump-
tion is equivalent to the assumption made in [Hager and Bel-
humeur, 1998] that the current estimate of the parameters is
approximately correct.) The first order terms in the Jacobian
and the area of integration can therefore be ignored. Equa-
tion (27) is then the continuous version of Equation (20)
except that the term W(x;∆p) is inverted. The estimate
of ∆p that is computed by the inverse compositional algo-
rithm gives an estimate of W(x;p) that is the inverse of the
warp computed by the compositional algorithm. Since the
inverse compositional algorithm inverts W(x;∆p) before

composing it with the current estimate in Step 4, the two
algorithms take the same steps to first order in p.

Since W(x;p) is in general non-linear, we strictly need
to point out that W(x;∆p)−1 = W(x;−∆p) to first or-
der in ∆p to fully complete the proof of equivalence. (See
Section 4.1 for a derivation.) The value of ∆p that is es-
timated by the inverse compositional algorithm is therefore
the negative of what the forwards compositional algorithm
estimates. This value of ∆p then gives the inverse warp.

3.4 Experimental Validation

We have proved that the two forwards algorithms and the
inverse compositional algorithm take the same steps to first
order in ∆p. (The inverse additive algorithm was shown
to be equivalent in [Hager and Belhumeur, 1998].) The
following experiment was performed to validate the proof.
We experiment with homographies to highlight the fact that
the inverse compositional algorithm can be used with them.
The inverse additive algorithm cannot be used on homo-
graphies, although efficient non gradient descent algorithms
have been proposed [Gleicher, 1997].

We started with a 100 × 100 pixel sub-image of a larger
image. (See [Baker et al., 2001] for the image.) We ran-
domly perturbed the four corners of the sub-image with 2D
Gaussian translations and then solved for the homography
between the perturbed corners and the originals. We next
warped the original image to generate an input image for
the algorithms. The three algorithms were then run with that
image. As an error metric, we measured the RMS distance
between the four corners of the sub-image as predicted by
the computed homography and their known positions in the
original image. These steps were repeated 1000 times with
different random translations and the results averaged.

Figure 1 shows the convergence of the algorithms. We
plot the RMS distance error in the locations of the four cor-
ners of the sub-image, averaged first over the four corners,
and then over the 1000 iterations. The error is plot against
the number of iterations taken by the algorithm. (The error
for 0 iterations is the error in the input data.) The results in
Figure 1 show that the three algorithms all converge at al-
most exactly the same rate validating the fact that they take
approximately the same steps in each iteration. The com-
putational cost of the inverse compositional algorithm is of
course substantially less than that of the other algorithms.

4 Fitting Flexible Appearance Models

Our motivation for developing a framework for image align-
ment was to help develop algorithms for fitting Flexible Ap-
pearance Models2 (FAMs) [Cootes et al., 1998] and Active

2By Flexible Appearance Models we mean models where the shape
and appearance eigenspaces are independent, that is as opposed to the
closely related concept of Active Appearance Models (AAMs) [Cootes et
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Figure 1: To validate the equivalence of the algorithms we con-

ducted an experiment on how fast they converge. A large number

of example images were generated by warping an image with ran-

domly generated homographies. The error in the estimate of the

homography is plotted against the number of iterations of the algo-

rithm. The speed of convergence of the three algorithms is approx-

imately the same, validating their equivalence. The computational

cost of each iteration is far greater for the forwards algorithms.

Blobs [Sclaroff and Isidoro, 1998]. Both Flexible Appear-
ance Models (FAMs) and Active Blobs are based on a com-
bination of piecewise affine warps and appearance variation.
Previously, the users of FAMs, AAMs, and Active Blobs
have had to resort to “non gradient descent” algorithms to
obtain efficiency. Developing a gradient descent algorithm
for FAMs demonstrates the utility of our framework.

FAM fitting algorithms usually assume that there is a
constant linear relationship between the error image and the
additive update to the parameters. This assumption (which
is equivalent to assuming that there is an efficient addi-
tive algorithm for FAMs) is incorrect. See [Matthews and
Baker, 2001] for a counter-example. Difference decompo-
sition [Gleicher, 1997] is generally used for Active Blobs,
although it is also often used erroneously in the additive for-
mulation. See Equation (19) in [Cascia et al., 2000].

An FAM or Active Blob consists of four components.
The first component is a template image T (x). Typically
T is an “average” image. The second component consists
of a pair of triangular meshes. The first mesh is fixed in
the coordinate frame of T . Suppose the fixed mesh has m
vertices {(xi, yi) | i = 1, . . . ,m}. The second mesh is
flexible and can move in the coordinate frame of the input
image I(x) and has vertices {(xi, yi) | i = 1, . . . ,m}.

When combined, the two meshes define a piecewise

affine warp between T and I . The vertices of any pair
of corresponding triangles uniquely define an affine warp
between that pair of triangles. Denote the ith triangle
ti = (j, k, l), where j, k, l ∈ {1, . . . ,m} and ti = (j, k, l)
corresponds to fixed vertices (xj , yj), (xk, yk), and (xl, yl),
and flexible vertices (xj , yj), (xk, yk), and (xl, yl). Denote

al., 1998] where the allowed shape and appearance variation are coupled.

the affine warp between these two triangles Affineti .
The third component of the FAM is an appearance

eigenspace {Ai(x) | i = 1, . . . , d}. As discussed in Sec-
tion 2.4, the appearance eigenspace can be used to model
either illumination variation or more general appearance
variation. The final component of an FAM is a shape
eigenspace. The shape eigenspace is defined by a set of
n orthonormal shape eigen-vectors si. Each shape eigen-
vector si is a column vector with 2 × m components, one
for each pair of x and y mesh vertex coordinates. The space
of allowed deformations of the flexible mesh is defined by:

(x1, y1, . . . , xm, ym)T = (x1, y1, . . . , xm, ym)T+
n
∑

i=1

pisi

(28)
The shape parameters p = (p1, . . . , pn)T then define the
piecewise affine warp W(x;p) between the two coordinate
frames. See [Matthews and Baker, 2001] for an example of
an FAM and a description of how FAMs are constructed.

Unlike most warps used in computer vision, such as ho-
mographies and 3D rotations [Shum and Szeliski, 2000],
the set of piecewise affine warps (onto a fixed mesh) unfor-
tunately does not form a group and so the inverse composi-
tional algorithm cannot be used as is to fit FAMs. We now
extend the algorithm so that it can be used to fit FAMs. The
approach is to develop first order approximations to the in-
verse of a warp and the composition of two warps. Since
these approximations are correct to first order (the usual ap-
proximation) the extended algorithm is also correct.

4.1 Inverting the Incremental Warp

Deriving a first order approximation to W(x;∆p)−1 is
straightforward. A Taylor expansion gives:

W(x;∆p) = W(x;0)+
∂W

∂p
∆p = x+

∂W

∂p
∆p. (29)

We therefore have:

W(x;∆p)◦W(x;−∆p) = x+
∂W

∂p
∆p−

∂W

∂p
∆p = x

(30)
to first order in ∆p. Note that the two Jacobians in Equa-
tion (30) are not evaluated at exactly the same location but
the results are equal to zeroth order in ∆p. Since the differ-
ence is multiplied by ∆p we can ignore the first and higher
order terms. We therefore have (to first order in ∆p):

W(x;∆p)−1 = W(x;−∆p). (31)

4.2 Composing the Incremental Warp

We derive a first order approximation to the composition of
two warps by working with the mesh vertices and approxi-
mating the destination of the fixed mesh vertices under the

7



(a) Input Image (b) Converged FAM mesh

(c) Overlaid FAM Fit (d) Reconstructed Model

Figure 2: One image from a 236 frame movie (see the movie file

on the CD-ROM for the complete sequence), with the results of

FAM fitting using the inverse compositional algorithm.

combined warp. If the combined warp is approximately cor-
rect for the vertices (to first order in ∆p), it will also be
approximately correct in the triangle interiors.

We wish to approximate the destination of the fixed mesh
vertices (xi, yi) under W(x;p) ◦W(x;∆p)−1. Denote
the destination of (xi, yi) under W(x;∆p)−1 by (xi, yi)+
(∆xi,∆yi). Since W(x;∆p)−1 = W(x;−∆p), Equa-
tion (28) simplifies to give:

(

∆x1,∆y1, . . . ,∆xm,∆ym
)T

=
n
∑

i=1

−∆pisi. (32)

We next compute the change to the destination of (xi, yi)
under W(x;p) ◦W(x;∆p)−1; i.e. the change from un-
der W(x;p). Denote this change (∆xi,∆yi). To compute
(∆xi,∆yi) from (∆xi,∆yi), the motion of the fixed ver-
tices (∆xi,∆yi) is simply warped with an affine warp:

(∆xi,∆yi) = Affinet(∆xi,∆yi). (33)

The triangle t to use here is the triangle that the vector
(∆xi,∆yi) lies in. (See [Matthews and Baker, 2001] for
the details of this step which are omitted for lack of space.)

The motions of the flexible vertices (∆xi,∆yi) are then
projected into the shape eigenspace using:

∆p′i = (∆x1,∆y1, . . . ,∆xm,∆ym) si (34)

where ∆p′ is the modified vector of parameter increments
that when added to p gives p + ∆p′ as the parameters of
W(x;p)◦W(x;∆p)−1. In summary, Equations (32), (33),
and (34) can be used to compute the parameters p + ∆p′

of W(x;p) ◦W(x;∆p)−1 from p and ∆p. The compu-
tational cost of this step is O(nm) which is negligible com-
pared to Steps (1–3) of the inverse compositional algorithm.
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Figure 3: The error in the final FAM fit plotted across the entire

236 frame sequence. The inverse compositional algorithm is able

to fit the FAM far better, resulting in a much lower RMS error.

4.3 Experimental Results

There are two differences between our FAM fitting algo-
rithm and previous ones: (1) our algorithm is an analytically
derived gradient descent algorithm, rather than using nu-
merical techniques such as linear regression [Cootes et al.,
1998], finite differences [Cootes and Taylor, 2001], or dif-

ference decomposition [Gleicher, 1997, Cascia et al., 2000],
and (2) we update the new estimate of the warp using the
inverse compositional algorithm rather than simply adding
the parameter increments. As we showed in [Matthews and
Baker, 2001] (and was mentioned in passing in [Gleicher,
1997]) the naive additive approach is provably wrong.

4.3.1 Comparison with other FAM Fitting Algorithms

We first compare our algorithm with the original regression-
based AAM algorithm [Cootes et al., 1998] (applied to
FAMs), on a sequence of 236 frames. One example input
frame, the FAM, the converged FAM overlaid on the input,
and the result of fitting are shown in Figure 2. (A movie of
the FAM being fit over the entire sequence is contained on
the CD-ROM version of the proceedings.)

Figure 3 plots the RMS pixel error between the final
FAM fit and the input image, for each of the 236 frames
in the sequence. Although the models used are exactly the
same, the inverse compositional algorithm is able to fit far
better. The error in the fit (which is partly due to the fact
that the model may not completely explain the data anyway)
is far lower for the inverse compositional algorithm than for
the regression-based algorithm of [Cootes et al., 1998]. The
effect of this improved fitting on the movie on the CD-ROM
is that the model fit looks far smoother across time.

4.3.2 Comparison with the Naive Additive Algorithm

To demonstrate the importance of the compositional frame-
work, we compared the inverse compositional algorithm
with another gradient descent algorithm that is identical ex-
cept that it naively updates the warp by adding the param-
eter increments rather than using the inverse compositional
algorithm. The evaluation is on a task in the automatic con-
struction of FAMs outlined in [Matthews and Baker, 2001].
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Figure 4: A demonstration of the importance of using the inverse

compositional algorithm on a task in the automatic construction

of FAMs. Naively adding the parameter updates (assuming a con-

stant Hessian) rather the composing the incremental warp results

in much slower convergence and a worse final fit.

Figure 4 contains a plot of the error in the FAM fit against
the number of iterations. The figure demonstrates that with
the inverse compositional algorithm, both the convergence
rate is faster, and the final converged fit is better. With-
out using the compositional framework, the algorithm does
converge, albeit slowly, because naively updating the pa-
rameters additively corresponds to taking gradient descent
steps in approximately the right direction, but not quite the
optimal direction; i.e. it converges “by chance”. The con-
vergence rate is almost twice as fast. The naive algorithm
takes over 6 iterations to reach the same degree of fit that
the inverse compositional algorithm reaches in 3.

5 Discussion
We have presented a framework (see Table 1) for gradient
descent image alignment. Algorithms can either be additive
or compositional, and either forwards or inverse. The for-
wards additive algorithm [Lucas and Kanade, 1981], the in-
verse additive algorithm [Hager and Belhumeur, 1998], and
the forwards compositional algorithm [Shum and Szeliski,
2000] have all been studied before. The inverse composi-
tional algorithm and its extension to piecewise affine warps
follow directly from the framework.

Due to lack of space, we are unable to present the full
details of our experiments in this paper. More details can
be found in the associated technical report [Matthews and
Baker, 2001]. We are also currently conducting an extensive
evaluation of FAM and AAM fitting algorithms.

Acknowledgments
We would like to thank Bob Collins, Frank Dellaert, Takeo
Kanade, Jianbo Shi, Sundar Vedula, and Jing Xiao for dis-
cussions on image alignment. We would also like to thank
the anonymous reviewers for their feedback. The research
described in this paper was conducted under U.S. Office of
Naval Research contract N00014-00-1-0915.

Table 1: Gradient descent image alignment algorithms can either

be additive or compositional, and either forwards or inverse. Our

framework leads immediately to two new algorithms, the inverse

compositional algorithm and its extension for fitting FAMs.

Algorithm Can be Applied To Efficient?

Forwards Additive Any No

Inverse Additive Simple Linear 2D + Yes

Forwards Compositional Any Semi-Group No

Inverse Compositional Any Group Yes

FAM Fitting Algorithm Piecewise Affine Yes
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